
Fully Discrete Schwarz Waveform Relaxation on
Two Bounded Overlapping Subdomains

Ronald D. Haynes and Khaled Mohammad

1 Introduction

Overlapping Schwarz waveform relaxation (SWR) provides space–time parallelism
by iteratively solving partial differential equations (PDEs) over a time window on
overlapping spatial subdomains. SWR has been studied for many problems at the
continuous and discrete levels. Gander and Stuart [5] and Giladi and Keller [6] have
analyzed SWR for the heat equation on a finite spatial domain in the continuous and
semi-discrete (in space) cases. Semi-discrete (in space) analysis for reaction diffusion
equations on an infinite spatial domain can be found in [10]. Closely related work on
applications of WRmethods to RC type circuits can be found in [3, 2, 1] (continuous
in time analysis), [11] (infinite circuit, discrete in time), [8, 9] (fractional order,
infinite circuit, discrete and continuous resp. in time), and [12] (Volterra integro-
PDEs, infinite spatial domain). Fully discrete analysis for Schrödinger’s equation
and the wave equation can be found in [7] and [4]. We provide an analysis of a full
space–time discretization of SWR for the heat equation on two overlapping, bounded
subdomains, which does not appear to be in the literature.

Consider the one dimensional heat equation DC = DGG + 5 (G, C) for −! < G < !

and 0 < C ≤ ) subject to initial and boundary conditions D(G, 0) = D0 (G), D(−!, C) =
ℎ1 (C), and D(!, C) = ℎ2 (C). Discretizing in space with central finite differences on
Ωℎ = {G< : G<+1 = G< + ΔG, < = −#, ..., # − 1}, where ΔG = !

#
and G−# = −!,

leads to the IVP

3u(C)
3C

= �u(C) + f (C), 0 < C ≤ ), u(0) = u0, (1)
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where u(C) is the solution vector on the interior of Ωℎ with components D< (C), < =
−(# − 1), . . . , (# − 1), which are the semi-discrete approximations of D(G, C) at
G = G<. Here � = 1

ΔG2 tridiag{1,−2, 1} ∈ R(2#−1)×(2#−1) ,

f (C) = ( 5 (G−(#−1) , C) +
1
ΔG2 ℎ1 (C) , 5 (G−(#−2) , C) ,

. . . , 5 (G(#−2) , C) , 5 (G(#−1) , C) +
1
ΔG2 ℎ2 (C)))

and u0 = (D0 (G−(#−1) ), . . . , D0 (G (#−1) ))) .

2 Semi–discretized SWR

To obtain the classical (,' solution of (1), we decompose Ωℎ into two overlapping
subdomains: Ωℎ1 = {G−# , G−(#−1) , . . . , G" } and Ωℎ2 = {G−" , G−("−1) , . . . , G# }
where the quantity " ≥ 1 is an integer that determines the overlap size.

The classical semi-discrete (,' algorithm on the two subdomains, Ωℎ1 and Ωℎ2 ,
can be written as : for : = 1, 2, . . . , for 9 = 1, 2 solve

3u:
9
(C)

3C
= � 9u:9 (C) + f:9 (C), 0 < C ≤ ), (2a)

where
u:1 (C) = (D:1,−(#−1) (C), D:1,−(#−2) (C), ..., D:1, ("−1) (C))) , (2b)

and
u:2 (C) = (D:2, (−"+1) (C), D:2, (−"+2) (C), ..., D:2, (#−1) (C))) , (2c)

are the subdomain iterates on the interior nodes of Ωℎ1 and Ωℎ2 . Here, for 9 = 1, 2,
� 9 =

1
ΔG2 tridiag{1,−2, 1} ∈ R#+"−1,#+"−1. The vectors f:

9
∈ R#+"−1, for 9 =

1, 2, are defined by

f:1 (C) = f̄1 (C) + 1
ΔG2 D

:
1," (C)X1 and f:2 (C) = f̄2 (C) + 1

ΔG2 D
:
2,−" (C)X2, (2d)

where X 9 ∈ R#+"−1 for 9 = 1, 2, are the unit column vectors

X1 = (0, . . . , 0, 1)) and X2 = (1, 0, . . . , 0)) . (2e)

The overbar notation indicates that f̄ 9 , for 9 = 1, 2, are the first and last # + " − 1
components of f, respectively. This notation will be used throughout. The system
(2a) is supplemented with an initial condition

u:9 (0) = ū 9 (0), 9 = 1, 2, (2f)

and boundary and transmission conditions
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D:1,−# (C) = ℎ1 (C), D:1," (C) = D:−1
2," (C), 0 < C ≤ ),

D:2,−" (C) = D:−1
1,−" (C), D:2,# (C) = ℎ2 (C), 0 < C ≤ ).

(2g)

Here D:
9,<
(C) represents the numerical approximation of D(G, C) at G = G< over Ω 9

using the (,' algorithm at the : Cℎ iteration. To get the iteration started we must
pick initial guesses for D0

2," (C) and D0
1,−" (C).

3 Convergence Analysis

To analyze the fully discrete SWRwe begin with a lemma which describes the single
domain discrete solution of (1) using a backward Euler integrator.

Lemma 1 The single domain solution at C = C=, u(=), restricted to the interior of
Ωℎ
9
, ū 9 (=), for 9 = 1, 2, using a backward Euler integrator for the semi–discrete heat

equation (1), is the unique solution of the subsystems

(�1 − ΔC�1)ū1 (=) − `D" (=)X1 = ū1 (= − 1) + ΔC f̄1 (=),
(�2 − ΔC�2)ū2 (=) − `D−" (=)X2 = ū2 (= − 1) + ΔC f̄2 (=),

for = = 1, 2, . . .. Here ` = ΔC/ΔG2, Xj, for 9 = 1, 2, are defined in (2e), D" (=) and
D−" (=) are the single domain solutions at the interior interface nodes at time C=,
and �1,2 are (# + " − 1) × (# + " − 1) identity matrices. Here f̄j (n) ≡ f̄j (tn) for
9 = 1, 2.

Similar expressions for the SWR approximations are given in the next lemma.

Lemma 2 The solution of (2a)–(2g) using a backward Euler integrator at C = C=,
u:
9
(=), for 9 = 1, 2, at the : Cℎ iteration, are the unique solutions of the subsystems

(�1 − ΔC�1)uk
1 (=) = uk

1 (= − 1) + ΔCfk
1 (=),

(�2 − ΔC�2)uk
2 (=) = uk

2 (= − 1) + ΔCfk
2 (=),

for = = 1, 2, . . .. Here f:
9
(=) ≡ f:

9
(C=), for 9 = 1, 2, where fk

j (C) are defined in (2d).

We denote the error between the single domain and SWR solutions at time step =
by e:

9
(=) = u:

9
(=) − ū 9 (=) for 9 = 1, 2. Simply subtracting the representations of the

single domain and SWR solutions from the previous two lemmas gives the following
result.

Lemma 3 For 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the errors, e:
9
(=), satisfy

(�1 − ΔC�1)ek
1 (=) = ek

1 (= − 1) + `ek
1,M (=)X1,

(�2 − ΔC�2)ek
2 (=) = ek

2 (= − 1) + `ek
2,−M (=)X2,
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with initial condition
e:9 (0) = 0̄ 9 , for 9 = 1, 2,

and boundary conditions

4:1," (=) = 4:−1
2," (=), 4:1,−# (=) = 0,

4:2,−" (=) = 4:−1
1,−" (=), 4:2,# (=) = 0.

Here 0̄j ∈ R#+"−1, for 9 = 1, 2, is the zero vector.

Using the boundary values and the definition of �1,2 and X1,2 we obtain the
following lemma.

Lemma 4 Component-wise, for 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the errors
e:
9,<
(=) satisfy

−`4:1,<−1 (=) + (1 + 2`)4:1,< (=) − `4:1,<+1 (=) = 4:1,< (= − 1) , for < = −(# − 1) , . . . , " − 1,

−`4:2,<−1 (=) + (1 + 2`)4:2,< (=) − `4:2,<+1 (=) = 4:2,< (= − 1) , for < = −(" − 1) , . . . , # − 1.

To analyze these recursions for the error we need the discrete Laplace transform.
The discrete Laplace transform for a general vector h = (h(0), h(1), . . .)) , defined
on a regular grids with time step ΔC is

ĥ(B) = ΔC√
2c

∞∑
==0

I−=h(=),

where I = 4BΔC , B = f + 8l, f > 0 and −c/) ≤ l ≤ c/ΔC.
The recursions for the discrete Laplace transforms of the errors are recorded in

the next lemma.

Lemma 5 For 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the discrete Laplace transform
of errors ê:

9,<
(=) satisfy

`4̂:1,<−1 (B) − (2` + [)4̂:1,< (B) + `4̂:1,<+1 (B) = 0, < = −(# − 1), . . . , (" − 1)

and

`4̂:2,<−1 (B) − (2` + [)4̂:2,< (B) + `4̂:2,<+1 (B) = 0, < = −(" − 1), . . . , (# − 1).

The Laplace transform of the initial error gives

ê:9 (0) = 0 9 , for 9 = 1, 2

and the Laplace transforms of the boundary conditions are

4̂:1," (B) = 4̂:−1
2," (B), 4̂:1,−# (B) = 0,

4̂:2,−" (B) = 4̂:−1
1,−" (B), 4̂:2,# (B) = 0,
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where ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC .
The general solutions of these recursion relations are given in the next two lemmas.

Lemma 6 The general solutions of the recursions for the Laplace transforms of the
error are given by

4̂:9,< (B) = 0:9_<+ + 1:9_−<+ , for 9 = 1, 2, (3)

where _+ solves ` − (2` + [)_ + `_2 = 0 and is given explicitly by _+ =

(2`+[)+
√
(2`+[)2−4`2

2` , ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC where the coefficients
(0:
9
, 1:

9
)) =: c:

9
are shown to satisfy a simple fixed point iteration in the next

lemma.
Note: in the expression above for _+, we have chosen the square root with positive

real part.

Lemma 7 The coefficients in the general solution for the Laplace transform of the
error, c:

9
= (0:

9
, 1:

9
)) , for 9 = 1, 2, satisfy(

c:1
c:2

)
= Γ

(
c:−2

1
c:−2

2

)
,

where the contraction matrix, Γ, is the block diagonal matrix

Γ =

(
(1
(2

)
,

where
(1 = Λ

−1
1 Θ1Λ

−1
2 Θ2 and (2 = Λ

−1
2 Θ2Λ

−1
1 Θ1,

and

Λ1 =

(
_−#+ _#+
_"+ _−"+

)
,Λ2 =

(
_−"+ _"+
_#+ _−#+

)
,Θ1 =

(
0 0
_"+ _−"+

)
,Θ2 =

(
_−"+ _"+

0 0

)
.

Proof The boundary conditions, obtained from (3), can be written as

Λ2ck
2 = Θ2ck−1

1 and Λ1ck
1 = Θ1ck−1

2 ,

from which the result follows. �

To ultimately show convergence of the discrete SWR algorithm we show that for
9 = 1, 2, c:

9
tends to zero as : tends to infinity. A straightforward, but slightly tedious

calculation, gives the following explicit representation of d(Γ).
Lemma 8 The spectral radius of the contraction matrix Γ above, d(Γ), is

d (Γ) =
�����_ (#−" )+ − _−(#−" )+
_
(#+" )
+ − _−(#+" )+

�����2 ,
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where _+ =
(2`+[)+

√
(2`+[)2−4`2

2` , ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC .

Proof Direct calculation gives

(1 = j

(
1 − _2(#−" )

+ _2"+ − _2#+
_−2"+ − _−2#+ 1 − _−2(#−" )

+

)
and (2 = j

(
1 − _−2(#−" )

+ _−2"+ − _−2#+
_2"+ − _2#+ 1 − _2(#−" )

+

)
,

where j = −
(
_#+"+ − _−(#+" )+

)−2
. It is easy to see that det((1) = det((2) = 0,

hence d((1) = |CA ((1) | and d((2) = |CA ((2) |, where CA (·) denotes the trace of the
matrix.We also note CA ((1) = CA ((2). Computing the trace gives the required result.�

From the form of the contraction factor in the previous lemma it is not clear that
the algorithm converges. We may rewrite the contraction factor as follows.

Lemma 9 Using the mapping, _+ = 4E , where E = Z + 8i, the spectral radius of the
contraction matrix, d(Γ), can be written as

d(Γ) =
���� sinh ((# − ")E)
sinh ((# + ")E)

����2 . (4)

or

d (Z, i) = 2?(Z, i) − sin(2#i) sin(2"i) − sinh(2#Z) sinh(2"Z)
2?(Z, i) + sin(2#i) sin(2"i) + sinh(2#Z) sinh(2"Z) , (5)

where
?(Z, i) = sinh2 (#Z) cosh2 ("Z) + sinh2 ("Z) cosh2 (#Z)

+ sin2 (#i) cos2 ("i) + sin2 ("i) cos2 (#i).
(6)

Proof Using the substitution _+ = 4E and the definition of the hyperbolic sine
function we arrive at (4). Now using E = Z + 8i and hyperbolic trigonometric
identities, the contraction rate (4) can be written as

d (Z, i) =
���� sinh((# − ")Z) cos((# − ")i) + 8 cosh((# − ")Z) sin((# − ")i)
sinh((# + ")Z) cos((# + ")i) + 8 cosh((# + ")Z) sin((# + ")i)

����2 .
(7)

Simplifying the modulus in (7) gives

d (Z, i) = sinh2 ((# − ")Z) cos2 ((# − ")i) + cosh2 ((# − ")Z) sin2 ((# − ")i)
sinh2 ((# + ")Z) cos2 ((# + ")i) + cosh2 ((# + ")Z) sin2 ((# + ")i)

.

(8)
Again using hyperbolic trigonometric identities we arrive at (5) where ? is as defined
in (6). �

To show the spectral radius is strictly less one a more detailed analysis of _+ is
necessary.

Lemma 10 The quantity [ = (I − 1)/I in the expression for _+ satisfies Re([) > 0
and hence Re(_+) > 1.
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Proof Consider [ = (I − 1)/I where I = 4BΔC , B = f + 8l, f > 0 and c/) ≤ |l | ≤
c/ΔC. The real part of [ is given by Re([) = 1 − 4−fΔC cos(lΔC) which is easily
seen to be positive for f > 0 and c/) ≤ |l | ≤ c/ΔC. The real part of _+ is given by
Re(_+) = 1 + Re([)

2` +
Re(
√
[2+4`[)
2` . The conclusion Re(_+) > 1 then follows from

the fact that Re([) > 0 and the choice of the square root in _+. �

The following inequality will finally lead us to the main result.

Lemma 11 If _+ = 4Z+8i then

sinh( Z) > |sin( i) | , (9)

for any integer  ≥ 1.

Proof Recall that _+ satisfies ` − (2` + [)_+ + `_2+ = 0. Substituting _+ = 4Z+8i ,
multiplying by 4−(Z+8i) and dividing by 2`, we find 4Z+8i+4−(Z+8i)

2 = 1+ [

2` . Using the
definition of the hyperbolic cosine function and splitting the real and the imaginary
parts of [ we have

cosh(Z + 8i) =
(
1 + Re([)

2`

)
+ 8 Im([)

2`
.

Since Re([) > 0 then clearly |cosh(Z + 8i) |2 > 1.
Induction is used to prove (9). Using Euler’s formula, hyperbolic trigonometric

identities and simplifying the square of the modulus, |cosh(Z + 8i) |2 > 1 becomes

cosh2 (Z) cos2 (i) + sinh2 (Z) sin2 (i) > 1,

which simplifies to sinh2 (Z) > sin2 (i). Since '4(_+) = 4Z 2>B(i) > 1, then Z > 0
and hence sinh(Z) > 0. Taking the square root of both sides of the inequality
sinh2 (Z) > sin2 (i) then gives the base case in the induction argument.

The induction step then follows using the base inequality, hyperbolic trigono-
metric identities, properties of the hyperbolic and trigonometric functions and the
triangle inequality. �

We now arrive at the final and main result.

Theorem 1 The fully discrete (,' algorithm which results from applying the back-
ward Euler time integrator to (2a)–(2g) converges to the single domain discrete
solution on the interior of Ωℎ

9
, for 9 = 1, 2.

Proof We are now in a position to prove that d(Γ) < 1. The spectral radius of
the contraction matrix, d(Γ), is given in (5) where ? is given in (6). Since ? > 0,
then clearly d (Z, i) < 1 if sin(2#i) sin(2"i) + sinh(2#Z) sinh(2"Z) > 0. This
inequality follows from Lemma 11 for  = 2# and  = 2" . To see this, we
consider different cases for the sign of sin(2#i) and sin(2"i). Since Z > 0 we
have sinh(2#Z) > 0 and sinh(2"Z) > 0. There are two cases to consider: if
sin(2#i) and sin(2"i) have the same or opposite signs. If they have the same sign



then the inequality above is obvious. If they have opposite signs then Lemma 11
gives the result.

4 Conclusions

In this paper we have obtained an explicit contraction rate for the discrete Laplace
transform of the error for the fully discretized SWR algorithm applied to the heat
equation on two overlapping bounded domains. Further analysis, with other families
of time integrators and an arbitrary number of subdomains will appear elsewhere.

Acknowledgement We would like to thank Felix Kwok for several discussions
related to this work.

References

1. Al-Khaleel, M., Gander, M.J., Ruehli, A.E.: A mathematical analysis of optimized waveform
relaxation for a small RC circuit. Applied Numerical Mathematics 75, 61–76 (2014)

2. Al-Khaleel, M.D., Gander, M.J., Ruehli, A.E.: Optimization of transmission conditions in
waveform relaxation techniques for RC circuits. SIAM Journal on Numerical Analysis 52(2),
1076–1101 (2014)

3. Gander, M., Ruehli, A.: Optimized waveform relaxation methods for RC type circuits. IEEE
Transactions on Circuits and Systems I: Regular Papers 51(4), 755–768 (2004)

4. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one di-
mensional wave equation. SIAM Journal on Numerical Analysis 41(5), 1643–1681 (2003).
DOI:10.1137/S003614290139559X. 00148

5. Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the
heat equation. SIAM Journal on Scientific Computing 19(6), 2014–2031 (1998)

6. Giladi, E., Keller,H.B.: Space-time domain decomposition for parabolic problems. Numerische
Mathematik 93(2), 279–313 (2002). DOI:10.1007/s002110100345

7. Halpern, L., Szeftel, J.: Optimized and quasi-optimal Schwarz waveform relaxation for the one-
dimensional Schrödinger equation. Mathematical Models and Methods in Applied Sciences
20(12), 2167–2199 (2010). DOI:10.1142/S0218202510004891. 00029

8. Shu-LinWu,M., Al-Khaleel,M.: Parameter optimization inwaveform relaxation for fractional-
order RC circuits. Circuits and Systems I: Regular Papers, IEEE Transactions on 64(7),
1781–1790 (2017)

9. Wu, S.L., Al-Khaleel, M.: Convergence analysis of the Neumann–Neumann waveform relax-
ation method for time-fractional RC circuits. Simulation Modelling Practice and Theory 64,
43–56 (2016)

10. Wu, S.L., Al-Khaleel, M.D.: Semi-discrete Schwarz waveform relaxation algorithms for reac-
tion diffusion equations. BIT 54(3), 831–866 (2014)

11. Wu, S.L., Al-Khaleel, M.D.: Optimized waveform relaxation methods for RC circuits: discrete
case. ESAIM: Mathematical Modelling and Numerical Analysis 51(1), 209–223 (2017)

12. Wu, S.L., Xu, Y.: Convergence analysis of Schwarz waveform relaxation with convolution
transmission conditions. SIAM Journal on Scientific Computing 39(3), 890–921 (2017)


