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1 Introduction
For second order elliptic partial differential equations, such as diffusion or elasticity,
with arbitrary and high coefficient jumps, the convergence rate of domain decom-
position methods with classical coarse spaces typically deteriorates. One remedy
is the use of adaptive coarse spaces, which use eigenfunctions computed from lo-
cal generalized eigenvalue problems to enrich the standard coarse space; see, e.g.,
[19, 6, 5, 4, 22, 23, 3, 16, 17, 14, 7, 8, 24, 1, 20, 2, 13, 21, 10, 9, 11]. This typically
results in a condition number estimate of the form

^ ≤ � tol or ^ ≤ � 1
tol

(1)

of the preconditioned system, where� is independent of the coefficient function and
tol is a tolerance for the selection of the eigenfunctions.

Obviously, the robustness of the adaptive domain decomposition methods is
therefore closely related to the choice of tol. Whereas for a pessimistic choice, i.e.,
tol ≈ 1, the adaptive coarse space can resort to a direct solver, a very optimistic
choice can lead to bad convergence behavior of the method.

In this article, we will compare the spectra of the generalized eigenvalue problems
of several adaptive coarse spaces for overlapping as well as nonoverlapping domain
decompositionmethods. The spectra are of interest because they provide information
for choosing an adequate tolerance splitting bad and good eigenmodes as well as
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about the resulting dimension of the adaptive coarse spaces. Therefore, we will
consider certain representative examples of coefficient functions in two dimensions.

Note that we are not going to discuss other important properties of the adaptive
coarse spaces considered here, such as

• condition number and iteration counts of the methods,
• costs for the computation of the eigenvalue problems and the coarse basis func-

tions, respectively,
• necessary communication in a parallel implementation and the ratio of local and

global work.

Thus, we do not claim to draw a general comparison of the different adaptive meth-
ods. We only want to discuss reasonable choices for the user-defined tolerance for
different, exemplary coefficient distributions and the different types of eigenvalue
problems. We hope that this gives some insight for further discussions.

Model problems and domain decomposition notation We consider the varia-
tional form of a second order elliptic partial differential equation, such as diffusion
or elasticity, and denote the coefficient by d ∈ R+ which is assumed to be constant
on each finite element. In matrix form, the problem reads �G = 1.

Now, let Ω be decomposed into nonoverlapping subdomains Ω1, . . . ,Ω# and Γ
be the interface of this domain decomposition. We define corresponding subdomain
stiffness matrices �(8) with Neumann boundary conditions on mΩ8 , 8 = 1, . . . , #
and the block diagonal matrix �# := blockdiag8

(
�(8) ) which is not assembled in

the interface degrees of freedom. For an edge E or its closure E shared by the
subdomains Ω8 and Ω 9 , we obtain the matrix �(8, 9)0 by assembly of the degrees of
freedom on E or E, respectively, in the matrix �(8, 9)=0 := blockdiag

(
�(8) , �( 9)

)
.

The Schur complements with respect to Z = E, Z = E, or any other Z ⊂ Γ
are obtained from �

(8, 9)
=0 or �(8, 9)0 by elimination of all remaining local degrees of

freedomZ� :
(
(8, 9)
∗,Z := �(8, 9)∗,Z Z − �

(8, 9)
∗,Z Z�

(
�
(8, 9)
∗,Z� Z�

)−1
�
(8, 9)
∗,Z� Z

with ∗ ∈ {0, =0}. We also need ( (8)Z := �(8)Z Z − �
(8)
Z Z�

(
�
(8)
Z� Z�

)−1
�
(8)
Z� Z .

In addition to that, let thematrices �E and"E bematrix discretizations of the one-
dimensional bilinear forms 0E (D, E) :=

∫
E dE,max �GCD �GC E 3G and 1E (D, E) :=

ℎ−1 ∑
G: ∈E

V:D (G: ) E (G: ) with V: :=
∑

{C ∈gℎ ::∈dof (C) }
dC . Here, dC is the constant coeffi-

cient on the element C ∈ gℎ and dE,max (G) := max
{

lim
H8 ∈Ω8→G

d(H8), lim
H 9 ∈Ω 9→G

d(H 9 )
}
.

�GC denotes the tangent derivative with respect to the edge 48 9 , and the G: correspond
to the finite element nodes on the edge. Consequently, �E and "E are the stiffness
matrix and a scaled lumped mass matrix on the edge E.

2 Various adaptive coarse spaces in domain decomposition
Overlapping Schwarz methods We extend the nonoverlapping subdomains to
overlapping subdomains Ω′1, ...,Ω

′
#

and consider two-level overlapping Schwarz
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methods of the form

"−1
$(−2 = Φ�

−1
0 Φ

) +
#∑
8=1

')8 �
−1
8 '8 ,

with overlapping matrices �8 = '8�'
)
8
, 8 = 1, ..., # , where '8 is the restriction

matrix to the overlapping subdomain Ω′
8
, and the coarse matrix �0 = Φ

) �Φ. Here,
the columns of Φ are the coarse basis functions. We consider three different adap-
tive coarse spaces for overlapping Schwarz methods, i.e., the Spectral Harmonically
Enriched Multiscale (SHEM) [7], the Overlapping Schwarz Approximate Compo-
nent Mode Synthesis (OS-ACMS) [10], and the Adaptive Generalized Dryja-Smith-
Widlund (AGDSW) [9, 11] coarse spaces.

In all these approaches, the coarse space consists of vertex- and edge-based
energy-minimizing basis functions, i.e., the interior values Φ� are given by Φ� :=
−�−1

� �
��ΓΦΓ for given interface values ΦΓ. The vertex-based basis functions are

nodal basis functions of Multiscale Finite Element Method (MsFEM) [12] type with
different choices of edge values; cf. [7, 10, 9, 11]. The edge-based basis functions are
energy-minimizing extensions of the solutions of generalized eigenvalue problems
corresponding to the edges of the nonoverlapping domain decomposition.

For an edge E of the nonoverlapping domain decomposition, we consider the
following edge eigenvalue problems.
(Ov1) SHEM coarse space [7]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) �E gE = `−1
E \

) "E gE ∀\ ∈ +ℎ0 (E) .

(Ov2) OS-ACMS coarse space [10]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) (
(8, 9)
E gE = `−1

E \) �E E gE ∀\ ∈ +ℎ0 (E) .

(Ov3) AGDSW coarse space [9, 11]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) (
(8, 9)
E gE = `−1

E \) �E E gE ∀\ ∈ +ℎ0 (E) .

Let the reciprocal eigenvalues `E be ordered nondescendingly. Then, we se-
lect eigenpairs with `E > tol to obtain a condition number estimate of the form
^("−1

$(2�) ≤ �tol that is independent of the coefficient function d. Note that we
use the reciprocal eigenvalue only for comparison with the adaptive coarse spaces
for nonoverlapping domain decomposition methods. For the AGDSW coarse space,
the matrix on the left hand side is singular. Therefore, we obtain infinity reciprocal
eigenvalues in our numerical results.

Nonoverlapping methods In the nonoverlapping domain decomposition meth-
ods FETI-1 and FETI-DP, we use the block diagonal matrix �# and introduce a
jump operator � for the interface with � := (�1, . . . , �# ), D = (D)1 , . . . , D)# )) , and
D8 : Ω8 → R, 8 = 1, . . . , # such that �D = 0 if and only if D is continuous across the
interface. The FETI master system is given by[

�# �)

� 0

] [
D

_

]
=

[
5

0

]
.
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In FETI-1, the null space of �# is handled by a projection % such that we solve
the following system reduced to the Lagrange multipliers and preconditioned by the
nonadaptive, projected Dirichlet preconditioner %"−1

�
%)

%"−1
� %

) ��+# �
) %) _ = %"−1

� %
) 3

with corresponding right hand side%"−1
�
%) 3.Wehave"−1

�
= ��blockdiag

(
(
(8)
Γ8

)
�)
�
,

where �� is a scaled variant of �. In FETI-DP, we subassemble �# in a selected
number of degrees of freedom on the interface, e.g., all vertices, and denote the
resulting nonsingular matrix by �̃# . In the nonadaptive case, we then solve the
preconditioned system

"−1
� ��̃−1

# �
) _ = "−1

� 3̃.

Adaptive constraints can then be enforced by, e.g., a second projection %0 (see [23]
for FETI-1 or [17, 14] for FETI-DP) or via a generalized transformation-of-basis
approach; see [15]. In FETI-1/-DP and BDD(C) methods, the operator %� = �)�� is
used for proving condition number bounds and thus also appears in some generalized
eigenvalue problems.

In this paper, we consider the theGenEOeigenvalue problems for FETI-1 (or BDD
methods); see [23]; which were first introduced for overlapping Schwarz methods;
see [22]. A %�-based estimate based coarse space was motivated in [19]. There, %�
was localized to %�,E by extracting from � and �� the rows only considering the
jumps on the corresponding edge (in 2D). A condition number bound for the 2D case
was proven in [17]. The method was extended to a robust three dimensional version
in [14].We present results with d-scaling as (NOv2a) and deluxe-scaling as (NOv2b).
Another %�-based coarse space was proposed by [3] for BDDCwith deluxe-scaling.
In the eigenvalue problems, the matrix operator � : � = �(� + �)+� is used and
the cutoff of the interface Schur complement at the edge ( (8)

Γ8 |E
is used on the right

hand side. The energy comparison was generalized to arbitrary scaling matrices
� (8) in [17]. Extensions of this method to three dimensions were considered, e.g.,
in [24, 1, 20, 2, 13]. We present results for d-scaling as (NOv3a) and deluxe-scaling
as (NOv3b).
(NOv1) GenEO coarse space (FETI-1/BDD) [23]: find (gΓ8 , `Γ8 ) ∈ +ℎ (Γ8) × R
s. t.

\) (
(8)
Γ8
gΓ8 = `

−1
Γ8
\)

(
�)8 "

−1
� �8)gΓ8 ∀\ ∈ +ℎ (Γ8).

(NOv2) %�-based coarse space no. 1 (FETI-DP/BDDC) [19]: find (gΓ8 , `Γ8 ) ∈(
ker ( (8, 9)

=0,Γ8 9

)⊥ × R s. t.

\) %)�,E(
(8, 9)
=0,Γ8 9

%�,EgΓ8 9 = `Γ8 9 \
) (
(8, 9)
=0,Γ8 9

gΓ8 9 ∀\ ∈
(
ker ( (8, 9)

=0,Γ8 9

)⊥
.

(NOv3) %�-based coarse space no. 2 (FETI-DP/BDDC) [3]: find (gE , `E) ∈
+ℎ0 (E) × R s. t.

\) (
(8)
E : ( ( 9)E gE = `E\)

(
�
( 9) ,)
E (

(8)
Γ|E
�
( 9)
E + �

(8) ,)
E (

( 9)
Γ|E
�
(8)
E

)
gE ∀\ ∈ +ℎ0 (E)
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Let the (reciprocal) eigenvalues be ordered nondescendingly. Then, we select
eigenpairs with `−1

Γ8
, `Γ8 9 , or `E greater than tol. For the (NOv1) and the (NOv3)

eigenvalue problems, the matrix on the left hand side is singular, therefore, we obtain
infinity (reciprocal) eigenvalues in our numerical results. For (NOv1), note that the
authors of [23] do not incorporate the eigenvectors corresponding to zero eigenvalues
into the coarse space. With all three eigenvalue problems (NOv1)-(NOv3), we then
obtain adaptivemethodswith a condition number bound ^ ≤ �tol that is independent
of the coefficient function d.

3 Numerical results
In this section, we present results for a diffusion problem onΩ = (0, 1)2 decomposed
into nine subdomains. We used a rectangular domain decomposition and slightly
curved edges for the subdomain in the center to prevent the appearance of symmetric
effects. We set homogeneous Dirichlet boundary conditions for the edge with G = 0
and homogeneous Neumann boundary conditions elsewhere.

The local spectra of the different adaptive coarse spaces for eight different co-
efficient distributions are shown in Figures 1 and 2. The critical eigenvalues and
reciprocal eigenvalues, respectively, are displayed above the spectral gap, which is
hatched in gray. They are plotted side by side if they are close to each other. A wide
spectral gap simplifies the choice of an appropriate tolerance tol. In addition to that,
the number of critical eigenvalues is related to the dimension of the coarse space.
Note that the condition number estimate (1) guarantees fast convergence of all differ-
ent approaches for arbitrary coefficient distributions if a suitable tolerance is chosen.
However, as can be observed from our results, there are significant differences in
the width of the spectral gap and the number of critical eigenvalues for the depicted
model problems.

The use of harmonic extensions in the eigenvalue problems of the OS-ACMS
coarse space can reduce the number of bad eigenmodes compared to the cheaper
one-dimensional integrals in the related SHEM coarse space. A similar behavior can
be observed for the expensive deluxe-scaling compared to the cheaper d-scaling for
the %�-based approaches for FETI-DP/BDDC. For several coefficient distributions,
the width of the spectral gap is larger than two orders of magnitude for all approaches,
whereas it is quite small, e.g., for channel-type coefficient distributions.

Note that the plots in Figures 1 and 2 contain much more information, which we
cannot discuss here due to lack of space. We hope that the results presented here give
some insight for further investigations. Further investigations in three dimensions
are also of high interest. This is however out of the scope of this paper. A small
comparison between the 3D version algorithms of columns (Nov2a) and (Nov2b)
can be found in [18, Sec. 6.5.3]. For overlapping Schwarz methods, a comparison
between different 3D approaches including (Ov3) can be found in [11].
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Fig. 1: Left: domain decompositions and high coefficient components (d = 146, black) for several
exemplary coefficient distributions. Right: corresponding (reciprocal) eigenvalues `. Large eigen-
values (> 500) are distributed horizontally to visualize their number. The gap between good and
bad eigenmodes is shown in gray.



Local Spectra of Adaptive Domain Decomposition Methods 173

(Ov1) (Ov2) (Ov3) (NOv1)(NOv2a)(NOv2b)(NOv3a)(NOv3b)
0

1e−06

0.0001

0.01

1

100

10000

1e+06

1e+08

Inf

µ

Eigenvalue problem

(Ov1) (Ov2) (Ov3) (NOv1)(NOv2a)(NOv2b)(NOv3a)(NOv3b)
0

1e−06

0.0001

0.01

1

100

10000

1e+06

1e+08

Inf

µ

Eigenvalue problem

(Ov1) (Ov2) (Ov3) (NOv1)(NOv2a)(NOv2b)(NOv3a)(NOv3b)
0

1e−06

0.0001

0.01

1

100

10000

1e+06

1e+08

Inf

µ

Eigenvalue problem

(Ov1) (Ov2) (Ov3) (NOv1)(NOv2a)(NOv2b)(NOv3a)(NOv3b)
0

1e−06

0.0001

0.01

1

100

10000

1e+06

1e+08

Inf

µ

Eigenvalue problem

Fig. 2: Left: domain decompositions and high coefficient components (d = 146, black) for several
exemplary coefficient distributions. Bottom coefficient function generated from the microstructure
of a dual-phase steel; courtesy of Jörg Schröder, University of Duisburg-Essen, Germany, originat-
ing from a cooperation with ThyssenKruppSteel. Right: corresponding (reciprocal) eigenvalues `.
Large eigenvalues (> 500) are distributed horizontally to visualize their number. The gap between
good and bad eigenmodes is shown in gray.
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