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1 The Standard GDSW Preconditioner

The GDSW (Generalized Dryja–Smith–Widlund) preconditioner is a two-level
overlapping Schwarz domain decomposition preconditioner [23] with exact local
solvers [5, 4]. The GDSW preconditioner can be written in the form
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respond to the local overlapping subdomain problems. By +1, . . . , +# , we denote
the local subspaces corresponding to the overlapping subdomains, and +0 denotes
the corresponding coarse space. The restriction operators on the subdomain level
are defined as '8 : +ℎ (Ω) → +8 := +ℎ (Ω′

8
) for 8 = 1, . . . , # . The columns of the

matrix Φ correspond to the coarse basis function which are chosen to to be discrete
harmonic extensions from the interface of the nonoverlapping decomposition to the
interior degrees of freedom. The interface values are restrictions of the elements of
the null space of the operator to the edges, vertices, and faces. For linear elliptic
problems, the condition number of the Schwarz operator is bounded by
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Fig. 1: Structured decomposition of an exemplary two-dimensional computational domain Ω into
nonoverlapping subregions Ω80(left), a zoom into one overlapping subregion Ω′

80 consisting of
subdomains Ω8 (middle), and a zoom into one overlapping subdomain Ω′

8
(right). Each level of

zoom corresponds to one level of the preconditioner; image taken from [13].
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where ℎ is the size of a finite element, � the size of a nonoverlapping subdomain,
and X the width of the overlap; see [4, 5, 6]. Even better condition number estimates
are available. For example, the power of the logarithmic term can be reduced to
1 using Option 1 in [7]. An important advantage of the GDSW preconditioner is
that it can be constructed in an algebraic fashion from the fully assembled matrix  
and without the need of an additional coarse triangulation. This will also facilitate
the construction of the three-level GDSW preconditioner presented in the following
section.

2 The Three-Level GDSW Preconditioner

If a direct solver is used for the solution of the coarse problem in (1), this can become
a bottleneck for a large number of subdomains; cf. [11, 9]. As a remedy, in this paper,
we apply the GDSW preconditioner recursively to the coarse problem, resulting in
a three-level extension of the GDSW preconditioner; see [13] for the corresponding
algorithm in two dimensions. Our three-level GDSW method is related to the three-
level BDDC method [24]. A further recursive application of the preconditioner,
resulting in a multilevel extension similar to multi-level BDDC methods [18, 2, 16],
multilevel Schwarz methods [17, 21], or multigrid methods [8], is algorithmically
straightforward but out of the scope of this paper. The scalability of the two-level
method can also be improved by reducing the size of the GDSW coarse space;
cf. [14, 7]. There, instead of using coarse basis functions corresponding to subdomain
edges, vertices, and, faces, new basis functions are constructed, e.g., corresponding
only to the vertices. In this paper, we will construct three-level GDSWmethods using
standard as well as reduced dimension coarse spaces.

To define the three-level GDSW preconditioner, we decompose the domain Ω
into nonoverlapping subregions Ω80 of diameter �2; see [24] and Figure 1 for a



A Three-Level GDSW Method 187

graphical representation of the decomposition Ω in two dimensions. Each subregion
is decomposed into nonoverlapping subdomains of diameter about�. Extending each
subregion Ω80 to Ω′

80 by recursively adding layers of subdomains, an overlapping
decomposition into subregions is obtained. The overlap on subregion level is denoted
by Δ; the overlap on the subdomain level is denoted by X, consistent with the notation
of the two-level method; see Figure 1.

The three-level GDSW preconditioner then is defined as
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restriction operators to the overlapping subregionsΩ′
80 as '80 : +0 → +0

8
:= +0 (Ω′

80)
for 8 = 1, ..., #0. The respective coarse space is denoted as +00 and spanned by the
coarse basis functions Φ0.

3 Implementation and Software Libraries

The parallel three-level GDSW implementation discussed in this paper is based on
[9, 11, 12] and uses the Trilinos Epetra linear algebra package. A recent Xpetra
version (FROSch - Fast and Robust Overlapping Schwarz framework [10]) is now
part of the Trilinos [15] package ShyLU [19].

To test our three-level GDSW implementation, we consider the Poisson problem
on the unit cube [0, 1]3 with homogenous Dirichlet boundary conditions on mΩ.
We use structured domain decompositions into subregions and subdomains; see
Figure 1 for a representation of the two-dimensional case. Our model problem is
discretized using piecewise linear finite elements. As a default Krylov method, we
apply the GMRES method provided by the Trilinos package Belos [3]. Trilinos
version 12.11 (Dev) is used; cf. [15].

All numerical experiments were carried out on the JUQUEEN supercomputer at
JSC Julich. We use the IBM XL C/C++ compiler for Blue Gene V.12.1, and Trilinos
is linked to the ESSL.

To solve the overlapping subdomain and subregion problems and the coarse
problem, we always use MUMPS 4.10.0 [1] in symmetric, sequential mode, and
interfaced through the Trilinos package Amesos [20]. For our experiments, we
always have a one-to-one correspondence of subdomains and processor cores. We
use the relative stopping criterion ‖A: ‖2/‖A0‖2 ≤ 10−6. Moreover, we assume that
we have a fast and scalable method to identify interface degrees of freedom. That
cost is therefore neglected in this paper.
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3.1 Weak Parallel Scalability of the Three-Level GDSW Preconditioner

In this section, we focus on the weak scalability of our preconditioners. For the
numerical scalability of the three-level GDSW preconditioner in two dimensions,
more detailed numerical results can be found in [13]. We also compare results for the
two and three-level methods using the standard coarse space (denoted by GDSW)
and the reduced dimension coarse space (denoted by RGDSW). In particular, we use
Option 1, which is the completely algebraic variant of the RGDSW coarse space;
cf. [7] or [14], respectively.

The number of Krylov iterations is presented in Figure 2 and Table 1. Note that
the standard two-level GDSW method fails for more than 13 824 cores since the
coarse problem could not be factored any more due to memory limits. All other
methods show numerical scalability for up to 64 000 cores. This includes the two-
level RGDSW method, which is a remarkable result since RGDSW coarse space is
smaller than the standard GDSW coarse space but the coarse basis function have, on
average, a larger support (see also Table 2); cf. also [14].

Our results show, that the numerical scalability of both two-level methods is
slightly better; cf. Figure 2 and Table 1. Moreover, the number of iterations is higher
by almost a factor of two for both three-level methods; this is, however, not surprising
since the direct coarse solver is replaced by a (two-level) preconditioner.

Fig. 2:Weak numerical scalability of the two- and three-level GDSW (left) and the RGDSW (right)
preconditioner. All methods are numerically scalable; see Table 1 for the corresponding data.

Let us now consider the computing times, which are more favorable for the three-
level methods; see Figure 3 and Table 1. By Solver Time, we denote the time to
solution, which is the sum of the time for the setup of the preconditioner, denoted
Setup Time, and the time for the Krylov iteration, which we denote Krylov Time. The
Setup Time includes the factorizations of the matrices on the different levels using the
MUMPS sparse direct solver. For RGDSW coarse space, the three-level method is
faster than the two-level methods for 4 096 cores and more; see Figure 3 and Table 1.
The two-level RGDSW method is consistently the fastest method from 1 728 to to
32 768 cores. However, for 46 656 and 64 000 cores, the three-level method is faster.
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Fig. 3: Weak parallel scalability of the two- and three-level methods using the standard (left) and
the reduced coarse space (right); see Table 1 for the data.

Fig. 4:Memory usage of the MUMPS direct solver for the factorization of the coarse matrix 0 and
 00 for the two-level and three-level GDSW method using the standard (left) and reduced coarse
space (right); see Table 2 for the corresponding data.

For the largest problem with 1.72 billion degrees of freedom, the Solver Time for
three-level RGDSW precondtioner (77.7s Solver Time) more than 20% faster than
two-level RGDSW preconditioner (98.3s Solver Time) and also slightly faster than
the three-level GDSW preconditioner (78.7s Solver Time). However, considering the
size of  0, we expect the two-level RGDSW to fail beyond 100 000 cores while
both three-level methods will continue to scale; also cf. the memory usage for the
factorazation of  00 in Figure 4 and Table 2.
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#Sub- Two-level GDSW Three-level GDSW Two-level RGDSW Three-level RGDSW
domains Iter Solver Setup Krylov Iter Solver Setup Krylov Iter Solver Setup Krylov Iter Solver Setup Krylov
= #cores Time Time Time Time Time Time Time Time Time Time Time Time

1 728 35 50.2 s 30.9 s 19.4 s 48 51.8 s 28.3 s 23.4 s 44 47.9 s 26.9 s 21.1 s 60 55.2 s 26.2 s 28.9 s
4 096 33 58.7 s 35.5 s 23.2 s 51 55.1 s 30.1 s 25.0 s 45 50.0 s 27.6 s 22.4 s 65 58.3 s 26.7 s 31.6 s
8 000 33 77.7 s 46.3 s 31.4 s 59 60.0 s 30.2 s 29.8 s 44 56.1 s 32.3 s 23.8 s 68 64.4 s 30.8 s 33.7 s

13 824 33 115.2 s 69.1 s 46.0 s 57 60.4 s 31.3 s 29.1 s 44 59.6 s 33.3 s 26.3 s 70 67.0 s 31.9 s 35.1 s
21 952 — — — — 65 69.5 s 35.0 s 34.6 s 44 64.7 s 34.6s 30.1 s 72 69.0 s 32.1 s 36.9 s
32 768 — — — — 62 69.8 s 36.2 s 33.6 s 43 69.4 s 35.2 s 34.2 s 74 70.8 s 32.6 s 38.2 s
46 656 — — — — 66 74.8 s 37.1 s 37.6 s 43 78.6 s 37.2 s 41.4 s 75 73.8 s 33.7 s 40.2 s
64 000 — — — — 67 78.7 s 38.5 s 40.2 s 42 98.3 s 50.2 s 48.1 s 78 77.7 s 34.8 s 42.9 s

Table 1: By Iter, we denote number of Krylov iterations. The Solver Time is the sum of the Setup
Time and Krylov Time. We have �/ℎ = 30, �/X = 15, �2/� = 4, and �2/Δ = 4. Also see
Figure 2 and Figure 3. The fastest Solver Time is printed in bold.
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Fig. 5: Computing time for solving the problem on the coarsest level, i.e., using  0 in the standard
two-level method preconditioner ans using  00 for the three-level GDSW preconditioner and using
the standard coarse space (left) and respectively the reduced coarse space (right). See Table 2 for
the corresponding data.
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