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1 Introduction

Let Ω be a domain in R= and 5 ∈ !2 (Ω) be a given function. Consider the Laplace
problem

ΔD = 5 in Ω, D = 0 on mΩ. (1)

In error form, the alternating Schwarz method for the solution to (1) is

Δ4=1 = 0 in Ω1,

4=1 = 0 on mΩ ∩Ω1,

4=1 = 4
=−1
2 on Γ1,

Δ4=2 = 0 in Ω2,

4=2 = 0 on mΩ ∩Ω2,

4=2 = 4
=
1 on Γ2.

(2)

Given any initial guess 40 ∈ + := �1
0 (Ω) and solving iteratively (2), one obtains the

sequence (4=1 )=∈N+ ⊂ �1 (Ω1) of errors in Ω1 and the sequence (4=2 )=∈N+ ⊂ �1 (Ω2)
of errors in Ω2. Let us define the sequence (4: ):∈N+ ⊂ + as

4: :=

{
4:1 in Ω1

4:−1
2 in Ω \Ω1

for : odd, and 4: :=

{
4:2 in Ω2

4:−1
1 in Ω \Ω2

for : even.

We denote by +1 and +2 the extensions by zero in Ω of �1
0 (Ω1) and �1

0 (Ω2).
Their orthogonal complements +⊥1 and +⊥2 in + with respect to the inner product
〈·, ·〉 := (∇·,∇·)!2 are of the form

+⊥9 = {E ∈ �1
0 (Ω) : ΔE = 0 in Ω\Ω 9 } (3)
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for 9 = 1, 2. It is then possible to show that (2) is equivalent to the alternating
projection method (APM), 4: := %+ ⊥2 %+ ⊥1 4:−1, for : ∈ N+, where %+ ⊥

9
denote the

orthogonal projections onto +⊥
9
, 9 = 1, 2; [11, 5].

For an arbitraryHilbert space+ and two closed subspaces+1 and+2, vonNeumann
[12] andHalperin [10] proved that 4: → 0whenever+1 ++2 = + .Moreover, if+1++2
is closed, then the convergence is geometric, i.e. there exists \ < 1 such that for all
40 ∈ + it holds that ‖4: ‖ ≤ \: ‖40‖. In the particular case of only two subspaces +1
and +2, it is proven that the optimal \ is incl(+1, +2), with 0 ≤ incl(+1, +2) ≤ 1 the
inclination between the subspaces +1 and +2, and that \ = incl(+1, +2) < 1 if and
only if +1 ++2 is closed; see, e.g., [6, 5].

In the context of Schwarz method, P.L. Lions proves in [11] that an overlapping
decomposition Ω = Ω1 ∪ Ω2 guarantees that +1 ++2 = + , and gives sufficient
conditions for +1 + +2 = +1 ++2 to hold; see also [5, Lemma 2.16 and Theorem
2.17]. These conditions hold if the overlap Ω1 ∩Ω2 is a sufficiently regular domain.
A natural question arises: what happens if Ω1 ∩ Ω2 is not regular enough (e.g.,
non-Lipschitz)? Is the geometric convergence still guaranteed in this case?

We show in this paper that ifΩ1∩Ω2 is non-Lipschitz, then+1++2 is not necessarily
closed. Classical abstract results state that in this case the APM converges ‘arbitrarily
slowly’ [7, 8, 1]:

Definition 1 (Arbitrarily slow convergence (ASC)) The APM is said to converge
arbitrarily slowly if for every sequence ( 5=)=∈N ⊂ R+ with 5= → 0 and for all Y > 0
there exists 40 ∈ + with ‖40‖ < sup= 5= + Y and ‖4: ‖ ≥ 5= for all =.

An ASC is quite difficult to observe and characterize. Therefore, we introduce the
notion of ‘non-geometric’ convergence:

Definition 2 (Non-geometric convergence (NGC)) The APM is said to converge
non-geometrically if there is no \ < 1 such that for all 40 ∈ + it holds that ‖4: ‖ ≤
\: ‖40‖. Moreover, we say that a vector 40 ∈ + leads to NCG, if there exists no \ < 1
such that ‖4: ‖ ≤ \: ‖40‖.

To the best of our knowledge, the case of a non-closed sum +1 ++2 is not studied
in the literature of classical Schwarz theory. Moreover, also the literature concerning
the more general framework of the APM presents surprisingly few results for this
problem. The aim of our work is to study ASC and NGC of the classical Schwarz
method and hence to shed more light on the issue of ‘slow convergence’ of the
APM. To do so, in Section 2 we present a domain decomposition example that
leads to two subspaces +1 and +2 whose sum is not closed. Section 3 focuses on
theoretical results about NGC and ASC of the APM. In Section 4, we consider again
the example from Section 2 and discuss the dependence of the convergence rate on
the initial function 40. Moreover, we precisely characterize a dense subset of the
set of all functions leading to geometric convergence. Finally, results of numerical
experiments are presented in Section 5.
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Fig. 1: Decomposition Ω = Ω1 ∪ Ω2 with � = {(G, H) ∈ Ω : G > 0, H > GU } = Ω1 ∩ Ω2 and
U < 1.

2 Domain decomposition with non-Lipschitz overlap

Consider a domainΩ = (−1, 1)×(0, 1) and two subdomainsΩ1 = (−1, 0]×(0, 1)∪�
and Ω2 = (0, 1) × (0, 1) with � = {(G, H) ∈ Ω : G > 0, H > GU} for some U > 0.
Clearly, the overlapping decomposition Ω1 ∪ Ω2 = Ω holds, and � is the overlap;
see Fig. 1. The following theorem shows that, if U < 1 (hence � is a non-Lipschitz
domain), then the decomposition Ω = Ω1 ∪ Ω2 leads to two subspaces +1 and +2 of
+ whose sum is not closed.

Theorem 1 (Non-closedness of V1 + V2) Let + 9 denote the extension by zero in Ω
of �1

0 (Ω 9 ) for 9 = 1, 2. Then +1 ++2 = �
1
0 (Ω), but +1 ++2 ≠ + for any U < 1.

Proof Let E ∈ +1 ++2
⊥. Then E ∈ +⊥

9
(see (3)), for 9 = 1, 2. In particular ΔE = 0 in

Ω, thus E = 0. This proves that +1 ++2
⊥
= {0} and the first claim follows.

To prove the second statement, we consider the function E = (AV sin q)k, where
(A, q) denote polar coordinates and k ∈ �1 (Ω) is a cut-off function with k = 0 on
mΩ \ {H = 0} and k = 1 in [−2−U−1

, 2−U−1 ] × [0, 1
2 ]. A direct calculation shows that

E ∈ �1
0 (Ω) for V > 0, and we now prove that E ∉ +1 ++2. To do so, assume for

the sake of contradiction that there are E1 ∈ +1 and E2 ∈ +2 such that E = E1 + E2.
Clearly, it must hold that E1 = E on {G = 0} and E1 = 0 on {(G, GU) : 0 ≤ G ≤ 1}. Let
W(H) := HU

−1 . Then E1 (W(H), H) = 0 and we get −E1 (0, H) =
∫ W (H)

0 mGE1 (C, H) 3C.1
Hence, we have

‖∇E1‖2!2 ≥
∫ 1

2

0

∫ W (H)

0
|mGE1 (C, H) |2 3C 3H ≥

∫ 1
2

0

[∫ W (H)

0
mGE1 (C, H) 3C

]2 1
W(H) 3H

=

∫ 1
2

0

E2
1 (0, H)
W(H) =

∫ 1
2

0

H2V

HU
−1 ,

1 Strictly speaking this is not necessarily meaningful due to possible lack of regularity of E1.
However, it is true for smooth functions and therefore one can argue by density.
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which implies that ‖∇E1‖!2 = ∞ if 2V − U−1 ≤ −1, i.e., if U ≤ 1
1+2V . Thus, for any

U < 1, this shows that E1 ∉ +1 if we choose V > 0 sufficiently small, which leads to
a contradiction. Hence the second claim follows. �

Consider for any Y ∈ (0, 1) and _ > 0 the sets

-_,Y := {D ∈ �1
0 (Ω) : D(0, H) ≥ _HV for a.e. H ∈ (0, Y)}, (4)

where the inequality has to be understood in the sense of traces. Notice that∪_>0-_,Y
is dense in + for any 0 < Y < 1. Moreover, if V = (U−1 − 1)/2, then according to the
proof of Theorem 1 it holds that -_,Y ⊂ + \ (+1 + +2). Hence, Theorem 3 implies
that any 40 ∈ -_,Y leads to a NGC.

In view of Theorem 1, the geometric convergence of the Schwarz method (as
APM) does not hold. This is due to results that we discuss in Section 3.

3 ‘Slow’ convergence in the abstract framework of the APM

Consider an arbitrary Hilbert space (+, 〈·, ·〉) and two closed subspaces +1 and +2
such that +1 + +2 ≠ +1 ++2. Denote by ‖ · ‖ the norm induced by 〈·, ·〉.2 Does the
APM, corresponding to the iteration operator %+ ⊥2 %+ ⊥1 , converge geometrically?
The answer is negative and given in Theorem 2.

Theorem 2 (On the geometric convergence of the APM) Let+1, +2 ⊂ + be closed
subspaces of a Hilbert space with +1 ++2 = + . Let ‖ · ‖ ′ be the operator norm
induced by ‖ · ‖. The following statements are equivalent.

(i) +1 ++2 = + .
(ii) ‖%+ ⊥2 %+ ⊥1 ‖

′ < 1.
(iii) There exists \ ∈ [0, 1) such that ∀40 ∈ + and ∀: ∈ N ‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤
\: ‖40‖.

(iv) For all 40 ∈ + there is \40 ∈ [0, 1) such that ∀: ∈ N ‖(%+ ⊥2 %+ ⊥1 )
:40‖ ≤

\:40 ‖40‖.

Proof The implication from (i) to (ii) is well known; see, e.g., [11, 5]. Clearly (ii)
implies (iii), and (iii) implies (iv). It remains to prove that (iv) implies (i). To do
so, let 40 ∈ + , and denote 4: = (%+ ⊥2 %+ ⊥1 )

:40. We observe that (iv) implies that
lim:→∞ 4: = 0 and that the series H :=

∑∞
:=0 4: is absolutely convergent. Moreover,

we have
%+ ⊥2

%+ ⊥1
40 = (1 − %+2 ) (1 − %+1 )40 = 40 − %+2%+ ⊥1

40 − %+140.

2 Notice that we consider here the same notation (namely the symbols + , +1, +2, 〈·, ·〉 and
‖ · ‖) used in the other sections to describe a more abstract setting. However, it is clear from the
context whether the notation refers to an abstract Hilbert space setting or to the precise domain
decomposition setting.
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By induction and using that lim:→∞ 4: = 0 and that the series H :=
∑∞
:=0 4:

converges absolutely, we obtain

40 = (%+1 + %+2%+ ⊥1
)40 + 41 = (%+1 + %+2%+ ⊥1

)
=∑
:=0

4: + 4=+1

= (%+1 + %+2%+ ⊥1
)H ∈ +1 ++2.

Since 40 ∈ + was arbitrary, the claim follows. �

Theorem 2 implies that, if+1++2 is not closed, then there exists an initial function
40 such that the APM sequence (4: ):∈N does not converge geometrically. The issue
of the rate of convergence of the APM when +1 + +2 is not closed has first been
addressed by Franchetti and Light, who prove in [9] the following result.

Theorem 3 (NGC of the APM) Let+1, +2 ⊂ + be as in Theorem 2 and assume that
+1 + +2 is not closed. Then, for all 40 ∈ + \ (+1 + +2) it holds that

∑∞
:=1

‖4: ‖√
:
= ∞.

In particular, the convergence is NGC.

Theorem 3 states that for any initial function 40 ∈ + \ (+1 + +2) the convergence
of the APM is much slower than geometric. Moreover, in the same paper, the authors
provide an example of a non-closed sum+1 ++2 leading to ASC. In 1997, Bauschke,
Borwein and Lewis proved in [3] that ASC holds whenever +1 + +2 is not closed.
However, Bauschke, Deutsch and Hundal pointed out later in [4] that the proof of
this result given in [3] is erroneous, and they give a different approach to obtain the
same result:

Theorem 4 (DichotomybetweenASCand non-closedness of V1+V2) Let+1, +2 ⊂
+ be as in Theorem 2. Then, exactly one of the following two statements holds:

(1) +1 ++2 is closed. Then the convergence is geometric.
(2) +1 ++2 is not closed. Then the convergence is arbitrarily slow.

In 2010, Deutsch and Hundal studied ASC for a general class of operators on
Banach spaces [7, 8]. Their results include Theorem 4, also in the case of more than
two subspaces. Independently, the same results have been proved in 2011 by Badea,
Grivaux and Müller [1]. In the same paper it is shown that, if +1 + +2 is not closed,
then, for any positive sequence ( 5=)=∈N, the set {40 ∈ + : ‖4=‖ ≥ 5= for a. e. = ∈ N}
is dense in + .

We have seen that if +1 + +2 is not closed, then the APM converges arbitrarily
slow and the convergence is much slower than geometric at least for any initial
vector 40 ∈ + \ (+1 + +2), and that the set of all 40 leading to ASC is dense in
+ . However, what is the dependence of the convergence rate on the initial vector
40? Can one characterize the set of all 40 leading to geometric convergence? In the
papers mentioned above, there are only a few sentences hinting on the dependence
of the convergence rate on the starting point 40. In [2], Badea and Seifert have
shown that one can always find a dense subset, ⊂ + for which ‘super-polynomially
fast convergence’ holds. However, it seems difficult to characterize such a subset
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in a concrete example. In the following section, we discuss the dependence of the
convergence rate on the starting point 40 for the specific example from Section 2.
In particular, we provide rigorous results on the regularity that is needed for an
initial function 40 to lead to geometric convergence, and show that the set of these
initial functions is a dense subset of V if the overlap of the domains is not too rough
(U > 1/3).

4 The dependence of the convergence rate on the initial function

Consider the domain decomposition studied in Section 2with a non-Lipschitz overlap
�. Recall also + = �1

0 (Ω) and the two subspaces +1 and +2 whose orthogonal
complements are given in (3). For which initial functions 40 ∈ + does the Schwarz
method converge geometrically?

Probably the functions that come first to the mind of the reader are the ones in +
that vanish on the interface Γ1 := mΩ1 ∩Ω. For these functions, the Schwarz method
(2) converges in only one step. Indeed, with � := {E ∈ + : E = 0 on mΩ1 ∩ Ω}, we
see that ker(%+ ⊥2 %+ ⊥1 ) = +1 ⊕ (+⊥1 ∩ +2) = +1 ⊕ {E ∈ + : E = 0 in Ω1} = �, where
we used (3). It is not difficult to see that, if D ∉ �, then the iteration will not yield the
exact result after any finite number of iterations. Moreover, � is not the maximal set
of functions that lead to geometric convergence. This is clearly shown by Theorem
5 below. To prove it, we need the following lemma.
Lemma 1 Let +1, +2 ⊂ + be as in Theorem 2, and let , ⊂ +1 + +2 be a closed
subspace which is invariant under %+ ⊥2 %+ ⊥1 . Then, there exists \ < 1 such that
‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤ \: ‖40‖ for all 40 ∈ , .

Proof The result follows by the same arguments used in [11, Theorem I.1]. �

Theorem 5 (A set of initial functions leading to geometric convergence) Recall
the domain decomposition given in Theorem 1 and the corresponding parameter U.
Consider for an arbitrary _ > 0 the set

,_ :=
{
E ∈ + : E(G, H) ≤ _H for almost all (G, H) ∈ Ω}

.

For all 1 > U > 1/3, the sets,_ are closed subspaces of+1++2 and invariant under
%+ ⊥2

%+ ⊥1
. Moreover, ∪_>0,_ is dense in + , and for any _ > 0 there exists \ < 1

such that
‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤ \: ‖40‖ for all 40 ∈ ,_.
Proof Notice that ,_ are closed subspaces of + and �∞2 (Ω) ⊂ ∪_>0,_. Hence
∪_>0,_ is dense in + .

To show that,_ ⊂ +1 ++2, we define the cut-off function [ : Ω→ R by

[(G, H) =


0 in Ω1 \Ω2,

1 in Ω2 \Ω1,

GH−U
−1 in � = Ω1 ∩Ω2.
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Then, for (G, H) ∈ � we have

|∇[(G, H) | =
�� (H−U−1

,−U−1GH−U
−1−1) �� ≤ � (U)H−U−1

. (5)

Let now _ > 0 be fixed and let F ∈ ,_. Then we claim [F ∈ +1 and (1 − [)F ∈ +2.
Using (5) and recalling that U > 1/3, we get

‖(∇[)F‖2
!2 (Ω) ≤

∫
�

� (U)_2 H2

H2U−1 = � (U)_2
∫ 1

0

∫ HU
−1

0

H2

H2U−1 3G 3H

= � (U)_2
∫ 1

0

H2

HU
−1 3H = � (U)_2 1

3 − U−1 .

Noticing [ ≤ 1 in Ω, the above estimate shows [F ∈ +1 and (1 − [)F ∈ +2.
Next, we show that ,_ are invariant under %+ ⊥

8
, 8 = 1, 2. Let F ∈ ,_. Then

E := %+ ⊥1 F is the unique function such that ΔE = 0 in Ω1 with E = F in Ω \ Ω1.
Therefore, since the function i(G, H) = _H is harmonic, the maximum principle
implies that E ≤ i in Ω1 and clearly also that E = F ≤ i in Ω \ Ω1. Hence E ∈ ,_.
The invariance under %+ ⊥2 is analogous. Therefore, we obtain that ,_ is invariant
under %+ ⊥2 %+ ⊥1 . Finally, the geometric convergence follows from Lemma 1. �

Theorem 5 says that for U > 1/3 we have geometric convergence for all 40 ∈
∪_>0,_. The restriction U > 1/3 is optimal. To see it, recall the sets -_,Y defined in
(4) and that -_,Y ⊂ + \ (+1 ++2). Hence, Theorem 3 guarantees that any 40 ∈ -_,Y
leads to a NGC. However, for U ≤ 1/3, -_,Y and,_ have non-trivial intersections.
Therefore, if U ≤ 1/3, then there exists 40 ∈ ,_, in particular 40 ∈ ,_ ∩ -_,Y , that
leads to NGC.

5 Numerical experiments

In this section, we present a numerical study of the NGC of the Schwarz method
corresponding to the domain decomposition given in Fig. 1. The (monodomain)
problem is discretized by linear finite elements using the software Freefem. The
discrete meshes for Ω1 \ Ω2, � and Ω2 \ Ω1 are obtained by the mesh generator of
Freefem where we discretized the boundary components Γ�, Γ� , Γ� and Γ� with
10 points and Γ�, Γ� , Γ1 and Γ2 with 10# points with a positive integer # . This
choice is motivated by the higher accuracy needed close to the singularity point of
m�. The results of our numerical experiments are shown in Fig. 2, where we plot
the value 1 − ‖4=‖/‖4=−1‖ for the iteration count = = 1, . . . , 2000. The numerical
procedure is stopped only if ‖4=‖ < 10−16 or if the value 1 − ‖4=‖/‖4=−1‖ becomes
too small (or negative). Clearly, if 1 − ‖4=‖/‖4=−1‖ becomes constant as = grows,
then the method reached a geometric convergence regime. On the other hand, if
1 − ‖4=‖/‖4=−1‖ → 0 as = grows, then the method converges non-geometrically.
Motivated by Theorems 1 and 5, we study the numerical behavior of the Schwarz
method for an overlap characterized by U = \

2 + 1−\
3 for different \ in [0, 1], an initial

guess 40 ∈ ,1, and different # . In particular, according to Theorem 5, we expect
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Fig. 2: Convergence behavior of the Schwarz method. The value 1 − ‖4= ‖/‖4=−1 ‖ is shown for
# = 10 (left), # = 20 (center), # = 30 (right).

geometric convergence for any \ ∈ (0, 1] and NGC for \ = 0. In Fig. 2, we see that
for # = 10 the Schwarz method is numerically geometric convergent for \ ∈ [1/2, 1]
(solid lines), but not for \ < 1/2 (dashed lines). However, if one refines the mesh
with # = 20 and # = 30, then geometric convergence holds also for \ = 0.4 and
\ = 0.3. Moreover, for bigger # also the curves for smaller \ are less steep and
show a behavior closer to the proved geometric convergence. Finally, we wish to
remark that, according to our experience, a more precise numerical description of
the correct theoretical behavior for \ approaching zero is hard. This is mainly due
to the non-Lipschitz overlap, where a correct numerical discretization is not trivial.
Therefore, further studies would be needed. These are beyond the scope of this short
manuscript, and we hope to consider them in future work.
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