
Global–in–Time Domain Decomposition for a
Nonlinear Diffusion Problem

Elyes Ahmed, Caroline Japhet and Michel Kern

1 Introduction

We study a simplified model for two–phase flow in porous media, where the medium
is made of two (or more) different rock types. Each rock type is a subdomain with
a distinct capillary pressure function so that the saturation becomes discontinuous
across the interface between the different regions. This leads to the phenomenon of
capillary trapping (see [12] or [4]).

In this paper we develop a non-overlapping domain decomposition method that
combines the Optimized Schwarz Waveform Relaxation method with Robin trans-
mission conditions and the discontinuous Galerkin method in time. The domain
decomposition method we present is global-in-time, which provides flexibility for
using non-matching time grids so as to handle the very different time scales that
occur in the different rocks of the porous medium. The method is a generalization of
previous work on linear diffusion or diffusion–advection problems [8, 9].

We state briefly the physical model, referring to [1, 4] for further details. Let
Ω be a bounded open subset of R3 (3 = 2 or 3), assumed to be polygonal, with
Lipschitz continuous boundary. We assume that the porous medium Ω is heteroge-
neous and made-up of two rock types, represented by polygonal subsets (Ω8)8∈{1,2}
(the restriction to two subdomain is only to simplify the exposition, and indeed the
example given in section 4 uses more than 2 subdomains). The subdomains share
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the interface Γ = Ω1 ∩Ω2. We suppose that each subdomain Ω8 is homogeneous, in
that the physical properties depend on space only through the subdomain index.

We consider the following nonlinear diffusion problem (for some time ) > 0)

mCD8 − ∇ · (_8 (D8)∇c8 (D8)) = 0, in Ω8 × (0, )), 8 = 1, 2, (1)

for scalar unknowns D8 = D |Ω8 : Ω8 × (0, )) → [0, 1] representing the gas saturation.
This model can be obtained from the complete two-phase flow model by neglecting
the advection terms in the saturation equation, so that the saturation and pressure
equations become completely decoupled (see [4] for details). In [4], this simplified
model is shown to allow gas trapping in low capillary pressure regions. The func-
tions c8 : [0, 1] → R (Lipschitz and strictly increasing) and _8 : [0, 1] → R are
respectively the capillary pressure and the global mobility of the gas in subdomain
Ω8 . Initial data D0 ∈ !2 (Ω) is given with D0 (G) ∈ [0, 1] for a.e. G ∈ Ω, and for
simplicity we assume homogeneous Neumann boundary conditions on mΩ.

Transmission conditions across the interface Γ × [0, )] are needed to comple-
ment (1). In order to handle the three different cases where both phases can flow
across the interface, or where only one phase flows, and the other phase is trapped in
a subdomain, one introduces truncated capillary pressure curves (see [4] or [1] for
details), defined by

c̄1 (D) = max(c1 (D), c2 (0)), c̄2 (D) = min(c2 (D), c1 (1)).

The transmission conditions are then given by

c̄1 (D1) = c̄2 (D2)
_1∇c1 (D1) · n1 = −_2∇c2 (D2) · n2

on Γ × (0, )), (2)

where n8 is the unit, outward pointing, normal vector field on mΩ8 .
In the next section, this physical problem is rewritten in a form better suited for

mathematical and numerical analysis. In particular, the existence of a weak solution
of the local Robin problems is addressed. A semi–discrete formulation based on
discontinuous Galerkin in time is given in section 3 and numerical experiments
using a finite volume method are described in section 4.

2 Space–time domain decomposition at the continuous level

Themodel stated above is well adapted to physical modeling, but is difficult to handle
mathematically because of the low regularity of the solutions. To obtainmathematical
results, it has been found useful to introduce the Kirchhoff transformation [4], so that
_8 and c8 are replaced by a single function i8 . Following [3, 4], one also introduces
new functions (Π8)8=1,2 that satisfy

c̄1 (D1) = c̄2 (D2) ⇔ Π1 (D1) = Π2 (D2), ∀(D1, D2) ∈ [0, 1]2.
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Defining the global function Π6 (G, C) = Π8 (D8 (G, C)), for G ∈ Ω8 , C ∈ (0, )), it is
shown in the above references thatΠ6 (D) ∈ !2 (0, ) ;�1 (Ω)), which gives a meaning
to the first transmission condition in (4) below.

In terms of the new functions, the problem becomes

mCD8 − Δi8 (D8) = 0, in Ω8 × (0, )), D8 (·, 0) = D0, in Ω8 , (3)

together with a Neumann boundary condition on mΩ8\Γ and the transmission con-
ditions

Π1 (D1) = Π2 (D2)
∇i1 (D1) · n1 = −∇i2 (D2) · n2,

on Γ × (0, )). (4)

An existence theorem is known for the transmission problem (3), (4), see [3, 4]
where existence of a suitably defined weak solution is proved.

An equivalent formulation to the model problem (3)–(4) can be obtained by
replacing (4) with equivalent Robin transmission conditions on Γ × (0, )):

∇i1 (D1)·n1 + U1Π1 (D1) = −∇i2 (D2)·n2 + U1Π2 (D2),
∇i2 (D2)·n2 + U2Π2 (D2) = −∇i1 (D1)·n1 + U2Π1 (D1),

on Γ × (0, )), (5)

where U1 and U2 are free parameters that can be chosen to enhance the convergence
of the method (see [7, 8] for linear problems and [2] for a reaction-diffusion problem
with nonlinear source term). It is shown in [1] how the Robin transmission condi-
tions can be extended to Ventcell transmission conditions, to further improve the
convergence of the method.

The Optimized Schwarz Waveform Relaxation method with nonlinear Robin
transmission conditions (NL–OSWR) is defined by the following iterations for : ≥ 0,
where Ψ0

8
is a given initial Robin guess on Γ × (0, )) for 8 = 1, 2:

mCD
:
8 − Δi8 (D:8 ) = 0, in Ω8 × (0, )),

∇i8 (D:8 ) · n8 + U8Π8 (D:8 ) = Ψ:−1
8 , on Γ × (0, )),

(6)

with suitable initial and boundary conditions, then set

Ψ:8 := −∇i 9 (D:9 )·n 9 + U8Π 9 (D:9 ), 9 = (3 − 8), : ≥ 1. (7)

We give an existence result for the subdomain problem, namely problem (6)
with the iteration : and the subdomain Ω8 fixed. Because of the non-linear Robin
boundary condition, the result is not standard (references [3] and [4] both assume
Neumann boundary conditions). For the rest of this section, we denote by O ⊂ R3
a polygonal domain with Lipschitz boundary (that plays the role of one the Ω8), and
denote by Γ the part of the boundary of O along which the Robin boundary condition
applies. First a notion of weak solution is defined:

Definition 1 (Weak solution for the local Robin problem)
A function D is said to be a weak solution of problem (6) (with initial condition

D0 and homogeneous Neumann boundary condition on mO\Γ if it satisfies:
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1. D ∈ !∞ (O × (0, ))), 0 ≤ D ≤ 1 for a.e. in O × (0, )),
2. i(D) ∈ !2 (0, ) ;�1 (O)), and Π(D) ∈ !2 (0, ) ;�1 (O)),
3. For all k ∈ �test =

{
ℎ ∈ �1 (O × (0, ))), ℎ(., )) = 0

}
,

−
∫ )

0

∫
O
D(x, C)mCk(x, C) dxdC −

∫
O
D0 (x)k(x, 0) dx

+
∫ )

0

∫
O
∇i(D(x, C)) · ∇k(x, C) dxdC −

∫ )

0

∫
Γ

UΠ(D(x, C))k dW(x)dC

=

∫ )

0

∫
Γ

Ψ(x, C)k dW(x)dC, (8)

where dW(x) is the (3 − 1)-dimensional Lebesgue measure on mO.
We then have an existence theorem for the sub-domain problem

Theorem 1 Assume that:

1. the initial condition D0 is in !∞ (O) and satisfies D0 (G) ∈ [0, 1] for a.e. G ∈ O;
2. the right-hand side Ψ ∈ !2 (O × (0, )));
3. the function i is Lipschitz continuous and strictly increasing on (0, 1);
4. the function Π is continuous and non–decreasing on (0, 1);
5. the Robin coefficient U is chosen such that:

0 < Ψ(G, C) < UΠ(1), ∀(G, C) ∈ O × (0, )). (9)

Then there exists a weak solution to Problem (6) in the sense of Definition 1.

The proof is beyond the scope of this article, and will be the topic of a future paper.
It is an adaptation to nonlinear Robin boundary conditions of the proof in [3, 4], and
is based on the convergence of a finite volume scheme.

Note that in the context of the NL–OSWR method assumption (9) will have to be
checked iteratively to prove that the algorithm is well posed (see section 3).

3 Semi–discrete space–time domain decomposition with different
time steps in the subdomains

We introduce a non–conforming time discretization, that is each subdomain Ω8 has
its own time discretization, by using a (lowest order) Discontinuous Galerkin (DG)
time discretization on each subdomain, together with a projection across the interface
(see [7, 8] for an analysis in the linear case). More precisely, for integers "8 , define
XC8 = )/"8 , and denote by T8 the partition of [0, )] in sub-intervals �=

8
of size XC8 ,

where �=
8
= (C=−1

8
, C=
8
] , with C=

8
= =XC8 , for = = 0, . . . , "8 .

For 8 = 1, 2, we introduce the space
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P0
T8 := {D8 (·, C) : (0, )) → !2 (Γ); D8 (·, C) is constant on �=8 , 1 ≤ = ≤ "8}.

Afunction inP0
T8 is thus defined by the"8 functions {D=8 := D8 (·, C) |�=

8
}1≤=≤"8 in !

2 (Γ).
In order to deal with the non–conformity in time, we introduce the !2 projection op-
erator %8, 9 from P0

T9 (!2 (Γ)) onto P0
T8 (!2 (Γ)), i.e., for q ∈ P0

T9 (!2 (Γ)), (%8, 9q) |�=
8

is the average value of q on �=
8
, for = = 1, ..., "8:

(%8, 9q) |�=
8
=

1
XC8

" 9∑
ℓ=1

∫
� ℓ
9
∩�=
8

q.

The semi-discrete counterpart in time of the NL–OSWR method (6)–(7) with pos-
sibly different time grids in the subdomains can be written as follows:

For 8 = 1, 2, given initial iterates Ψ0
8
∈ P0

T8 and starting from the initial condition

D
0,0
8

= D0 |Ω8 , a semi–discrete solution
(
D
:,=
8

)
1≤=≤"8

at step : of the algorithm is
computed by solving, for = = 1, . . . , "8 ,

D
:,=
8
− D:,=−1

8

XC8
− Δi8 (D:,=8 ) = 0 in Ω8 ,

∇i8 (D:,=8 ) · n8 + U8Π8 (D:,=8 ) =
1
XC8

∫
�=
8

Ψ:−1
8 (C) 3C, on Γ × (0, )).

(10)

Then we set

Ψ:8 := %8, 9
(
− ∇i 9 (D:9 (C))·n 9 + U8Π 9 (D:9 (C))

)
, 9 = (3 − 8), : ≥ 1. (11)

The projections in (11) between arbitrary grids are performed using the algorithm
with linear complexity introduced in [5, 6].

Last, we check that the NL–OSWR algorithm is well posed. That is, we need to
verify that assumption (9) holds for every iteration. The initial iterate and the Robin
coefficients are chosen such that it holds for : = 0. We have been able to show
that this remains true throughout the algorithm only in the case when the capillary
pressure functions satisfy

c1 (0) = c2 (0) and c1 (1) = c2 (1).

4 Numerical experiment

The domain Ω is the unit cube, decomposed into two subdomains with two rock
types (see figure 1). The mobilities and capillary pressure functions are given by

_>,8 (D) = D, 8 ∈ {1, 2}, c1 (D) = 5D2, and c2 (D) = 5D2 + 1.
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The initial condition is that the domain contains some quantity of gas, situated
only within Ω1, more precisely, D0 (x) = 0.9 for G1 < 0.4 and 0 otherwise. The
domain is discretized by a mesh of 20 × 20 × 20 elements, the time discretization
is non–conforming, with constant time steps in each subdomain XC1 = 10−3, and
XC2 =

1
8 10−2.

The full discretization is carried out with a two–point finite volume scheme [4].
The method is implemented with the Matlab Reservoir Simulation Toolbox [11].
The nonlinear subdomain problem is solved with Newton’s method. The only change
required to the finite volume scheme to cope with a non–conforming time scheme
is the projection of the right hand side of the transmission condition on the grid
of the current subdomain, as shown on eq. (11). This is what makes the choice
of a DG formalism important, together with a global in time DD method. The
resulting scheme is non-conforming in time, and the equivalence with the physical
transmission conditions no longer holds.

Fig. 1: Test case 1: Saturation D (C) for C = 0.3 and C = 3

The evolution of the saturation at two time steps is shown in Fig. 1. We remark
that at the beginning of the simulation, approximately until C ≈ 0.02, the gas cannot
penetrate to the domain Ω2, since the capillary pressure is lower than the threshold
value c2 (0) = 1, which is known as the entry pressure. The saturation of the trapped
gas inΩ1 as well as the capillary pressure increase until the capillary pressure reaches
the entry pressure.

We study the convergence behavior of the NL–OSWR algorithm. The tolerance
for Newton’s method is fixed to 10−8. The tolerance of the NL–OSWR algorithm is
10−6. The Robin parameters are chosen for the two subdomains so as to minimize
the convergence rate of a linearized version of the problem. Precisely, we take in the
model problem the capillary pressure as unknown, then linearize the nonlinear terms,
leading to determine the optimal Robin parameters for a linear diffusion problem
with discontinuous coefficients similar to that in [8, 10]. We show in Fig. 2 (right) the
relative residuals comparing the convergence history with the parameters calculated
numerically by minimizing the convergence factor for the linearized problem and
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that of with the best parameters located in the zone giving the smaller errors after
the same number of iterations (see Fig. 2 left).

Fig. 2: Test case 1: Left: Level curves for the residual error obtained after 10 iterations for various
values of the parameters U1 and U2. The star (in magenta) marked the parameters obtained with the
minimization process of the convergence factor applied to the linearized problem which is close to
the best one marked by times symbol (in black). Right: The convergence curves.

We now analyze the efficiency in time of the method with nonconforming time
steps. We compute a reference solution as the converged multidomain solution with
conforming fine time grids XC 5 = 1

4 10−3, and where the relative residual is taken
smaller than 10−12. We then compare the solution obtained with the nonconforming
time steps, as described above with two solutions computed first with conforming
fine time steps (XC1 = XC2 = 10−3) and then with conforming coarse time steps
((XC1 = XC2 = 1

8 10−2)). Fig. 3 shows the error in the saturation along a line orthogonal
to the interface at three different time steps. One can see that the nonconforming
solution as well as the solution with conforming and fine steps are in close agreement
with the reference solution, whereas the solution with coarse time steps has a larger
error. This confirms that nonconforming time grids with respect to the rock type
numerically preserve the accuracy in time of the multidomain solution.

Fig. 3: Test case 1. Error in saturation along a line orthogonal to the interface, nonconforming and
conforming (coarse and fine) time-steps. Left ) = )5 /20, right, ) = )5 .

Other examples with more physical content can be found in [1].
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