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1 Introduction

In this paper, a two-level overlapping Schwarz algorithm is proposed for solving
finite element discretization of the following model problem,∫

Ω

d(G)∇D(G) · ∇E(G) 3G =
∫
Ω

5 (G)E(G) 3G, ∀E(G) ∈ �1
0 (Ω), (1)

where D(G) is in the Sobolev space�1
0 (Ω), the space of integrable functionswith their

weak derivatives of the first order being square integrable. The coefficient d(G) can
be highly varying and randomwith high contrast insideΩ. For such model problems,
the standard coarse problem in the two-level overlapping Schwarz algorithm often
fails and a more robust coarse problem is required.

A new idea here is that we will form the coarse problem by utilizing multiscale
finite element functions proposed in [2]. The multiscale finite element functions
are obtained by solving certain constrained energy minimizing problems where the
constraints are formed by using a set of selected eigenvectors from a generalized
eigenvalue problem in each overlapping subdomain. The generalized eigenvalue
problem is similar to that considered in [4]. In their work, the eigenvectors are
directly used to form the coarse basis functions and the resulting preconditioner is
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shown to have a condition number robust with respect to the contrast of the coefficient
but dependent on the overlapping width in the subdomain partition.

The advantage in our new method is that the resulting coarse basis functions
provide a more robust coarse problem and thus the condition number of the resulting
preconditioner becomes robust to the overlapping width as well as the contrast in
the model coefficient. The idea was originated from [2] where it was shown that
such constrained energy minimizing finite element functions can approximate the
solution of the model problem with the errors dependent on the coarse mesh size
but independent of the contrast in the model coefficient. One disadvantage of our
approach is that the constrained minimization problem needs to be solved in the
whole domain. To overcome this heavy cost, we can localize the minimization
problem on each subregion and use the solution to form the coarse basis functions.
In [2], it was shown that the error between the full minimization solution and the
localized one decays exponentially as a function of the subregion size. From that
result, we can expect that the proposed preconditioner with these localized coarse
basis functions also share the same good quality, i.e., is robust with respect to the
overlappingwidth as well as the contrast in the coefficient.More detailed analysis and
extensive numerical tests will be given later in a full version of this short proceeding
paper [14].

We note that the similar idea, enriching the coarse problem by using adaptively
chosen eigenvectors from generalized eigenvalue problems on each subdomain or
on each subdomain interface, has been also extensively developed for other types
of domain decomposition algorithms, such as, FETI(-DP), BDD(C), and additive-
Schwarz algorithms, see [10, 3, 9, 1, 8, 11, 13, 5, 6, 7].

2 Multiscale finite element basis functions

For finite element approximation of the solution of the model problem (1), we
introduce a piecewise linear conforming finite element space +ℎ (⊂ �1

0 (Ω)) defined
for a triangulation Tℎ ofΩ. We assume that the triangulation is fine enough to resolve
the variation in the coefficient d(G) in the following sense,

max
g∈Tℎ

maxG∈g d(G)
minG∈g d(G) ≤ �, (2)

for a given constant �.
We partition the domain Ω into overlapping subdomains {Ω8}#8=1 where each Ω8

is a connected union of triangles in Tℎ . For a given overlapping subdomain partition,
we introduce a partition of unity {\8 (G)}#8=1, where

∑#
8=1 \8 (G) = 1 and each \8 (G) is

supported in Ω8 .
We consider the following generalized eigenvalue problem in each subdomain

Ω8:
08 (q (8)9 , F) = _ (8)9 B8 (q (8)9 , F), ∀F ∈ + (Ω8),
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where + (Ω8) is the restriction of the functions in +ℎ to the subdomain Ω8 and the
local bilinear forms are defined as

08 (E, F) :=
∫
Ω8

d(G)∇E · ∇F 3G, B8 (E, F) :=
∫
Ω8

d(G) |∇\8 (G) |2E F 3G.

We let the eigenvalues _ (8)
9

be arranged in ascending order and choose the eigenvec-
tors q (8)

9
with their associate eigenvalues _ (8)

9
smaller than a given tolerance value Λ,

i.e., _ (8)
9
< Λ. We use the notation ;8 for the number of such eigenvectors.

We first form an auxiliary multiscale finite element space by collecting all the
selected eigenvectors

+0DG :=
{
q
(8)
9
| 8 = 1, · · · , #, 9 = 1, · · · , ;8

}
.

We introduce the following definition for a function E in +ℎ: E is q (8)
9
-orthogonal

if B8 (E, q (8)9 ) = 1 and B: (E, q (:); ) = 0 for : ≠ 8, ; = 1, · · · , ;: , : = 8, ; =

1, · · · , 9 − 1, 9 + 1, · · · , ;8 . We obtain a set of coarse basis functions k (8)
9

as the
solution of the following constrained minimization problem:

k
(8)
9
= argmin{0(k, k) | k ∈ +ℎ , k is q (8)

9
-orthogonal.}, (3)

where
0(D, E) :=

∫
Ω

d(G)∇D · ∇E 3G.

The coarse space+6;1 defined as a span of these functions k (8)9 can be shown to have
the following property: +6;1 is the orthogonal complement of +̃ with respect to the
bilinear form 0(·, ·), where the space +̃ is defined by

+̃ := {E ∈ +ℎ | B8 (E, q (8)9 ) = 0, 8 = 1, · · · , #, 9 = 1, · · · , ;8}. (4)

As proposed in [2], we can consider a more practical relaxed constrained energy
minimizing problem:

k
(8)
A , 9
= argmin

{
0(k, k) + B(ck − q (8)

9
, ck − q (8)

9
) | ∀k ∈ +ℎ

}
, (5)

where

ck :=
#∑
8=1

;8∑
9=1

B8 (k, q (8)9 )q (8)9 , B(E, F) =
#∑
8=1

B8 (E, F).

We note that the function k (8)
A , 9

in (5) will satisfy the same orthogonal property with
respect to the resulting coarse space as that from (3) and it can be found by solving
the following problem: find k (8)

A , 9
in +ℎ such that
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0(k (8)
A , 9
, E) + B(ck (8)

A , 9
, cE) = B(q (8)

9
, cE), ∀E ∈ +ℎ . (6)

Let+6;1 be the coarse space obtained from the k (8)
A , 9

of the above relaxed constrained
problem. From (6), the following orthogonal property holds

0(k (8)
A , 9
, E) = 0, ∀E ∈ +̃

and we thus obtain
+ℎ = +̃ ⊕ +6;1 .

We note that+ℎ = +⊥6;1 ⊕+6;1 and that +̃ is contained in+⊥
6;1

. Since the dimension of
+⊥
6;1

is equal to the dimension of +̃ , see (4), we have +̃ = +⊥
6;1

. In the following, we
will use the space +6;1 defined by the k (8)A , 9 in (6) as the coarse space of the two-level
overlapping Schwarz algorithm.

3 Two-level overlapping Schwarz algorithm

In this section, we propose a two-level overlapping Schwarz preconditioner for the
finite element discretization of the model problem in (1), i.e.,

�D = 1.

We introduce the local finite element space +0 (Ω8), which is the restriction of
functions in +ℎ to Ω8 and vanishing on mΩ8 . We define the local problem matrix by

〈�8E, F〉 :=
∫
Ω8

d(G)∇E · ∇F 3G,∀E, F ∈ +0 (Ω8).

We introduce the restriction '8 from +ℎ to +0 (Ω8) and denote by ')
8
the extension

from +0 (Ω8) by zero to +ℎ . We define the coarse problem matrix by

�0 = 0(k (8)A , 9 , k (:)A ,@), 8, : = 1, · · · , #, and 9 = 1, · · · , ;8 , @ = 1, · · · , ;: .

We note that the size of the matrix �0 is identical to the dimension of +6;1 . We
introduce '0 as the matrix with rows consisting of the nodal values of k (8)

A , 9
in +6;1

and define the two-level overlapping Schwarz preconditioner as

')0 �
−1
0 '0 +

#∑
8=1

')8 �
−1
8 '8 . (7)

For the overlapping Schwarz method, the upper bound estimate can be obtained
from a coloring argument. We will only need to work on the following lower bound
estimate, see [12]:
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Lemma 1 Let the triangulation Tℎ satisfy the assumption in (2). For any given D in
+ℎ , there exists {D8}#8=0, D8 ∈ +0 (Ω8), 8 ≥ 1 and D0 ∈ +6;1 , such that

D = D0 +
#∑
8=1

D8

and

0(D0, D0) +
#∑
8=1

0(D8 , D8) ≤ �2
00(D, D)

with the constant�0 independent of d(G) and the overlapping width in the subdomain
partition.

Proof For the proof we will choose D0 as the solution of

0(D0, E) = 0(D, E), ∀E ∈ +6;1
and choose D8 as

D8 = �
ℎ (\8 (D − D0)),

where �ℎ (E) denotes the nodal interpolant of E to the space +ℎ . We note that D − D0
is in +⊥

6;1
and also in +̃ since +⊥

6;1
= +̃ .

We can see that D8 is supported in Ω8 by construction and then obtain

#∑
8=1

0(D8 , D8) =
#∑
8=1

∫
Ω8

d |∇�ℎ (\8 (D − D0)) |2 3G

≤ ��
#∑
8=1

∫
Ω8

d |∇(\8 (D − D0)) |2 3G

≤ 2��
#∑
8=1

(∫
Ω8

d |∇(D − D0) |2 3G +
∫
Ω8

d |∇\8 |2 (D − D0)2 3G
)

≤ 2��
#∑
8=1
(1 + Λ−1)

∫
Ω8

d |∇(D − D0) |2 3G

where the constant �� depends on the stability of the interpolation �ℎ and the
constant � depends on the number of overlapping subdomains intersecting with
Ω8 . In the above, we used the assumption (2) on Tℎ in the first inequality, and also
that D − D0 in +⊥

6;1
(= +̃) and thus get the third inequality with Λ−1. Using that

0(D − D0, D − D0) + 0(D0, D0) = 0(D, D), we obtain the resulting bound. �

Theorem 1 For the proposed preconditioner, the condition number bound is ob-
tained as

^((')0 �−1
0 '0 +

#∑
8=1

')8 �
−1
8 '8)�) ≤ �1�

−2
0 ,
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where�1 is the constant in the coloring argument, and�0 is the constant in Lemma 1.

We note that the constant �2
0 = 2��� (1 +Λ−1) is independent of d(G) as well as the

overlapping width, which is improvement over the previous work in [4].
On the other hand, the computation of k (8)

A , 9
requires us to solve the relaxed

constrained minimization problem in the global space +ℎ . In practice, we can solve
the same problem in a subspace of +ℎ , where the functions are restricted to a
subregion Ω̃8 containing Ω8 . In more detail, we solve

k
(8)
9 ,<B

= argmin
{
0(k, k) + B(c(k) − q (8)

9
, c(k) − q (8)

9
) | ∀k ∈ +ℎ

⋂
�1

0 (Ω̃8)
}
.

From the above minimization problem, we obtain k (8)
9 ,<B

and denote by Ψ(8)
9 ,<B

, the
extension of k (8)

9 ,<B
by zero to a function in +ℎ . We then define +<B by

+<B := span{Ψ(8)
<B, 9
| 8 = 1, · · · , #, 9 = 1, · · · , ;8}.

We can propose the following more practical preconditioner

"−1
<B =

#∑
8=1

')8 �
−1
8 '8 + ')0,<B�−1

0,<B'0,<B , (8)

where �0,<B and '0,<B are defined similarly as before by replacing +6;1 with +<B .

4 Numerical results

In Table 1, we present some numerical results for a 2D model problem. We use
the coarse problem obtained from the more practical space +<B . Though we do not
have an estimate of the condition numbers for this case, we can expect a similar
performance to that with +6;1 . The domain Ω is a unit square partitioned into # × #
uniform squares. Each square is partitioned into uniform triangles with < elements
on each edge of a square where the triangles form amesh,Tℎ . Each square is extended
by 3 layers of fine triangles and the extended squares form the overlapping subdomain
partition. In our experiment, we consider a random coefficient with its value varying
between 10−3 to 103 inside the domain, and show the number of iterations and
the number of primal unknowns for various subdomain partitions and for various
overlapping width 3. The minimization problem is solved in a smaller region Ω̃8 ,
which is obtained by extending each square by only one layer of neighboring squares.
We can observe that the proposed method is robust with respect to the overlapping
width 3 as well as the variation in d(G).
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Table 1: Performance of the proposed method with Λ = (1 + log<): 3 (number of elements in the
overlap) 8C4A (number of iterations), _min (minimum eigenvalues), _max (maximum eigenvalues),
and ?� (number of coarse basis functions per subdomain).

# (<) 3 8C4A _<8= _<0G ?�

3(10) 1 22 0.60 4.33 4.67
2 23 1.00 4.78 6.67
3 23 1.00 4.99 7.78
4 23 1.00 4.99 11.11
5 23 1.00 4.99 13.22

4(10) 1 24 0.65 4.30 4.63
2 24 0.99 4.86 7.38
3 24 1.00 4.98 9.94
4 24 1.00 4.99 12.13
5 24 1.00 4.99 13.94

5(10) 1 31 0.47 4.56 4.40
2 25 0.87 4.96 6.12
3 25 1.00 4.99 8.36
4 26 0.87 4.99 10.52
5 24 1.00 4.99 12.40
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