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1 Introduction

Let us consider a second order elliptic equation

− div(r∇D) = 5 in Ω and D = 0 in mΩ. (1)

The problem is discretized by an h-p symmetric interior higher-order [4] discon-
tinuous Galerkin finite element method. In a  -th order multipenalty method, one
penalizes the jumps of scaled normal higher-order derivatives up to order  across
the interelement boundaries — so the standard interior penalty method corresponds
to taking  = 0. The idea to penalize the discontinuity in the flux ( = 1) of the
discrete solution was introduced by Douglas and Dupont [6]. It addresses the ob-
servation that the flux (which is an important quantity in many applications) of the
accurate solution is continuous. Giving the user a possibility to control the inevitable
violation of this principle makes the discretization method more robust and conser-
vative. Recently, flux jump penalization has been used to improve stability properties
of an unfitted Nitsche’s method [5], the case  > 1 was also considered in [1] for
the immersed finite element method to obtain higher-order discretizations.

A nonoverlapping additive Schwarz method [7], [3] is applied to precondition
the discrete equations. For more flexibility and enhanced parallelism, we formulate
our results addressing the case when the subdomains (where the local problems are
solved in parallel) are potentially smaller than the coarse grid cells [8]. By allowing
small subdomains of diameter � ≤ H , the local problems are cheaper to solve and
the amount of concurrency of the method is substantially increased. A by-product of
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this approach is more flexibility in assigning subdomain problems to processors for
load balancing in coarse grain parallel processing.

The paper is organized as follows. In Section 2, the differential problem and its
discontinuous Galerkin multipenalty discretization are formulated. In Section 3, a
nonoverlapping two-level, three-grid additive ASM for solving the discrete problem
is designed and analyzed under the assumption that the coarse mesh resolves the
discontinuities of the coefficient, that the variation of the mesh size and of the
polynomial degree are locally bounded, and that the original problem satisfies some
regularity assumption. Section 4 presents some numerical experiments.

For nonnegative scalars G, H, we shall write G . H if there exists a positive constant
�, such that G ≤ �H with � independent of: G, H, the fine, subdomain and coarse
mesh parameters ℎ, �,H , the orders of the finite element spaces ?, @, the order of
the multipenalty method ( , !), and of jumps of the diffusion coefficient r as well.
If both G . H and H . G, we shall write G ' H.

The norm of a function 5 from the Sobolev space �: (() will be denoted by
| | 5 | |:,( , while the seminorm of 5 will be denoted by | 5 |:,( . For short, the !2-norm
of 5 will then be denoted by | 5 |0,( .

2 High-order penalty h-p discontinuous Galerkin discretization

Let Ω be a bounded open convex polyhedral domain in '3 , 3 ∈ {2, 3}, with a
Lipschitz boundary mΩ. We consider the following variational formulation of (1):
Find*∗ ∈ �1

0 (Ω) such that for a prescribed 5 ∈ !2 (Ω) and r ∈ !∞ (Ω)

0(*∗, E) = ( 5 , E)Ω, ∀E ∈ �1
0 (Ω), (2)

where
0(D, E) =

∫
Ω

r ∇D · ∇E 3G, ( 5 , E)Ω =
∫
Ω

5 E 3G.

We assume that there exists a constant U such that 1 ≤ r ≤ U a.e. in Ω so that (2) is
well–posed. We also assume that r is piecewise constant, i.e. Ω can be partitioned
into nonoverlapping polyhedral subregions with the property that r restricted to any
of these subregions is some positive constant, see assumption (5) later on.

Let Tℎ = {g1, . . . , g#ℎ } denote an affine nonconforming partition of Ω, where g8
are either triangles in 2-D or tetrahedra in 3-D. For g ∈ Tℎ we set ℎg = diam(g).
By E in

ℎ
we denote the set of all common (internal) faces (edges in 2-D) of elements

in Tℎ , such that 4 ∈ Ein
ℎ
iff 4 = mg8 ∩ mg9 is of positive measure. We will use the

symbol Eℎ to denote the set of all faces (edges in 2-D) of the fine mesh Tℎ , that is
those either in E in

ℎ
or on the boundary mΩ. For 4 ∈ Eℎ we set ℎ4 = diam(4). We

assume that Tℎ is shape- and contact–regular, that is, it admits a matching submesh
Tℎ̂ which is shape–regular and such that for any g ∈ Tℎ the ratios of ℎg to diameters
of simplices in Tℎ̂ covering g are uniformly bounded by an absolute constant. As a
consequence, if 4 = mg8 ∩ mg9 is of positive measure, then ℎ4 ' ℎg8 ' ℎg 9 .We shall
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refer to Tℎ as the “fine mesh”. Throughout the paper we will assume that the fine
mesh is chosen in such a way that r |g is already constant for all g ∈ Tℎ .

We define the finite element space + ?
ℎ
in which problem (2) is approximated,

+
?

ℎ
= {E ∈ !2 (Ω) : E |g ∈ P?g for g ∈ Tℎ} (3)

where P?g denotes the set of polynomials of degree not greater than ?g . We shall
assume that 1 ≤ ?g and that polynomial degrees have bounded local variation, that
is, if 4 = mg8 ∩ mg9 ∈ Ein

ℎ
, then ?g8 ' ?g 9 .

On 4 ∈ Ein
ℎ
such that 4 = mg+ ∩ mg−, we define

r =
r+ + r−

2
, l± =

r±

r+ + r− , r =
2r+r−

r+ + r−

with the standard notation d± = d |g± , and then define weighted averages

{r∇D} = l− r+∇D+ + l+ r−∇D− =
r

2
(∇D+ + ∇D−)

and jumps
[D] = D+=+ + D−=−,

where =± denotes the outward unit normal vector to g±. We note that when r+ =
r− = 1, then r = r = 1 and the weighted average reduces to the usual arithmetic
average. We set

W0 =
?2

ℎ
X0, W: =

ℎ2:−1

?2: X: , W̃: =
ℎ2:−1

?2: X̃: ,

with
ℎ = min{ℎ+, ℎ−}, ? = max{?+, ?−}.

where for simplicity we write ℎ±, ?± for ℎg± (or ?g± , respectively). The parameters
X0 > 0 and X: , X̃: ≥ 0 where : ≥ 1 are some prescribed constants. We collect all X:
in a multi-parameter X = (X0, X1, X̃1, . . .).

On 4 which lies on mΩ and belongs to the face of g ∈ Tℎ , we prescribe r = r and

{r∇D} = r∇D, [D] = D=, W0 =
?2
g

ℎg
X0, W: =

ℎ2:−1
g

?2:
g

X: , W̃: =
ℎ2:−1
g

?2:
g

X̃: .

Inspired by [1], we discretize (2) by the symmetric weighted interior ( , !)-th
order multipenalty discontinuous Galerkin method: Find D∗ ∈ + ?

ℎ
such that

A ?, !

ℎ
(D∗, E) = ( 5 , E)Ω −

!∑
:=1

∑
4∈Ein

ℎ

W̃:+2
r
〈[r m

: 5

m=:
], [r m

:ΔE

m=:
]〉4, , ∀E ∈ + ?

ℎ
,

(4)
where
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A ?, !

ℎ
(D, E) = �?, !

ℎ
(D, E) − � ?

ℎ
(D, E) − � ?

ℎ
(E, D)

and

�
?, !

ℎ
(D, E) =

∑
g∈Tℎ
(r ∇D,∇E)g +

∑
4∈Eℎ

W0r〈[D], [E]〉4

+
 ∑
:=1

∑
4∈Ein

ℎ

W:

r
〈[r m

:D

m=:
], [r m

:E

m=:
]〉4 +

!∑
:=1

∑
4∈Ein

ℎ

W̃:+2
r
〈[r m

:ΔD

m=:
], [r m

:ΔE

m=:
]〉4,

�
?

ℎ
(D, E) =

∑
4∈Eℎ
〈{r∇D} , [E]〉4 .

Here for g ∈ Tℎ and 4 ∈ Eℎ we use the standard notation: (D, E)g =
∫
g
D E 3G and

〈D, E〉4 =
∫
4
D E 3f. This discretization generalizes the multipenalty method, intro-

duced by Arnold in [4] with ! = 0, to the case of discontinuous coefficient and takes
into account the explicit dependence on the polynomial degree ?. In particular, for
( , !) = (0, 0), a standard symmetric weighted interior penalty method is restored,
with

�
?,00
ℎ
(D, E) =

∑
g∈Tℎ
(r ∇D,∇E)g +

∑
4∈Eℎ

W0r〈[D], [E]〉4 .

Moreover, for r ≡ 1 and ( , !) = (1, 0), problem (4) corresponds to the method by
Douglas and Dupont [6]. The case of ! > 0 has been considered e.g. in [1]. It is
known [4] that for sufficiently large penalty constant X0 problem (4) is well–defined.

3 Nonoverlapping additive Schwarz method

Let us introduce the subdomain grid T� as a partition of Ω into #� disjoint open
polygons (polyhedrons in 3-D) Ω8 , 8 = 1, . . . , #� , such that Ω̄ =

⋃
8=1,...,#� Ω̄8

and that each Ω8 is a union of certain elements from the fine mesh Tℎ . We shall
retain the common notion of “subdomains” while referring to elements of T� . We
set �8 = diam(Ω8) and � = (�1, . . . , �#� ). We assume that there exists a reference
simply-connected polygonal (polyhedral in 3-D) domain Ω̂ ⊂ '3 with Lipschitz
boundary, such that every Ω8 is affinely homeomorphic to Ω̂ and that the aspect
ratios of Ω8 are bounded independently of ℎ and �. Moreover, we assume that the
number of neighboring regions in T� is uniformly bounded by an absolute constant
N .

Next, let TH be a shape-regular affine triangulation by triangles in 2-D or tetra-
hedra in 3-D, with diameter H . We denote the elements of TH by �= and we call
this partition the “coarse grid” and assume that r is piecewise constant on TH :

r |�= = r= ∀1 ≤ = ≤ #H . (5)
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Let us define the standard decomposition of + ?
ℎ
, cf. [3], [8]:

+
?

ℎ
= +0 ++1 + . . . ++#� , (6)

where the coarse space consists of functions which are polynomials inside each
element of the coarse grid:

+0 = {E ∈ + ?ℎ : E |�= ∈ P@ for all = = 1, . . . , #H} (7)

where 1 ≤ @ ≤ min{?g : g ∈ Tℎ}. Next, for 8 = 1, . . . , #� we set

+8 = {E ∈ + ?ℎ : E |Ω 9 = 0 for all 9 ≠ 8}.

One can view +0 as a rough approximation to + ?
ℎ

(using coarser grid and lower
order polynomials), cf. condition (11). Note that+ ?

ℎ
already is a direct sum of spaces

+1, . . . , +#� and when TH = T� , this decomposition coincides with [3]. Next, with
fixed 0 ≤ A ≤  and 0 ≤ B ≤ !, we define inexact solvers )8 : + ?

ℎ
→ +8 , by

�
?,AB

ℎ
()8D, E) = A ?, !

ℎ
(D, E) ∀E ∈ +8 , 0 ≤ 8 ≤ #� , (8)

so that for 1 ≤ 8 ≤ #� one has to solve only a relatively small system of linear
equations on subdomain Ω8 (a “local problem”) for D8 = )8D |Ω8 . These subdomain
problems are independent of each another and can be solved in parallel. The precon-
ditioned operator is

) = )0 + )1 + . . . + )#� . (9)

Obviously, ) is symmetric with respect to A ?, !

ℎ
(·, ·). For �= in TH let us define

an auxiliary seminorm

| | |D | | |2�= ,in =
∑

g∈Tℎ (�=)
r= |∇D |20,g +

∑
4∈Ein

ℎ
(�=)

W0r= | [D] |20,4, (10)

where E in
ℎ
(�=) = {4 ∈ Eℎ : 4 ⊂ �̄= \ m�=}.

Theorem 1 Let us set A = B = 0 in (8) and assume that for each D ∈ + ?
ℎ
there exists

D (0) ∈ +0 satisfying

#H∑
==1

(
r=@

2
=

H2
=

|D − D (0) |20,�= + || |D − D (0) | | |
2
�= ,in

)
. A ?,00

ℎ
(D, D). (11)

Then the operator ) defined in (9) satisfies

V−1A ?, !

ℎ
(D, D) . A ?, !

ℎ
()D, D) . ( +!+1)A ?, !

ℎ
(D, D) ∀D ∈ + ?

ℎ
, (12)

where

V = max
==1,...,#H

{
H2
=

@=
max

8:Ω8⊂�=

{
?2
8

ℎ
8
�8

}}
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with ℎ
8
= min{ℎg : g ∈ Tℎ (Ω8)} and ?8 = max{?g : g ∈ Tℎ (Ω8)}. Therefore, the

condition number of ) is $ (V · ( + ! + 1)).

Proof According to the general theory of ASM [11], it suffices to check three
conditions. The strengthened Cauchy–Schwarz inequality holds with a constant in-
dependent of the parameters, due to our assumption that the number of neighbouring
subdomains is bounded by an absolute constant.

For the local stability condition, it suffices to prove that for any :∑
4∈Ein

ℎ

W:

r
| [r m

:D

m=:
] |20,4 . �?,00

ℎ
(D, D) and

∑
4∈Ein

ℎ

W̃:+2
r
| [r m

:ΔD

m=:
] |20,4 . �?,00

ℎ
(D, D).

(13)
We prove the first inequality, the other can be proved analogously. On 4 = mg+∩mg−,
we have (denoting by = either =+ or =−)

1
r
| [r m

:D

m=:
] |20,4 .

(r+)2
r
| m
:D+

m=:
|20,4 +

(r−)2
r
| m
:D−

m=:
|20,4 . r+ |

m:D+

m=:
|20,4 + r− |

m:D−

m=:
|20,4,

since (r±)2/r = l±r± ≤ r±. Now, by the trace inequality [4], we have | m
:D

m=:
|20,4 .

1
ℎg
|D |2
:,g
+ ℎg |D |2:+1,g , so applying : times the inverse inequality we arrive at

1
r
| [r m

:D

m=:
] |20,4 . r+

?2:+
ℎ2:−1+

|D+ |21,g+ + r−
?2:−
ℎ2:−1−

|D− |21,g− ,

which yields∑
4∈Ein

ℎ

W:
1
r
〈[r m

:D

m=:
], [r m

:D

m=:
]〉4 .

∑
g∈Tℎ

r |D |21,g . �?,00
ℎ
(D, D).

Summing (13) over : , we complete the stability estimate

A ?, !

ℎ
(D, D) . ( + ! + 1) �?,00

ℎ
(D, D) ∀D ∈ +8 , ∀0 ≤ 8 ≤ #� ,

from which the right inequality in (12) already follows.
Finally, to prove the existence of a stable decomposition, from [9] we have that

there exists a decomposition of D =
∑#�
8=0 D

(8) , with D (8) ∈ +8 , such that

#�∑
8=0

�
?,00
ℎ
(D (8) , D (8) ) . VA ?,00

ℎ
(D, D) ∀D ∈ + ?

ℎ
.

Since A ?,00
ℎ
(D, D) ≤ A ?, !

ℎ
(D, D), we conclude that

∑#�
8=0 �

?,00
ℎ
(D (8) , D (8) ) .

VA ?, !

ℎ
(D, D), which gives us the left inequality in (12). �
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Remark 1 Analogous result holds if, instead of the simplified form �
?,00
ℎ
(·, ·), we

choose �?, !
ℎ
(·, ·) while defining local and coarse solvers )8 , 8 = 0, 1, . . . , #� , as

we do in the following section.

Remark 2 In [10], sufficient conditions are provided for (11) to hold.

4 Numerical experiments

Let us choose the unit square [0, 1]2 as the domain Ω and consider (2) with r = 1
in Ω. We do not investigate the influence of the intermediate grid T� , referring the
reader to [9] for these results. Instead, we set T� = TH and use two levels of nested
grids on Ω. For a prescribed integerM, we divide Ω into #H = 2M × 2M squares
of equal size. This coarse grid TH is then refined into a uniform fine triangulation Tℎ
based on a square 2< × 2< grid (< ≥ M) with each square split into two triangles
of identical shape. Hence, the grid parameters are ℎ = 2−<, H = � = 2−M . We
set ! = 0 and discretize problem (2) on the fine mesh Tℎ using (4) with X0 = 8,
X1 = . . . = X = 2 (if not specified otherwise) and equal polynomial degree ?
across all elements in Tℎ . For the coarse problem, we set @ = ?. We always take
(A, B) = ( , !) = ( , 0) while defining the inexact solvers, which seems to give
preferable constants in (12). Our implementation makes use of the FEniCS [2] and
MATLAB software packages.

In the following tables we report the number of Preconditioned Conjugate Gra-
dient iterations for the operator ) required to reduce the initial norm of the precon-
ditioned residual by a factor of 108 and (in parentheses) the condition number of )
estimated from the PCG convergence history. We always choose a random vector for
the solution and a zero as the initial guess.

H iter (cond)
1/2 120 (328)
1/4 90 (157)
1/8 64 (71)
1/16 60 (60)

Table 1: Dependence on the coarse mesh
size H. Fixed ℎ = 1/64, ? = 3,  = 3.

? iter (cond)
1 26 (11)
2 34 (21)
3 42 (34)
4 50 (50)
5 59 (70)

Table 2: Dependence on the polynomial de-
gree ?. Fixed ℎ = 1/16, H = 1/4,  = 1.

While the results with respect toH and ? smoothly follow the theory developed,
cf. Tables 1 and 2, the dependence on  is less regular, initially with superlinear
increase, as reported in Table 3.Moreover, fromTable 4we observe that higher values
of the penalization parameters X: , : ≥ 1, adversely influence the convergence rate
which is a drawback of this, otherwise simple and efficient, domain decomposition
method.



 iter (cond)
0 61 (81)
1 59 (70)
2 81 (124)
3 142 (389)
4 214 (902)
5 222 (1016)

Table 3: Dependence on the number of
penalty terms  . Fixed ℎ = 1/16, H = 1/4,
? = 5.

X1 iter (cond)
2 · 100 29 (15)
2 · 101 41 (29)
2 · 102 102 (217)
2 · 103 305 (2096)

Table 4:Dependence on the flux penalty pa-
rameter W1. Fixed ? = 3,  = 1.
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