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1 Introduction

In order to obtain a scalable domain decomposition method (DDM) for elliptic
problems, a coarse space is necessary and an associated coarse problem has to be
solved in each iteration. In the presence of arbitrary, large coefficient jumps or in
case of almost incompressible elastic materials, the convergence rate of standard
DDM deteriorates. In recent years, many authors have proposed the use of different
(local, generalized) eigenvalue problems to develop problem dependent, adaptive
coarse spaces in order to ensure or accelerate the convergence of the method; see,
e.g., [2, 17, 6, 18, 5, 4, 22, 23, 14, 9, 10, 1, 19, 3, 20]. These methods are very robust
and in many cases, a condition number estimate of the form

cond ≤ � TOL (1)

exists. Here, TOL is an a priori, user defined tolerance for the solution of the eigen-
value problems and � > 0 a constant that only depends on geometric parameters,
e.g., maximum number of edges of a subdomain; cf., (3). However, in order to make
their use feasible, many issues have to be considered in the parallel implementation.
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In [16, 13], we have seen that the computational overhead of the solution process of
the local eigenvalue problems in adaptive FETI-DP is not negligible. Consequently,
in this paper, we focus on some aspects of the local eigenvalue solution process that
have not been studied or documented elsewhere. Certainly, load balancing of the
eigenvalue problems is a very important task but this issue is out the scope of this
paper and will be discussed in detail in [13].

2 Model problem, domain decomposition, and notation

As a model problem, we consider three-dimensional linear elasticity, discretized
with piecewise quadratic conforming finite elements. The domain is decomposed
into nonoverlapping subdomains. Due to page restrictions, for further details, we
refer to [10, Section 2] or [11, Section 2].

As it is standard in FETI-DP, we assemble the local stiffness matrices  (8) and
compute the local Schur complements ( (8) on the interface, 8 = 1, . . . , # . Starting
with the block-diagonal matrix ( built from the the local Schur complements, we
get the global matrix (̃ by finite element subassembly in only a few a priori chosen
primal variables (i.e., all vertices). In order to enforce continuity on the remaining a
priori dual degrees of freedom on the interface, we introduce a jump operator � as
well as a scaled variant �� . Different scaling choices are available in the literature.
We then obtain the FETI-DP system, which is reduced to the Lagrange multipliers
enforcing continuity in the a priori dual variables,

"−1
� � := ��(�)��(̃

−1�_ = ��(�
)
�3 = "

−1
� 3

with corresponding right hand side 3; see, e.g., [11, Section 3] for further details.

3 Adaptive FETI-DP

In adaptive FETI-DP, as proposed in two dimensions in [17], and in three dimensions
in [10], local generalized eigenvalue problems are solved on each pair of subdomains
Ω8 and Ω 9 sharing either a face Z = F or an edge Z = E. By extracting all the
rows of � and �� corresponding to dual degrees of freedom of Ω8 and Ω 9 and
belonging to the closure of Z, we can define the localized variants �Z , ��,Z
and %�,Z := �)

�,Z�Z . The localized Schur complement is defined as (8 9 :=
blockdiag

(
( (8) , ( ( 9)

)
. The local generalized eigenvalue problem then writes: find

F8 9 ∈ (ker (8 9 )⊥ with `8 9 > TOL, such that

(%�,Z8 9 E8 9 , (8 9%�,Z8 9F8 9 ) = `8 9 (E8 9 , (8 9F8 9 ) ∀E8 9 ∈ (ker (8 9 )⊥, (2)
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cf. [17, Sections 3 and 4] and [10, Section 5] or [16, Section 5] for a more detailed
description.

The constraints obtained on a local basis can then be enforced by different tech-
niques. Here, we use the generalized transformation-of-basis approach proposed
in [12] and obtain the preconditioner "̂−1

)
, the modified system matrix �̂, and the

condition number bound

^("̂−1
) �̂) ≤ 4 max{#F , #E"E}2TOL, (3)

where #F denotes the maximum number of faces of a subdomain, #E the maximum
number of edges of a subdomain,"E the maximummultiplicity of an edge; see [11].

4 Numerical results

Fig. 1: A composite material on the unit cube for 216 subdomains: 36 beams (left) and 64 beams
(right) of a stiff material with E2 = 14 + 6, shown in dark purple, are surrounded by a soft matrix
material with E1 = 1. A part of the mesh with 1/ℎ = 54 (left), 1/ℎ = 30 (right) and the irregular
decomposition using METIS is shown in different (half-transparent) colors.

Fig. 2: Stiff material in a foam-like structure with ∼15% (left) and ∼26% (right) high coefficients
with E2 = 14 + 6. The structure is surrounded by a soft matrix material with E1 = 1. The stiff
material is shown smoothed and half-transparent, the surrounding matrix material is not shown.

In the following, we consider the unit cube with zero Dirichlet boundary condi-
tions on the face with G1 = 0 and zero Neumann boundary conditions elsewhere.
The domain decomposition is obtained from the METIS partitioner using the op-
tions -ncommon=3 and -contig. We apply our adaptive method to four different
materials.
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The first material is considered for 1/ℎ ∈ {30, 54} and 36 beams with a Young
modulus of 1e+6 that run from the face with G1 = 0 to the face with G1 = 1; see Fig. 1
(left). The remaining part of the material has a Young modulus of one. In the second
material, we have a larger number of 64 thinner beams; see Fig. 1 (right).

The third and fourth materials are stiff foam-like materials surrounded by a soft
matrix material. They are obtained by using a pseudo-random number generator and
adjacency structures of the tetrehedra and they merely differ by the amount of stiff
material inside the unit cube; see Fig. 2.

We now focus on the solution process for the local eigenvalue problems. In recent
works, [10, 16, 13], we have developed heuristic strategies to discard eigenvalue
problems based on the coefficients, or in a more realistic setting, based on scaling
information or the entries of the stiffnessmatrix which aremore likely to be available.
In following, we will show that our most recent heuristic strategy (see [13]) is
successful in discarding unnecessary eigenvalue problems without, on the other
hand, discarding necessary ones.

Fig. 3: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the composite material with 36 beams; in absolute (left) and relative (right) numbers.

Fig. 4: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the composite material with 64 beams; in absolute (left) and relative (right) numbers.

In the present implementation, for every face or edge, we consider the diagonal
entries of the local subdomain stiffness matrices corresponding to interior nodes of
these faces or edges. We have two criteria. First, if the ratio of the smallest and the
largest entry is larger than a certain threshold or possibly second, if all entries are
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large, then the corresponding eigenvalue problem is solved. Otherwise it is discarded.
For a more detailed description, see [13].

There are different situations in which eigenvalue problems become superfluous
for the reduction of the condition number. One obvious reason is the nonexistence of
jumps in the neighborhood of the face or edge. One could then apply slab techniques;
see, e.g. [21, 7]. In our heuristics, we focus on these eigenvalue problems which we
classify as unnecessary.

Fig. 5: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the foam-like composite with ∼15% high coefficients; in abs. (left) and rel. (right) numbers.

Fig. 6: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the foam-like composite with ∼26% high coefficients; in abs. (left) and rel. (right) numbers.

However, there might be eigenvalue problems on coefficient distributions which
satisfy all assumptions for weighted Poincare inequalities. For arbitrary situations,
the numerical necessity of certain eigenvalue problems becomes even more complex
and is not yet fully understood. In [8], we have presented a short numerical study
which gives a little more insight for typical situations but which might also raise new
questions since not all configurations introduce as many bad modes as expected.

In the case of 36 beams, we see that we can discard a large number of eigenvalue
problems (i.e., 37%) while 38% of eigenvalue problems yield large eigenvalues and
thus adaptive constraints; see Fig. 3. In the case of 64 beams, we see that we only
discard 16%of eigenvalue problems but, here,more than 70%of eigenvalue problems
yield large eigenvalues and thus adaptive constraints; see Fig. 4. In both cases, the
percentage of eigenvalue problems that were solved without yielding constraints is
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small, i.e., 25% and 14%. For both foam-like composites a little more than 50% of the
eigenvalue problems have to be solved to reduce the condition number to about TOL
(here TOL = 50 log

(
#/=8

)1/3, where =8 is the number of local nodes). Between 26%
and 39% of the eigenvalue problems were solved there without yielding constraints;
see Fig. 5 and Fig. 6. Still 10% to 20% of the eigenvalue problems are detected
as discardable, and thus the total algorithm is accelerated. We can summarize that
our strategy can successfully identify and discard many unnecessary eigenvalue
problems while keeping all necessary ones.

In order to give more insight into the eigenvalue problems that are solved, we
present the number of constraints yielded for each eigenvalue problem for each
material in four different pie charts; see Fig. 5 and Fig. 6. We see that the number
of constraints for each eigenvalue problem range from 1 to 28. However, a large
majority always gives between 2 and 12 constraints.

Fig. 7: Number of eigenvalue problems with given number of large eigenvalues for the composite
material with 36 (left) and 64 (right) beams. In these presentations, only the blue marked eigenvalue
problems of Fig. 3 and Fig. 4 are considered to give more details.

Fig. 8: Number of eigenvalue problems with given number of large eigenvalues for the foam-like
composite material with 15% (left) and 26% (right) high coefficients. In these presentations, only
the blue marked eigenvalue problems of Fig. 5 and Fig. 6 are considered to give more details.

Finally, we focus on the important topic of block sizes in the SLEPc Krylov-Schur
solver. As motivated by [17] and our tests in [10, 11], we have already opted for an
approximate solution of the eigenvalue problems by carrying out only a few steps
of the iterative block scheme. Justified by the idea that the LOBPCG block solver
of [15] could accelerate the convergence on extreme eigenvalues we have mostly
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used a block size of 10. Here, we study the timings of the global algorithms by
varying the block size of the local Krylov-Schur algorithm for our four materials.

In Table 1, we have presented iteration counts and estimated condition numbers
in order to show that the chosen block size does not effect the convergence of the
global PCG scheme. That means that the constraints obtained with different block
sizes do not differ in quality. In Fig. 9, we see that the use of smaller block sizes or
even a single vector iteration might be favorable with respect to time to solution.

block size 36 beams 64 beams ∼15% foam-like ∼26% foam-like
Krylov-Schur (1/ℎ = 36) (1/ℎ = 30) (1/ℎ = 30) (1/ℎ = 30)

^ its ^ its ^ its ^ its
1 5.48e+01 60 6.29e+1 62 7.21e+01 62 5.99e+01 63
3 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 62
6 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 61
9 5.48e+01 60 6.30e+1 63 7.21e+01 62 5.99e+01 64
12 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 61
15 5.48e+01 61 6.29e+1 62 7.21e+01 62 5.99e+01 61
18 5.49e+01 61 6.30e+1 63 7.21e+01 61 5.99e+01 61

Table 1:Condition number and iteration count of the global FETI-DP solver for different composite
materials for 216 subdomains with different block sizes for the iterative Krylov-Schur eigenvalue
solver and TOL = 50 log

(
# /=8

)1/3, where =8 is the number of local nodes.
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Fig. 9: Total global time and total local time needed by the Rayleigh-Ritz procedures in the Krylov-
Schur scheme to approximately compute the largest eigenvectors of the generalized eigenvalue
problems. Composite with 36 beams and 64 beams (left) and foam-like composite with ∼15% and
∼26% high coefficients (right).
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