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1 Introduction

Among many applications of parallel computing, solving large systems of ordinary
differential equations (ODEs) which arise from large scale electronic circuits, or
discretizations of partial differential equations (PDEs), form an important part. A
systematic approach to their parallel solution are Waveform Relaxation (WR) tech-
niques, which were introduced in 1982 as a tool for circuit solvers (see [5]). These
techniques are based on partitioning large circuits into smaller sub-circuits, which
are then solved separately over multiple time steps, and the overall solution is ob-
tained by an iteration between the sub-circuits. However, these techniques can lead
to non-uniform and potentially slow convergence over large time windows. To over-
come this issue, optimized waveform relaxation techniques (OWR) were introduced,
which are based on optimizing parameters. The application of OWR to RC circuits
and its asymptotic analysis can be found in [2]. We introduce overlap and analyze
these methods for an RLCG transmission line type circuits with� = 0, which corre-
sponds to no current loss in the dielectricmedium. For the one node overlapping case,
see [1]. We show that these circuit equations represent Yee scheme discretizations
of the well known Maxwell equations in 1D, and give some asymptotic results.
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Fig. 1: RLC Transmission Line of length N.

2 Circuit Equations

We consider an infinitely long RLC transmission line where the constants ', !, �
represent resistance, inductance, and capacitance per unit length of the line. The
circuit equations are specified using Modified Nodal Analysis [4], whose principal
element is Kirchhoff’s circuit law. These circuit equations for an RLC transmission
line (see Fig 1), with the length of the circuit, N, going to infinity, lead to a system
of differential equations in time,

¤x =



. . .
. . .

. . .

0 1 −0
−2 0 2

0 1 −0
−2 0 2

. . .
. . .

. . .


x + f, (1)

where the entries in the above tridiagonal matrix are

0 =
1
!
, 1 = −'

!
, 2 = − 1

�
,

with an unknownvector x(C) := (. . . , G−1 (C), G0 (C), G1 (C), . . . )) and f (C)=(�B (C)/�, 0,
. . . , 0)) . The unknowns in x(C) are the voltages E(C) and currents 8(C) at the nodes
aligned in a systematic way, G2 9 (C) = 8 9 (C) and G2 9−1 = E 9 (C) for 9 ∈ Z. Thus the even
index rows, which have 0 and 1 elements correspond to current unknowns while the
odd index rows correspond to voltage unknowns. We assume that all the constants
', !, � are bounded to have a well posed problem.

Before analyzing the WR algorithm, we link these circuit equations to the well
known Maxwell’s equations in 1D. The coupled differential equations of system (1)
can be explicitly written as

mG2<
mC

= 0G2<−1 + 1G2< − 0G2<+1 and
mG2<+1
mC

= −2G2< + 2G2<+2,

for< ∈ Z. The parameters ',�, ! are defined per unit length, ' = ')ΔG,� = �)ΔG
and ! = !)ΔG. Hence, substituting the values of the constants 0, 1, 2 and interpreting
the differences as derivatives, we arrive at
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m8

mC
+ 1
!)

mE

mG
= −')

!)
8 and

mE

mC
+ 1
�)

m8

mG
= 0.

Comparing with the Maxwell’s equations in 1D,

m�

mC
+ 1
n

m�

mG
= −f

n
� and

m�

mC
+ 1
`

m�

mG
= 0,

we see that 8 ∼ � , E ∼ �, !) ∼ n , �) ∼ ` and ') ∼ f.

3 The Classical WR Algorithm

In this section, we apply the classical waveform relaxation algorithm to an RLC
transmission line of infinite length and analyze its convergence. To start with this
algorithm, we divide system (1) into two subsystems with unknowns x(B1) and x(B2),
where both unknowns depend on time C but for simplicity, we have removed C from
the notation. Since the system (1) consists of two different equations, one for current
and the other for voltage, the type of partitioning is interesting. We first partition
the system at an odd row, say at G−1 (C), and overlap = nodes of the circuit (which
corresponds to an overlap of 2= nodes of the two subsystems in (2) below). Thus,
initially, both the subsystems have equal length and then we increase the size of x(B1)
by 2= − 1 to include the overlap while the size of x(B2) remains unchanged. This
leads to two new subsystems of differential equations

¤x:+1 (B1) =

. . .

. . .
. . .

0 1 −0
−2 0

 x:+1 (B1) +

...

52=−4
52=−3

 +


...

0
2G:+12=−2 (B1)

 ,
¤x:+1 (B2) =


0 2

0 1 −0
. . .

. . .
. . .

 x:+1 (B2) +

5−1
50
...

 +

−2G:+1−2 (B2)

0
...

 ,
(2)

where : is the iteration index and the unknowns G:+12=−2 (B1) and G:+1−2 (B2) are given by
transmission conditions,

G:+12=−2 (B1) = G:2=−2 (B2), G:+1−2 (B2) = G:−2 (B1), (3)

which exchange only current at the interfaces. For the convergence study, we consider
the homogeneous problem f = 0 and zero initial conditions x(0) = 0. The Laplace
transform with B ∈ C for the subsystems (2) yields
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Bx̂:+1 (B1) =

. . .

. . .
. . .

0 1 −0
−2 0




...

Ĝ:+12=−4 (B1)
Ĝ:+12=−3 (B1)

 +


...

0
2Ĝ:2=−2 (B2)

 ,
Bx̂:+1 (B2) =


0 2

0 1 −0
. . .

. . .
. . .



Ĝ:+1−1 (B2)
Ĝ:+10 (B2)

...

 +

−2Ĝ:−2 (B1)

0
...

 .
(4)

Theorem 1 The convergence factor of the classical algorithm for an RLC transmis-
sion line of infinite length with n nodes overlap is

d2;0 (B, 0, 1, 2) =
{
(_1)2= , |_1 | < 1,
(_2)2= , |_1 | > 1,

(5)

where _1,2 := 202−B (B−1)±
√
(202−B (B−1))2−40222

202 with the property _1_2 = 1.

Proof Solving the first subsystem of (4) corresponds to solving coupled recurrence
equations, for 9 = = − 2, . . . , 0,−1,−2, . . .

−0Ĝ:+12 9−1 (B1) + (B − 1)Ĝ:+12 9 (B1) + 0Ĝ:+12 9+1 (B1) = 0,
2Ĝ:+12 9 (B1) + BĜ:+12 9+1 (B1) − 2Ĝ:+12 9+2 (B1) = 0.

To simplify, we introduce the new notations ?̂:+1
9

:= Ĝ:+12 9 (B1) and @̂:+19
:= Ĝ:+12 9+1 (B1)

for 9 = = − 2, . . . , 0,−1, . . . to get

−0@̂:+19−1 + (B − 1) ?̂:+19 + 0@̂:+19 = 0 and 2?̂:+19 + B@̂:+19 − 2?̂:+19+1 = 0. (6)

Solving the first equation for ?̂:+1
9

and substituting it into the second equation yields
02@̂:+1

9−1 + [B(B− 1) − 202]@̂:+1
9
+ 02@̂:+1

9+1 = 0. The general solution of this recurrence
equation is

@̂:+19 = �:+1_ 91 + �:+1_
9

2,

where _1,2 := 202−B (B−1)±
√
(202−B (B−1))2−40222

202 are the roots of the characteristic
equation and �:+1, �:+1 are constants to be determined. We first consider the case
|_1 | < 1. Since |_2 9−1

1 | → ∞ as 9 → −∞ and @̂:+1
9

are bounded, we have �:+1 = 0.
The coupled equations (6) gives @̂:+1

9
= �:+1_ 92 and ?̂:+1

9
= 0�:+1

B−1 [_
9−1
2 − _ 92].

Similarly, from the second subsystem of (4), for 9 = 0, 1, 2, . . . , we define D̂:+1
9

:=
Ĝ:+12 9 (B2) and F̂:+19

:= Ĝ:+12 9−1 (B2) to arrive at F̂:+1
9

= �:+1_ 91 and D̂:+1
9

= 0�:+1
B−1 [_

9

1 −
_
9+1
1 ]. To determine the constants �:+1 and �:+1, we use transmission conditions

in (3). The last equation of the first subsystem of (4) gives 2?̂:+1
=−2 + B@̂:+1=−2 = 2D̂

:
=−1.

Using the properties _1_2 = 1 and _1+_2 = 2− B (B−1)
02

, we have �:+1 = −�: (_2
1)=−1.

Similarly, the first equation of the second subsystem of (4) gives �:+1 = −�:_2
1.

Therefore, we have �:+1 = (_1)2=�:−1 and �:+1 = (_1)2=�:−1 which implies
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Ĝ:+1
9
(B1) = (_1)2=Ĝ:−1

9
(B1), and Ĝ:+19

(B2) = (_1)2=Ĝ:−1
9
(B2). Similarly, we have the

same convergence factor when |_1 | > 1. �

We observe that the convergence factor is the same for all the nodes irrespective of
which subsystem they belong to. Also, the convergence becomes faster by increasing
the number of nodes in the overlap. Note also that, if we partition the system at an
even row corresponding to a current equation, we still obtain the same convergence
factor.

4 Optimized WR Algorithm

It has been observed that increasing the number of nodes in the overlap does not
increase the convergence speed very much, especially for large time windows. This
forces us to look for better transmission conditions to make the exchange of informa-
tion between the subsystems more effective. Thus, we propose general transmission
conditions for splitting the circuit at a voltage node,

G:+12=−2 (B1) + UG:+12=−3 (B1) = G:2=−2 (B2) + UG:2=−3 (B2),
G:+1−1 (B2) + VG:+1−2 (B2) = G:−1 (B1) + VG:−2 (B1), (7)

where U and V are weighting factors. We can have similar transmission conditions
for splitting at a current node. These transmission conditions can be viewed as Robin
transmission conditions which transfer both current and voltage at the boundary.
Under the condition, U = 0, and V = ∞, we recover the classical transmission
conditions (3).

Theorem 2 The convergence factor of the OWR algorithm for an RLC transmission
line of infinite length with n nodes overlap and with splitting at a voltage node is
given by

dE= (B, 0, 1, 2, U, V) =

(
B−U2 (_2−1)
B+U2 (1−_1)

) (
VB+2 (_2−1)
VB−2 (1−_1)

) (
_1

)2=
, |_1 | < 1,(

B−U2 (_1−1)
B+U2 (1−_2)

) (
VB+2 (_1−1)
VB−2 (1−_2)

) (
_2

)2=
, |_1 | > 1.

(8)

Similarly, for the splitting at a current node, the convergence factor d2= (B, 0, 1, 2, U, V)
is

d2= (B, 0, 1, 2, U, V) =

(
B−1+0U(_2−1)
B−1−0U(1−_1)

) (
V (B−1)−0 (_2−1)
V (B−1)+0 (1−_1)

) (
_1

)2=
, |_1 | < 1,(

B−1+0U(_1−1)
B−1−0U(1−_2)

) (
V (B−1)−0 (_1−1)
V (B−1)+0 (1−_2)

) (
_2

)2=
, |_1 | > 1.

(9)

Proof The proof is similar to the proof of Theorem 1, with the change in the
transmission conditions which are now given by the new transmission conditions
(7). For V ≠ 0,
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G:+12=−2 (B1) = G:2=−2 (B2) + UG:2=−3 (B2) − UG:+12=−3 (B1),

G:+1−2 (B2) = G:−2 (B1) + G:−1 (B1)/V − G:+1−1 (B2)/V.
Performing similar operations for both cases, |_1 | < 1 and |_1 | > 1, we obtain the
new convergence factor (8). Similarly for splitting at a current node one can obtain
the convergence factor (9). �

The analysis to find optimizedU and V for both convergence factors dE= (B, 0, 1, 2, U, V)
and d2= (B, 0, 1, 2, U, V) is similar. Hence, in this article we present the analysis for the
convergence factor obtained by splitting at a voltage node, i.e for dE= (B, 0, 1, 2, U, V).
Corollary The optimized waveform relaxation algorithm for splitting at a voltage
node converges in two iterations, independently of the initial waveforms if

U>?C :=
B

2(_2 − 1) and V>?C :=
2(1 − _2)

B
.

Proof Equating the convergence factor (8) with zero provides us the expressions for
the optimal U and V. �

Note that U>?C , V>?C are complicated functions of B, which would lead to non-
local transmission conditions in time. Hence one searches for the optimized U, V by
approximating them by a constant. For this, we solve the min-max problem

min
U,V

(
max
B
|dE= (B, 0, 1, 2, U, V) |

)
. (10)

By equating the denominator of dE= (B, 0, 1, 2, U, V) with zero, we can show, provided
that U < 0 and V > 0, that dE= (B, 0, 1, 2, U, V) is an analytic function in the right
half of the complex plane. We also prove that dE= (B, 0, 1, 2, U, V) → 0 as B → ∞.
These proofs are technical and will appear in [3]. The maximum principle states
that the maximum of |dE= (B, 0, 1, 2, U, V) | lies on the imaginary axis, i.e. B = 8l.
Further, dE= (B, 0, 1, 2, U, V) is an even function of l. From Corollary 1, we observe
that V>?C = −1

U>?C
. This motivates to choose V = −1

U
, which means that the current in

both sub-circuits at the point of partition is equal but opposite in direction. All these
results and assumptions reduce our optimization problem (10) to

min
U<0

(
max

l<8=<l<l<0G
|dE= (l, 0, 1, 2, U) |

)
, (11)

wherel<8= := 2c
)

andl<0G := 2c
ΔC

with) as the total timewindowwe are computing
and ΔC as the time discretization parameter.

Theorem 3 For splitting at a voltage node, and for small l<8= = n > 0, if U∗E =
 En

1/3, where  E = (02/(2=122))1/3, then the convergence factor dE= satisfies

|dE= (l, 0, 1, 2, U∗E ) | ≤ |dE= (l<8=, 0, 1, 2, U∗E ) | ∼ 1 + 2
√

20l1/6
<8=

 E
√
12

+ O(l1/2
<8=
). (12)
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Fig. 2: Convergence for long time ) = 100 (left) and convergence factor in Laplace space (right).

Similarly, for a splitting at a current node and with = > 1, if U∗2 =  2n−1/3, where
 2 = ((2(= − 1)122)/02)1/3, then the convergence factor d2= satisfies

|d2= (l, 0, 1, 2, U∗2) | ≤ |d2= (l<8=, 0, 1, 2, U∗2) | ∼ 1 + 2
√

20 2l1/6
<8=√

12
+ O(l1/2

<8=
).

Proof We observe numerically (see right plot of Figure 2) that a solution of our
min-max problem (11) is given by equioscillation of |dE= (l, 0, 1, 2, U) | forl = l<8=
and l = l̃ and hence can be found by solving the coupled equations dE= (l<8= =
n, 0, 1, 2, U∗E ) = dE= (l̄E , 0, 1, 2, U∗E ) and m

ml
dE= (l̄E , 0, 1, 2, U∗E ) = 0, where l<8= <

l̄E ≤ l<0G . Asymptotic calculations for n → 0, yield U∗E ∼  En
1/3 and l̄E ∼

2 E2
=
n1/3. Similar calculations yield expressions for U∗2 and l̄2 . The details of this

proof are complicated and too long to present in this short paper and will appear in
[3]. �

Theorem 4 The convergence of OWR is faster for the splitting at a voltage node.

Proof We substitute the values of  2 and  E into the expression of d2= (l<8= =
n, 0, 1, 2, U∗2) and dE= (l<8= = n, 0, 1, 2, U∗E ) respectively to prove d2= (l<8= =

n, 0, 1, 2, U∗2) > dE= (l<8= = n, 0, 1, 2, U∗E ). The details of this proof will also ap-
pear in [3]. �

5 Numerical Results

We consider an RLC transmission line of length # = 149 with ' = 2 Ω/2<,
! = 4.95 × 10−3`�/2< and � = 0.021?�/2<. For the time discretization, we
use backward Euler with ΔC = )/5000, where ) is the total time. We first compare
the classical WR and OWR algorithm for large time ) = 100. The left plot in
Figure 2 clearly shows the improvement in the convergence factor when optimized
transmission conditions are used. The dashed and dotted lines show the results for
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Fig. 3: Comparison of different splittings in time (left) and of values of optimized alpha (right).

classical WR while solid lines represent the OWR algorithm. We also see the effect
of overlapping nodes (e.g. WR1 denotes the WR algorithm with one node overlap).
Increasing the overlap increases the convergence speed. However, the gain is very
small. The right plot of Figure 2 compares the convergence factor for OWR in
Laplace space for both splittings, at a current node and a voltage node. The dotted
black line is for WR with single node overlap while the other lines are for OWR. For
OWR, the splitting at a voltage node leads to faster convergence. This is also true in
the time domain, see the left plot of Figure 3. But for classical WR, splitting does not
matter, see Theorem 1. Finally, the right plot of Figure 3 validates our asymptotic
result (12). Both numerically computed and asymptotically derived values of the
optimal U for splitting at a voltage node are very close.

6 Conclusion

This is the first analysis of WR and OWR for an RLC transmission line with overlap
and with splitting either at a current or voltage node. We show that using optimized
transmission conditions, we can achieve a drastic improvement in the convergence
rate. Note that our analysis is in the Laplace domain since the analysis is easier and
the convergence in the Laplace domain implies convergence in the time domain, see
Remark 1 in [2]. We also see that overlapping nodes increase the convergence rate
for both WR and OWR algorithms but the improvement (by the factor of (_1)2=)
is not large. Further, for OWR, the splitting at a voltage node leads to a little faster
convergence than the splitting at a current node, while this splitting does not effect
the convergence of WR. We finally compared the values of the optimized U found
numerically and by asymptotic analysis and they are very close.
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