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1 Introduction

We are concerned with the solution of nonlinear problems

� (D) = 0 (1)

in some finite element space + . The function � : + → + ′ is obtained by a finite
element discretization of a nonlinear partial differential equation (PDE) on a do-
main Ω ⊂ R3 , 3 = 2, 3. To solve (1), we consider nonlinear domain decomposition
methods of the Schwarz type, e.g., ASPIN (Additive Schwarz Preconditioned In-
exact Newton) [1, 10] or RASPEN (Restricted Additive Schwarz Preconditioned
Exact Newton) [3]. More precisely, we suggest a new approach to implement a sec-
ond level or coarse level into RASPEN, which is different to FAS-RASPEN (Full
Approximation Scheme - RASPEN) introduced in [3]. The coarse space is applied
multiplicatively, similar to the application of multiplicative nonlinear corrections
in MSPIN (Multiplicative Schwarz Preconditioned Inexact Newton); see, e.g., [9].
Therefore, we consider a standard Lagrangian coarse space as well as multiscale
coarse spaces that can also be constructed for unstructured meshes and unstruc-
tured domain decompositions, e.g., decompositions obtained using METIS [8]. We
compare our new approaches for the example of homogeneous and heterogeneous
?-Laplace equations; see section 2. In section 3, we first describe the one level
RASPEN method and our approach to implement a multiplicative second level for
ASPIN and RASPEN. Second, we define three different coarse spaces - one based on
a P1 discretization on a coarse mesh and the other two based on MsFEM (Multiscale
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Fig. 1: Left:Definition ofΩ' (black part);Right:Solution of equation (2)with coefficient functions
defined in (3).

Finite Element Method) [7] type discretizations on the subdomains. The MsFEM
coarse spaces can easily be used in the case of unstructured decompositions and differ
only in the chosen extensions from the interface to the interior parts of the nonover-
lapping domain decomposition. Finally, we present numerical results considering
homogeneous and heterogeneous model problems in section 4.

2 Model Problem

We consider the nonlinear model problem:

−UΔ?D − VΔ2D = 1 in Ω
D = 0 on mΩ, (2)

with the scaled ?-Laplace operator UΔ?D := div(U |∇D |?−2∇D) for ? ≥ 2 and the
coefficient functions U, V : Ω → R. For all computations in this paper, we always
use the unit square Ω = [0, 1] × [0, 1] as the computational domain. However,
our approach is not restricted to this case. We consider two different coefficient
distributions: a homogeneous ?-Laplace equation, i.e., U(G) = 1 and V(G) = 0 for
all G ∈ Ω, and a heterogeneous problem with a channel and two circular inclusions
carrying different coefficients than the remainder of Ω, i.e.,

U(G) =
{

1 000 if G ∈ Ω',
0 elsewhere, V(G) =

{
0 if G ∈ Ω',
1 elsewhere. (3)

The set Ω' and the solution of the corresponding heterogeneous model problem are
depicted in Figure 1. If not stated otherwise, ? is always chosen as 4.

With a standard finite element discretization of a variational formulation of (2),
we can derive the nonlinear discrete problem

 (D) − 5 = 0 :⇔ � (D) = 0. (4)

Let us remark that (4) is linear for ? = 2. We define the corresponding equation
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 ;8=D − 5 = 0, (5)

where  ;8= is equivalent to the stiffness matrix of the (scaled) diffusion equation.

3 The RASPEN Method

In this section, we provide a brief description of the RASPEN method, which is
based on the ASPIN algorithm; see [1, 3] for a more detailed description and a local
convergence analysis. As all nonlinear domain decomposition approaches, RASPEN
is based on a reformulation of (1) using a decomposition of the underlying nonlinear
PDE. In the case of RASPEN, a nonlinear system

� (� (D)) =: F (D) = 0 (6)

is derived, where the nonlinear left-preconditioner � is given implicitly. We con-
sider a decomposition ofΩ into nonoverlapping subdomainsΩ8 , 8 = 1, ..., #, and, by
adding layers of finite elements, we obtain overlapping subdomains Ω′

8
, 8 = 1, ..., # .

We denote the local finite element spaces associatedwith the overlapping subdomains
by +8 , 8 = 1, ..., # . With standard restriction operators '8 : + → +8 and correspond-
ing prolongation operators %8 := ')

8
we can define nonlinear local corrections )8 (D)

by
'8� (D − %8)8 (D)) = 0, 8 = 1, ..., #. (7)

Using restricted prolongation operators %̃8 , 8 = 1, ..., # , which fulfill the condition∑#
8=1 %̃8'8 = �, we can define the nonlinear reformulation

F'�(D) :=
#∑
8=1

%̃8)8 (D). (8)

of (1). Let us remark that (8) and (1) have the same solution; see [1, 3]. In the
RASPEN method, (8) is solved using Newton’s method, i.e., using the iteration

D (:+1) = D (:) −
(
�F'�(D (:) )

)−1
F'�

(
D (:)

)
, (9)

with the jacobian

�F'� (D) =
#∑
8=1

%̃8�)8 (D) =
#∑
8=1

%̃8 ('8�� (D8)%8)−1 '8�� (D8) =:
#∑
8=1

&8 (D8).
(10)

Here, we have D8 = D−%8)8 (D) and �)8 (D) is obtained by deriving (7). Let us remark
that, in eachNewton iteration and on each overlapping subdomain, the local nonlinear
problem (7) has to be solved for )8 (D (:) ). This can again be done using Newton’s
method. The necessary local Newton iterations can be carried out in parallel. We
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distinguish in this paper between outer iterations, i.e., global Newton iterations as
in (9), and inner iterations, i.e., local Newton iterations on the subdomain problems
to compute the local nonlinear corrections )8 (D8).

3.1 A Multiplicative Coarse Space

In general, there are several approaches to implement a second level for RASPEN
or ASPIN. A simple additive coarse space is suggested in [10] for ASPIN, and a
multiplicative coarse space using an FAS approach is used in [3]. We choose a
slightly different multiplicative approach not relying on FAS. Our coarse correction
is applied after the local corrections, but different variants, i.e., applying the coarse
correction before the local corrections as well as a symmetric variant doing both are
suggested in [6]. All these variants can analogously be applied to ASPIN, but, for the
moment, we restrict ourselves to RASPEN due to space limitations. In [6], we also
discuss the differences between our proposed methods and, e.g., FAS-RASPEN,
in detail. Now, let +0 be a discrete coarse space, '0 : + → +0 a corresponding
restriction, and %0 := ')0 . Note that the columns of %0 are just representations of
the coarse basis functions on the fine mesh. The nonlinear coarse problem is given
by '0� (%0D0) using a simple Galerkin approach. The nonlinear coarse correction
)0 (D) is then implicitly given by

'0� (D − %0)0 (D)) = 0. (11)

Let us remark that the coarse correction )0 (D) is computed using Newton’s
method in our implementation. The corresponding residual and tangential matrix of
equation (11) have to be assembled on the fine grid, which can of course be done in
parallel on the subdomains. Also the restriction of the residual as well as the Galerkin
product necessary to form the coarse tangential matrix can be efficiently computed
in parallel; see, e.g., [5, Sections 4.4 and 4.5]. There, it is also described how the
coarse basis functions, i.e., the columns of %0, can be computed in a scalable fashion;
in particular, [5, Section 4.4] deals with GDSW coarse basis functions, however the
coarse basis functions introduced in section 3.2 can be computed in parallel in the
same way.

We can now define the two-level RASPEN method by

F2; (D) :=
#∑
8=1

%̃8)8 (D) + %0)0 (D −
#∑
8=1

%̃8)8 (D)). (12)

Note that the coarse correction is here applied multiplicatively after the local cor-
rections )8 (D8). A linearization with Newton’s method leads to

D (:+1) = D (:) −
(
�F2; (D (:) )

)−1
F2;

(
D (:)

)
,



272 Alexander Heinlein and Martin Lanser

where

�F2; (D) =
#∑
8=1
%̃8�)8 (D) + %0�)0 (D −

#∑
8=1
%̃8)8 (D))

(
� −

#∑
8=1
%̃8�)8 (D)

)
=
#∑
8=1
&8 (D8) +&0 (E0) (� −

#∑
8=1
&8 (D8))

= &0 (E0) + (� −&0 (E0))
#∑
8=1
&8 (D8).

(13)

Here, we have E0 = D−
∑#
8=1 %8)8 (D) −%0)0 (D−

∑#
8=1 %8)8 (D)) and D8 = D−%8)8 (D).

The projection operators &8 (D8), 8 = 1, ..., # are defined in (10) and

&0 (E0) := %0 ('0�� (E0)%0)−1 '0�� (E0)

is defined analogously and obtained by deriving (11). Additionally to the local
Newton iterations, Newton’s method is used to compute the coarse correction (11)
in each outer iteration. We refer to this iterations as coarse iterations.

3.2 Different Coarse Basis Functions

We consider three different coarse spaces. The simplest one is a Lagrangian coarse
space based on a coarse triangular mesh. Therefore, for a structured domain decom-
position into square subdomains, each subdomain is split into two triangular finite
elements. The coarse basis functions are just piecewise linear (P1) nodal basis func-
tions corresponding to this triangulation. In general, this coarse space relies on the
availability of a suitable coarse triangulation. Therefore, we only use it for structured
domain decompositions.

For arbitrary domain decompositions, we consider energy-minimizing coarse
spaces of MsFEM [7] type. They are also related to reduced dimension GDSW
coarse spaces [2]. As in those approaches, we use a nodal basis, i.e., containing one
basis function Φ( 9) , 9 = 1, ..., #+ , corresponding to each of the #+ vertices of the
domain decomposition. Collecting the vectors Φ( 9) as columns in the matrix Φ, we
obtain the restriction to the coarse space '0 := Φ) . In particular, we construct the
coarse basis functions such that they formapartition of unity on all subdomainswhich
do not touch the Dirichlet boundary. This can be achieved by building a partition of
unity on the interface of those subdomains and then extending the interface values
to the interior in an energy-minimizing way.

To define the interface part Φ( 9)
Γ

of the basis function Φ( 9)) = (Φ( 9))
�

,Φ
( 9))
Γ
)

corresponding to a vertex V9 , let E: be one of the adjacent open edges and V;
the other vertex adjacent to E: . Then, we set Φ( 9)

Γ
(V9 ) = 1 and Φ( 9)

Γ
(G) = 1 −

| |G−V9 | |
| |G−V9 | |+ | |G−V; | | for any G ∈ E: . We proceed equivalently with all other edges
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adjacent to V9 and define Φ( 9)
Γ

as zero on the remaining interface. This results in a
partition of unity on the interface, even for a METIS decomposition.

As already stated, the interior values Φ( 9)
�

are then computed by energy-
minimizing extensions. In order to do so, we propose the use of energy functionals
corresponding to related linear problems. In the first alternative, we compute discrete
harmonic extensions with respect to the linear operator  ;8=; see (5). Therefore, we
consider the block structure

 ;8= =

(
 ;8=
� �

 ;8=
�Γ

 ;8=
Γ�

 ;8=
ΓΓ

)
and compute the values in the interior degrees of freedom by

Φ
(8)
�
= −

(
 ;8=� �

)−1
 ;8=�Γ Φ

(8)
Γ
, 8 = 1, ..., #+ .

Alternatively, we use the tangential matrix for the initial value D (0) , i.e.,

� (D (0) ) =
(
� (D (0) )� � � (D (0) )�Γ
� (D (0) )Γ� � (D (0) )ΓΓ

)
,

to compute the energy-minimizing extensions. In particular, we then define the
extension to the interior of the subdomains by

Φ
(8)
�
= −

(
� (D (0) )� �

)−1
� (D (0) )�ΓΦ(8)Γ , 8 = 1, ..., #+ .

In general, this is advantageous since it only depends on the nonlinear operator �
and no linear Laplacian has to be assembled additionally.

Let us remark that the energy-minimizing basis functions can be computed lo-
cally by the solution of linear problems on the interior part of the nonoverlapping
subdomains. Also, they are zero on all subdomains not adjacent the corresponding
vertex by construction, and therefore, no extensions have to be computed on the
remaining subdomains. All three coarse spaces build a partition of unity on all sub-
domains which do not touch the Dirichlet boundary. This property is crucial for a
good linear coarse space. All coarse spaces have the same size and therefore have
the same computational cost per nonlinear or linear iteration; only the costs for the
construction of the energy-minimizing coarse basis functions are higher.

4 Numerical Results

For all tests and all methods, we choose the same initial value D (0) (G, H) =
GH(G − 1) (H − 1) and the same relative stopping tolerance, i.e., we stop the outer
iteration if � (D (:) )/� (D (0) ) < 14 − 6. All inner or, respectively, coarse iterations
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Table 1: Homogeneous ?-Laplace: Comparison of different coarse spaces for regular and METIS
domain decompositions; best results for the largest experiment are marked in bold; outer it. gives the
number of global Newton iterations; inner it. gives the number of local Newton iterations summed
up over the outer Newton iterations (average over subdomains); coarse it. gives the number of
nonlinear iterations on the second level summed up over the outer Newton iterations; GMRES it.
gives the number of GMRES iterations summed up over the outer Newton iterations.

?-Laplace homogeneous
? = 4; �/ℎ = 32 for regular domains; overlap X = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)
- 5 25.9 - 99 7 41.4 - 238

9 P1 5 30.2 17 88 - - - -
� (D (0) ) ext. 5 30.7 16 83 5 31.3 22 123

 ;8= ext. 5 29.9 16 83 5 30.7 19 121
- 14 73.8 - 358 11 62.8 - 458

16 P1 6 32.4 20 122 - - - -
� (D (0) ) ext. 7 38.9 30 140 7 36.8 27 180

 ;8= ext. 5 30.6 18 99 6 32.5 21 152
- 6 28.4 - 201 12 57.6 - 578

25 P1 5 27.4 18 116 - - - -
� (D (0) ) ext. 5 27.6 19 108 5 28.6 20 126

 ;8= ext. 5 27.2 18 108 6 31.4 22 151
- 15 66.9 - 563 11 53.1 - 617

36 P1 6 30.6 21 145 - - - -
� (D (0) ) ext. 7 34.3 30 164 6 30.4 23 155

 ;8= ext. 5 28.7 19 117 6 30.0 21 152
- 6 29.0 - 268 13 60.9 - 811

49 P1 5 27.3 18 126 - - - -
� (D (0) ) ext. 5 27.4 19 121 7 32.0 27 178

 ;8= ext. 5 27.2 18 122 6 29.4 21 152

are stopped with an equivalent relative residual criterion in the corresponding local
or, respectively, coarse finite element space, after a reduction of 14 − 3 is reached.
This is sufficient since the inner and coarse initial values get more and more accurate
while the outer loop converges. As a linear solver for the tangential systems, we use
GMRES (Generalized Minimal RESidual) iterations with a relative stopping toler-
ance of 14−8. Of course, in particular, in the first Newton steps, we might over-solve
the linear systems, and choosing the forcing terms correctly could be beneficial for
all methods; see [4].

We first consider a numerical scalability study for the homogeneous ?-Laplace for
? = 4; see Table 1. Here, for regular domain decompositions, we choose �/ℎ = 32
and therefore 2 048 triangular finite elements per nonoverlapping subdomain. For the
METIS decompositions, the global problem sizes are identical to the corresponding
regularly decomposed problems. We present the number of outer or global New-
ton iterations, which is up to 2.5 times higher in the one level RASPEN method
compared with the best of the two-level approaches. All three coarse levels show
a similar performance for the regular domain decomposition and both extension
based coarse spaces perform well for the METIS decompositions. In general, the
two-level RASPENmethod needs less inner iterations and significantly less GMRES
iterations, especially for irregular domain decompositions.
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Table 2: Heterogeneous ?-Laplace: See Table 1 for description of column labels and Fig. 1 for
the coefficient distribution.

?-Laplace heterogeneous (channel + 2 circles)
? = 4; �/ℎ = 32 for regular domains; overlap X = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)
- 5 14.3 - 321 5 14.2 - 346

36 P1 5 15.6 17 139 - - - -
� (D (0) ) ext. 5 15.1 16 139 5 15.2 18 125

 ;8= ext. 4 12.7 13 108 5 15.5 18 128

For the chosen heterogeneous problem (see Table 2), the number of outer Newton
iterations is similar for all methods. Nevertheless, the linear convergence, i.e. the
number of GMRES iterations, is superior in the two-level variants. All in all, our
experiments show that our multiplicative second level with the chosen coarse basis
functions has a superior linear convergence and, in some cases, also a better nonlinear
convergence - regardless if regular or METIS decompositions are used.

In general, the discrete extension using  ;8= shows a slightly better performance
than the extension with the tangent � (D (0) ), but the latter one will always be
available, also for different nonlinearmodel problemswhere a suitable linear operator
 ;8= cannot be found easily. Considering, e.g., nonlinear hyperlelasticity or elasto-
plasticity problems, the linear elasticity model or a multi-dimensional Laplacian
could be used to form  ;8=, but for large loads or highly plastic behavior, � (D (0) )
might be a better choice.

5 Conclusion

Wehave presented a new approach to implement amultiplicative coarse space forAS-
PIN or RASPEN, which is robust for the considered model problems. Additionally,
we presented two different coarse spaces usable for irregular domain decompositions
and compared both against the one level RASPEN method and, for regular domain
decompositions, also against a classical P1 coarse space. Both coarse spaces are
competitive and cheap to compute.
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