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1 The Parareal algorithm

Time parallel time integration has received substained attention over the last decades,
for a review, see [2]. More recently, renewed interest in this area was sparked by the
invention of the Parareal algorithm [5] for solving initial value problems like

3u

3C
= Lℎ (u(C), C), u(0) = u0, C ∈ [0, )], (1)

with Lℎ : R? × R+ → R? , u(C) ∈ R? , u0 ∈ R? , ? being the total number of
degrees of freedom and ) a positive real value. Problem (1) often arises from
the spatial discretization of a (non-)linear system of partial differential equations
(PDEs) through the method-of-lines. For Parareal, one decomposes the global
time interval [0, )] into # time subintervals [)=−1, )=] of size Δ) , = = 1, · · · , # ,
where # is the number of processes to be considered for the time parallelization. In
the following, we denote by[= the approximation of u at time )=, i.e. ,[= ≈ u()=).
Let F XC

)=−1→)=
([=−1) denote the result of approximately integrating (1) on the time

subinterval [)=−1, )=] from a given starting value [=−1 using a fine propagator F
with time step XC. Similarly, Parareal also needs a coarse propagator G (with time
step ΔC), which has to be much cheaper than F resulting in less accuracy.

The Parareal algorithm consists of a prediction step and a correction iteration.
In the prediction step, Parareal computes an inital guess of the starting values [0

=

at the beginning of each time subinterval using the coarse propagator,
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∀= = 1, · · · , #, [0
= = GΔC

)=−1→)=
([0

=−1), [0
0 = u0. (2)

A correction iteration is then applied in Parareal, using concurrently the fine
propagator F on each time subinterval:

[:= = F XC
)=−1→)=

([:−1
=−1) + GΔC

)=−1→)=
([:=−1) − GΔC

)=−1→)=
([:−1

=−1), (3)

where [:= denotes the approximation of u at time )= at the :-th iteration of Para-
real (: = 1, · · · ,  , = = 1, · · · , #). While the application of F can be performed
independently for each time subinterval, Parareal remains limited by the sequential
nature of the coarse integration performed by GΔC

)=−1→)=
in (3). Parareal will thus

reduce the total computational time compared to a direct time-serial integration only
if the application of G is cheap enough and if the total number of iterations  of
Parareal is small. We will use the following result, which is an extension of [4,
Th. 4.9] following indications of [4, Sec. 4.5] for the Dahlquist test equation

3D

3C
= _D, _ ∈ C, D(0) = D0 ∈ C. (4)

Theorem 1 (Linear convergence bound - Dahlquist test equation) Let G be a
one-step time-integration method, and F be the same time integrator, but using <
time-steps instead of a single one (i.e. ΔC = Δ) = <XC). If G is used such that _ΔC
is in its region of absolute stability, then

sup
=>0
|DF= −*:= | ≤ d(_Δ)):sup

=>0
|DF= −*0

= |, (5)

where DF= is the fine solution at time )=, and the convergence factor is given by

d(_Δ)) = |'(_Δ)/<)
< − '(_Δ)) |

1 − |'(_Δ)) | , (6)

with ' the stability function of the coarse (and fine) solver.

2 Semi-discretization of the advection-diffusion problem

We are interested in the linear advection-diffusion equation on a one-dimensional
spatial domain [0, !]

mD

mC
= −0 mD

mG
+ a m

2D

mG2 + 5 (G, C), D(G, 0) = D0 (G), (7)

with 0, a ∈ R∗+ the advection and diffusion coefficients, 5 : R × R+ → R a source
term, and periodic boundary conditions for the spatial domain
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∀C ∈ [0, )], D(0, C) = D(!, C). (8)

We discretize [0, !] using a uniform mesh [G1, ..., G?]) for ? unknowns, which
gives a mesh size XG = !/?. We use centered finite differences of order 2 (FD-
C2) for the diffusion operator in (7), and also use either a FD-C2 discretization for
the advection operator, or a 1BC order upwind scheme (FD-U1). This leads to the
semi-discrete system of ODEs

3u

3C
(C) = �u(C) + f (C), u(0) = u0, (9)

where � ∈ R?×? and f : R→ R? represents the source term.
Two dimensionless numbers can be defined to characterize this problem:

'4 :=
0!

a
, '4XG :=

0XG

a
, (10)

where '4 is the Reynolds number1 and '4XG is the mesh Reynolds number ('4 =
?'4XG ). '4 indicates by its large (resp. small) value a major influence of advection
(resp. diffusion) on the solution D(G, C). As '4 compares this advection/diffusion
ratio with the characteristic length ! (that can be chosen differently for a different
situation), '4XG compares this ratio to the mesh size. Decreasing the diffusion
coefficient will increase '4, as the advection becomes more dominant. It does not
necessarily induce an increase of '4XG , as XG can also be decreased to keep a
constant value for '4XG . This mesh refinement when '4 increases is commonly
done for Direct Numerical Simulation (DNS) of the Navier-Stokes equations [6,
Chap. 4], or also for stationary forms of (9) with Dirichlet boundary conditions, to
keep a certain accuracy in the approximate solution (solutions become qualitatively
wrong when '4XG ≥ 2 for FD-C2 dicretizations of the advection term [1, Sec. 2,
§ 5]).

The mesh Reynolds number '4XG is useful to formulate convergence results for
Parareal. In particular, we can use it to express the eigenvalues of � in (9):

Lemma 1 (Eigenvalues of the spatial advection-diffusion operator)
For the FD-C2 discretization of the diffusion termwith periodic boundary conditions,
the eigenvalues of the discrete spatial operator � with FD-C2 discretization of the
advection are

_^ = − 0
XG

[
8 sin

(
2^c
?

)
+ 2
'4XG

(
1 − cos

(
2^c
?

))]
, ^ ∈ {0, 1, ..., ? − 1}, (11)

with 8 :=
√
−1. For the FD-U1 discretization of the advection, the eigenvalues are

_^ = − 0
XG

[
1 − 4−8 2^ c

? + 2
'4XG

(
1 − cos

(
2^c
?

))]
, ^ ∈ {0, 1, ..., ? − 1}. (12)

1 What we call here the Reynolds number is in fact the Peclet number, since there is no non-linear
advective term in (7). However, we prefer to use Reynolds number, since our analysis is a first step
toward Navier-Stokes equations, and this links our results to those already in the literature.
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Fig. 1: Influence of '4XG on the eigenvalues of the advection-diffusion problem when varying a
only and keeping 0 and XG fixed. For the advection term, we used FD-C2 (left) and FD-U1 (right),
with ? = 20, 0 = 1, ! = 1, and for the axes, we used _̃^ := XG/0_^ .

Proof For the FD-C2 discretization of the advection term, the space operator matrix
is given by

� := − 0

2XG

©­­­­­«
0 1 −1

−1
. . .

. . .

. . .
. . . 1

1 −1 0

ª®®®®®¬
+ a

X2
G

©­­­­­«
−2 1 1

1
. . .

. . .

. . .
. . . 1

1 1 −2

ª®®®®®¬
, (13)

where the eigenvalues of each matrix are well known (see, e.g. [6, Chap. 3]). Each
circulant matrix is diagonalized by the same Fourier basis, and hence the eigenvalues
_^ of � are just the sum of the eigenvalues of each matrix in (13), i.e.

_^ = −8 02XG
sin(2^c/?) + 2

a

X2
G

(
1 − cos

(
2^c
?

))
. (14)

Extracting the common factor 0/XG and using the definition of '4XG then leads to
(11). The result for FD-U1 in (12) is obtained similarly. �

In Fig. 1, we show the eigenvalues for both discretizations, FD-C2 and FD-U1,
and their dependency on '4XG when varying a only. We see that the eigenvalues
are distributed along an ellipse that flattens toward the imaginary axis when '4XG
increases. For small '4XG , the eigenvalues are very similar, but for large '4XG , the
flattening toward the imaginary axis is more pronounced for FD-C2 than for FD-U1,
which comes from the numerically more diffusive nature of FD-U1.

3 Linear bound of Parareal for advection-diffusion

Theorem 2 (Linear convergence bound - Advection-diffusion equation) Let G
be a one-step time-integration method, F be the same time integrator using < time-
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steps, and uF= be the fine sequential solution at)=. If _^Δ) is in the region of absolute
stability of G for each eigenvalue _^ of �, then the error in the Parareal algorithm
satisfies the linear error bound

� :∞ := sup
=>0




uF= −[:=


2
≤ d:03�0

∞, �
0
∞ =

√∑̂
sup
=>0

���D̂F= (^) − *̂0
= (^)

���2 (15)

where D̂(^) is the ^Cℎ Fourier component of u and d03 denotes the linear convergence
factor of Parareal,

d03 = sup
_^

[d(_^Δ))] = sup
_^

[ |'(_^Δ)/<)< − '(_^Δ)) |
1 − |'(_^Δ)) |

]
, (16)

with ' the stability function of the coarse (and fine) solver. In particular, Parareal
convergence is ensured if d03 < 1.

Proof As the unitary Discrete Fourier Transform (DFT) matrix transforms � into
diagonal form, (9) is then a combination of decoupled Dahlquist equations in Fourier
space. Using Theorem 1, we can bound the Parareal error of each Fourier compo-
nent for all time subintervals,

∀= ∈ N, |D̂F= (^) − *̂:= (^) | ≤ sup
=>0
|D̂F= (^) − *̂:= (^) | ≤ d(_^Δ)):sup

=>0
|D̂F= (^) − *̂0

= (^) |.
(17)

For each ^, d(_^Δ)) can be bounded by sup
_^

[d(_^Δ))]. Then, taking the power 2

of each extremal part of the inequality, summing on ^ and computing the square root
gives 


ûF= − [̂:=


2

≤ sup
_^

[d(_^Δ))]:�0
∞ (18)

Using the Parseval-Plancherel theorem and bounding the left term for = ∈ N then
leads to (15). �

As we saw previously, the eigenvalues _^ are fully characterized by '4XG and
0/XG . Hence, we can define a dimensionless number,

CFLP =
0Δ)

XG
, (19)

which we call Courant-Friedrichs-Lewy (CFL) number for Parareal (as if the
algorithm were simply considered as a standard time integration method with time-
step Δ)). It is worth mentioning that CFLP is the CFL number of the coarse solver,
and < times the CFL number of the fine solver, and we obtain the following result:

Lemma 2 For a given mesh with ? mesh points, the linear convergence factor d03 of
Parareal for the advection-diffusion equation in (16) depends only on '4XG , CFLP ,
and the coarse/fine solver settings, i.e. the stability function ' and the number of
time-steps < per time subinterval.
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Fig. 2: Dependence of d03 on '4XG and CFLP , for Backward Euler (< = 30 for F), and FD-C2
(left) and FD-U1 (right). Dotted black line: d03 = 1. White squares are ('4XG , CFLP ) tuples used
in Sec. 4. White dotted lines are ('4XG , CFLP ) values for some given constant ratio 02Δ) /a.

Proof Looking for example at the FD-C2 discretization for advection, combining
(19) with (11), we get

_^Δ) = −CFLP
[
8 sin

(
2^c
?

)
+ 2
'4XG

(1 − cos
(

2^c
?

)]
, ^ ∈ {0, 1, ..., ?−1}, (20)

which depends only on ^, '4XG and CFLP . As d03 is a maximum bound over all ^,
we obtain the result from (16). The proof is similar for FD-U1. �

We present the dependency proved in Lemma 2 graphically using contour plots
for d03 in Fig. 2, with a Backward Euler time integrator for F and G, using < = 30
and ? = 5000. For both discretizations, we observe an increase of d03 with both
'4XG andCFLP , in agreement with numerical results in the literature (see, e.g. , [3]).
Our analysis quantifies this convergence deterioration, and shows how d03 depends
precisely on '4XG and CFLP . Furthermore, for sufficient space resolution (small
'4XG ), d03 is determined by CFLP'4XG = 02Δ)/a (white dotted lines in Fig. 2).
In particular, convergence is only ensured when 02Δ)/a is less than a given value
(around 10 in our case). This implies that Δ) must be in the order of a/02, or in
other words, the coarse time step must be small enough for G to capture the diffusion
time-scale, requiring that G has an F -like resolution.

Using the FD-U1 discretization only changes the convergence factor for large
values of '4XG , which may not be of use since '4XG >> 1 can lead to an important
loss of accuracy for the numerical solution, as we will see in Sec. 4.

4 Numerical experiments

Weperform now numerical experiments similar to those already in the literature (see,
e.g. , [7, 3]), wherewe use a fixed number ofmesh points ?, and decrease the diffusion
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Fig. 3: Space-time numerical solution with the F solver using FD-C2 for the advection discretiza-
tion. Left: a = 0.1 ('4 = 20), right: a = 0.01 ('4 = 200).

0 2 4 6
Iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
k ∞

Reδx = 0.04 (ν= 1.0)

Reδx = 0.42 (ν= 0.1)

Reδx = 4.17 (ν= 0.01)

0 2 4 6
Iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
k ∞

Reδx = 0.04 (ν= 1.0)

Reδx = 0.42 (ν= 0.1)

Reδx = 4.17 (ν= 0.01)

Fig. 4: Influence of an increase of '4XG by lowering a on Parareal convergence, using FD-C2
for the advection discretization (left) and FD-U1 (right), linear bounds in plain lines.

coefficient a to obtain larger values of '4, for a fixed value 0 = 1 of the advection.
Numerical simulations are done with ! = 2 and ? = 48, until ) = 4. Backward Euler
is used for the F and G solvers, with < = 30. Since we use # = 8 time subintervals
for Parareal, this implies a fine time step XC = 1/60 and CFLP = 12. We use a
Gaussian as initial condition, D0 (G) = 4−20(G−1)2 , and no source term. Three different
viscosity coefficients are chosen, a ∈ {1, 0.1, 0.01}. Numerical solutions are shown
in Fig. 3 for the two smaller values of a; for the largest value a = 1, the solution
is almost purely diffusive, and is constant for C > 1. We show in Fig. 4 the error
against the fine solution at each Parareal iteration, using the FD-C2 and FD-U1
discretizations. For each '4XG value corresponding to the chosen '4, the linear
bound is indicated by the plain lines, and the corresponding (CFLP , '4XG ) tuples
are indicated with the white squares in Fig. 2. We observe for both discretizations a
degradation of the Parareal convergence when a decreases and thus '4 and '4XG
increase, which is well predicted by the linear convergence bound (plain lines in
Fig. 4). The use of the FD-U1 discretization lessens this convergence degradation a
little for high '4XG numbers (low a), which is due to the artificial dissipation brought
by the Upwind scheme that makes the problem (wrongly) more diffusive.

This loss of accuracy is particularly visible when comparing the fine solu-
tion to the analytical solution of (7) with periodic boundary conditions, D(G, C) =



Table 1:Main parameters for the numerical experiments

a '4 '4XG n) ,( (FD-C2) n) ,( (FD-U1)

1 2 0.042 0.006 0.005
0.1 20 0.42 0.040 0.096
0.01 200 4.2 0.321 0.724

1√
4caC

∫ +∞
−∞ D0 (b) exp(− (G−0C−b )24aC )3b. We define the numerical error "in time and

space" of the fine solution n) ,( := 1
#BC4?

∑#BC4?

8=1 | |uA4 5 (8XC ) − uF (8XC ) | |2, where
#BC4? is the number of time steps for the fine solver to cover [0, )] (in our case,
#BC4? = 240), and uA4 5 is the analytical solution computed at each mesh point. We
give n) ,( for each discretization and '4XG in Tab. 1. One can see that the accuracy
decreases dramatically when '4 and '4XG increase, the effect being more impor-
tant for the FD-U1 discretization, compared to the FD-C2 discretization. In order
to reduce this error, a mesh refinement would be necessary, which would have led
to lower '4XG values for the chosen '4, but also to corresponding higher values
of CFLP , thus not changing anything in the convergence behavior of the method
(cf. white dotted lines in Fig. 2).

In conclusion, both our theoretical results and our numerical experiments show
that Parareal algorithm convergence deteriorates when the ratio 02Δ)/a becomes
large, this ratio being proportional to the Reynolds number when time-step and mesh
size are kept constant. One also has to be careful when using numerically diffusive
schemes not to jump to false conclusions: truly transport dominated solutions are
hard to approximate effectively with the classical Parareal algorithm.
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