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1 Bank-Jimack Domain Decomposition Method

In 2001 Randolph E. Bank and Peter K. Jimack [1] introduced a new domain decom-
position method for the adaptive solution of elliptic partial differential equations,
see also [2]. The novel feature of this algorithm is that each of the subproblems is
defined over the entire domain. To describe the method, we consider a linear elliptic
PDE on a domain Ω, and two overlapping subdomains Ω1 and Ω2, Ω = Ω1 ∪ Ω2.
Discretizing the problem on a global fine mesh leads to a linear system  u = f ,
where  is the stiffness matrix, u is the vector of unknown nodal values on the global
fine mesh, and f is the load vector. We partition now the vector u =

[
u1, uB , u2

]) ,
where u1 is the vector of unknowns on the nodes in Ω1 \ Ω2, uB is the vector of
unknowns on the nodes in Ω1 ∩ Ω2, and u2 is the vector of unknowns on the nodes
in Ω2 \Ω1. We can then write the linear system in block matrix form,

�1 �1 0
�)1 �B �

)
2

0 �2 �2



u1
uB
u2

 =

f 1
f B
f 2

 . (1)

The idea of the Bank-Jimack method is to consider two further meshes on Ω, one
identical to the original fine mesh in Ω1, but coarse on Ω\Ω1, and one identical to
the original fine mesh inΩ2, but coarse onΩ\Ω2. This leads to the two further linear
systems
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�1 �1 0
�)1 �B �2
0 �̃2 �̃2



v1
vB
v2

 =


f 1
f B

"2 f 2

 ,

�̃1 �̃1 0
�1 �B �

)
2

0 �2 �2



w1
wB
w2

 =

"1 f 1
f B
f 2

 , (2)

where we introduced the restriction matrices " 9 to restrict f 9 to the corresponding
coarse meshes.The Bank-Jimack method is then performing the following iteration:

Algorithm 1: Bank-Jimack Domain Decomposition Method:
1: Set : = 0 and choose an initial guess u0.
2: Repeat until convergence

2.1

r :1
r :B
r :2

 :=

f 1
f B
f 2

 −

�1 �1 0
�)1 �B �

)
2

0 �2 �2



u:1
u:B
u:2


2.2 (>;E4


�1 �1 0
�)1 �B �̃

)
2

0 �̃2 �̃2



v:+11
v:+1B

v:+12

 =


r :1
r :B
"2r

:
2

 ,

�̃1 �̃1 0
�̃)1 �B �

)
2

0 �2 �2



w:+11
w:+1B

w:+12

 =

"1r

:
1

r :B
r :2


2.3


u:+11
u:+1B

u:+12

 :=

u:1
u:B
u:2

 +


v:+11
1
2 (v:+1B + w:+1B )

w:+12


2.4 : := : + 1

To get more insight into the Bank-Jimack method, and to relate it to Schwarz
methods using optimized Schwarz theory, we consider the concrete example of the
1D Poisson equation

−DGG = 5 in Ω = (0, 1), D(0) = D(1) = 0. (3)

We define a global fine mesh with # mesh points (see Figure 1 (top row)), and mesh
size ℎ := 1

#+1 . Using a finite difference discretization, we find the linear system

0 <ℎ ;ℎ 1

=1 =B =2

ℎ

0 <ℎ ;ℎ 1

=1 =B <2

ℎ1ℎ

0 <ℎ ;ℎ 1
Ω1 Ω2

<1 =B =2

ℎ2 ℎ

Fig. 1: Global fine mesh, and two partially coarse meshes.
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 u = f ,  :=

�1 �1 0
�)1 �B �

)
2

0 �2 �2

 =
1
ℎ2


2 −1

−1 2
. . .

. . .
. . .

 ,
where �1 ∈ R=1×=1 , �1 ∈ R=1×=B , �B ∈ R=B×=B , �2 ∈ R=2×=B and �2 ∈ R=2×=2 , and
# = =1 + =B + =2 (Fig. 1). For the Bank-Jimack method, we also need the two further
meshes shown in Figure 1, one with #1 := =1 + =B +<2 mesh points which is fine on
Ω1 with mesh size ℎ and coarse on Ω\Ω1 with mesh size ℎ1, which leads to a linear
system of equations of the form (2) (left), with system matrix


�1 �1 0
�)1 �B �2
0 �̃2 �̃2

 :=



2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−1
ℎ2

2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−2

ℎ (ℎ+ℎ1 )
2
ℎℎ1

−2
ℎ1 (ℎ+ℎ1 )−1

ℎ2
1

2
ℎ2

1

−1
ℎ2

1

−1
ℎ2

1

2
ℎ2

1

. . .

. . .
. . .



, (4)

and one with #2 = <1 + =B + =2 mesh points on Ω which is fine on Ω2 with mesh
size ℎ, and coarse onΩ\Ω2, with coarse mesh size ℎ2, which leads to a linear system
of equations of the form (2) (right), with system matrix


�̃1 �̃1 0
�1 �B �

)
2

0 �2 �2

 :=



2
ℎ2

2

−1
ℎ2

2

−1
ℎ2

2

. . .
. . .

. . .
. . . − 1

ℎ2
2

− 2
ℎ2 (ℎ+ℎ2 )

2
ℎℎ2

−2
ℎ (ℎ+ℎ2 )−1

ℎ2
2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−1
ℎ2

2
ℎ2

−1
ℎ2

− 1
ℎ2

2
ℎ2

. . .

. . .
. . .



. (5)

For this example, " 9 are the transpose of linear interpolation matrices from the
fine grid (Fig. 1, top row) to the coarse grids (Fig. 1, second and third row). We
find them using an algorithm which is similar to the algorithm introduced in [6] for
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finding the interface matrices for non-matching grids in one dimension. Running the
Bank-Jimack method on this example does not lead to a convergent method1, see
Fig. 2 (left) in the numerical experiments Section 4. This is due to the averaging used
in the overlap in step 2.3 of the method, and can be fixed using a specific partition
of unity given by the diagonal matrices �̃1 and �̃2 such that

�̃1 = 3806(1,×, . . . ,×, 0), �̃2 = 3806(0,×, . . . ,×, 1), �̃1 + �̃2 = �=B (6)

One then has to replace step 2.3 in the the method of Bank-Jimack by
u:+11
u:+1B

u:+12

 :=

u:1
u:B
u:2

 +


v:+11
�̃1v

:+1
B + �̃2w

:+1
B

w:+12

 . (7)

We now present an important property of the Bank-Jimack method with (7):

Lemma 1 The Bank-Jimack Algorithm with step 2.3 replaced by (7) produces for
any initial guess u0 and arbitrary partitions of unity satisfying (6) for : = 1, 2, . . .
zero residual components outside the overlap, r:1 = r:2 = 0.

Proof From step 2.1 in the Bank-Jimack method, we obtain

r:1 = f 1 − (�1u
:
1 + �1u

:
B )

= f 1 − �1 (u:−1
1 + v:1 ) − �1 (u:−1

B + �̃1v
:
B + �̃2w

:
B ) (step 2.3 at : − 1 and (7))

= f 1 − �1u
:−1
1 − �1u

:−1
B − �1v

:
1 − �1 (�̃1v

:
B + �̃2w

:
B ) (rearrange)

= r:−1
1 − �1v

:
1 − �1 (�̃1v

:
B + �̃2w

:
B ) (using step 2.1)

= �1v
:
B − �1 (�̃1v

:
B + �̃2w

:
B ),

since r:−1
1 − �1v

:
1 = �1v

:
B because of the first system satisfied in step 2.3 at : − 1.

Now using the definition of �1 from (4), we have

−�1�̃1v
:
B =

1
ℎ2

1




1
×
. . .

×
0




E:
B,1
...
...

E:B,=B


=

1
ℎ2


0
...

0
E:
B,1


,

independently of the middle elements of �̃1, and thus �1v
:
B − �1�̃1v

:
B = 0. On the

other hand

1 Bank and Jimack used the method as a preconditioner for a Krylov method.
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−�1�̃2w
:
B =

1
ℎ2

1




0
×
. . .

×
1




F:
B,1
...
...

F:B,=B


=


0
...
...

0


,

also independently of the middle elements of �̃2, which proves that r:1 = 0 for
: = 1, 2, . . .. The proof for r:2 is similar. �

2 Optimized Schwarz Methods

Optimized Schwarz Methods (OSMs) use more effective transmission conditions
than the classical Schwarz methods, for an introduction, see [4], and for their relation
to sweeping and other more recent domain decomposition methods, see [7]. We now
apply a parallel OSM with Robin transmission conditions to our Poisson equation
(3) for two subdomains as shown in Fig. 1,

−mGGD:1= 5 in Ω1, −mGGD:2= 5 in Ω2,
D:1=0 G = 0, D:2=0 G = 1,

mD:1
m=1
+ ?12D

:
1=

mD:−1
2
m=1
+ ?12D

:−1
2 G = ;ℎ,

mD:2
m=2
+ ?21D

:
2=

mD:−1
1
m=2
+ ?21D

:−1
2 G = <ℎ.

(8)

Theorem 1 (Special case of Theorem 2 in [3]) If ?12 =
1

1−;ℎ and ?21 =
1
<ℎ

, then
the OSM (8) converges independently of the initial guess in 2 iterations, and is thus
an optimal Schwarz method.

Discretizing the OSM using the same mesh with # grid points as for the method of
Bank-Jimack, we obtain

1
ℎ2


2 −1

−1
. . .

. . .

. . . 2 −1
−1 1 + ?12ℎ



D:1,1
...
...

D:1,;


=


51
...
...

5; + ( ?12
ℎ
− 1
ℎ2 )D:−1

2,=B +
1
ℎ2 D

:−1
2,=B+1


,

1
ℎ2


1 + ?21ℎ −1

−1 2
. . .

. . .
. . . −1
−1 2



D:2,1
...
...

D:2,#−<


=


5< + ( ?21

ℎ
− 1
ℎ2 )D:−1

1,< + 1
ℎ2 D

:−1
1,<−1

...

...

5#


.

(9)
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3 Bank-Jimack’s Method as an Optimized Schwarz Method

We now prove that the method of Bank-Jimack is an optimized Schwarz method
with a special choice of the Robin parameter. To do so, we reformulate the matrix
systems in step 2.2 of the method: using Lemma 1, we have "2r

1
2 = "1r

1
1 = 0, and

thus one can eliminate the corresponding parts from the equations to obtain[
�1 �1
�)1 �B − �2 �̃

−1
2 �̃2

] [
v1

1
v1
B

]
=

[
r1

1
r1
B

]
,

[
�B − �1 �̃

−1
1 �̃1 �

)
2

�2 �2

] [
w1
B

w1
2

]
=

[
r1
B

r1
2

]
, (10)

andwe are interested in the structure of the Schur complementmatrices �B−�2 �̃
−1
2 �̃2

and �B − �1 �̃
−1
1 �̃1.

Lemma 2 (See [9]) The elements of the inverse of the tridiagonal matrix

) =


01 11

21 02
. . .

. . .
. . . 1=−1
2=−1 0=


are ()−1)8 9 =


(−1)8+ 918 . . . 1 9−1\8−1q 9+1/\= 8 < 9 ,

\8−1q 9+1/\= 8 = 9 ,

(−1)8+ 92 9 . . . 28−1\ 9−1q8+1/\= 8 > 9 ,

where \0 = 1, \1 = 01, and \8 = 08\8−1− 18−128−1\8−2 for 8 = 2, . . . , =, and q=+1 = 1,
q= = 0=, and q8 = 08q8+1 − 1828q8+2 for 8 = = − 1, . . . , 1.

Lemma 3 The matrices �2 �̃
−1
2 �̃2 and �1 �̃

−1
1 �̃1 in the Schur complements in (10)

are given by

�2 �̃
−1
2 �̃2 =

1
ℎ2


0

. . .
<2ℎ1
ℎ+<2ℎ1

 , �1 �̃
−1
1 �̃1 =

1
ℎ2


<1ℎ2
ℎ+<1ℎ2

0
. . .

 .
Proof Using the sparsity of �2 and �̃2, we obtain

�2 �̃
−1
2 �̃2 =


0
. . .

−1
ℎ2 0

 �̃
−1
2


0 −2

ℎ (ℎ+ℎ1)
. . .

0

 =
1
ℎ2


0

. . .
2

ℎ (ℎ+ℎ1) ( �̃−1
2 )11

 ,
and we thus need to find the first entry of �̃−1

2 . For convenience, we find the first entry
of (ℎ2

1 �̃2)−1, and then we multiply it by ℎ2
1. Using Lemma 2, we have (ℎ2

1 �̃
−1
2 )11 =

\0q2
\<2

where \0 = 1, and

\<2 = 2\<2−1 − \<2−2 = 2(2\<2−2 − \<2−3) − \<2−2 = 3\<2−2 − 2\<2−3 (11)

= . . . = (<2 − 1) ( 4ℎ1
ℎ
− 2ℎ1
ℎ + ℎ1

) − (<2 − 2) 2ℎ1
ℎ
=

2ℎ1 (<2ℎ1 + ℎ)
ℎ(ℎ + ℎ1) ,
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and

q2 = 2q3 − q4 = 2(2q4 − q5 − q4) = 3q4 − 2q5 · · · = 2(<2 − 1) − (<2 − 2) = <2.

We thus obtain \0q2
\<2

=
<2ℎ (ℎ+ℎ1)

2ℎ1 (<2ℎ1+ℎ) , which shows the first claim. The second one is
proved similarly. �

Theorem 2 The Bank-Jimack method in 1D with the partition of unity (7) is an
optimized Schwarz method with the parameters chosen as ?12 =

1
ℎ+<2ℎ1

and ?21 =
1

ℎ+<1ℎ2
.

Proof It suffices to compare the matrix systems of the OSM (9) with the matrix
systems in step 2.3 of theBank-Jimackmethod, rewritten as in (10), since in stationary
iterations, the standard form and the correction form are equivalent [8, Section
11.2.2]. The system matrices can be made identical by choosing ?12 such that
1 + ?12ℎ = 2 − <2ℎ1

ℎ+<2ℎ1
and ?21 such that 1 + ?21ℎ = 2 − <1ℎ2

ℎ+<1ℎ2
. �

Since the parameters ?12 and ?21 are positive in Theorem 2, it follows from optimized
Schwarz theory that the Bank-Jimack method with a partition of unity of the form
(7) converges to the monodomain solution, and the convergence is independent of
the particular values chosen in the partition of unity, see [5].

Corollary 1 The Bank-Jimack method in 1D with the partition of unity (7) is an
optimal Schwarz method: it selects the best possible Robin parameter, independently
of how coarse the mesh is in the remaining parts outside of the subdomains, and
thus converges in two iterations.

Proof From Theorem 2 we can see that the Robin parameters ?12 and ?21 chosen
by the method of Bank-Jimack are independent of the choice of the coarse grid
parameters ℎ1 and ℎ2, ?12 =

1
ℎ+<2ℎ1

= 1
1−;ℎ and ?21 =

1
ℎ+<1ℎ2

= 1
<ℎ
, which are

precisely the optimal choices in Theorem 1 for the OSM. �

4 Numerical Experiments

We first show numerical experiments in one spatial dimension. We discretize the
Poisson equation (3) using # = 28 , for 8 = 4, . . . , 7, gridpoints on the global fine
mesh (Fig.1, top row), choose =B = 2 gridpoints in Ω1 ∩ Ω2, and <1 = <2 = 2
coarse mesh points outside the subdomains (Fig. 1, middle and last rows). In Fig.
2, we show on the left that the method of Bank-Jimack using the original partition
of unity is not converging. On the right, we show that the method with the new
partition of unity converges in two iterations, as expected from the equivalence with
the optimal Schwarz method proved in Corollary 1. In Fig. 3, we show on the left that
the convergence does not depend on the number of coarse mesh points. We finally
show in Fig. 3 on the right a numerical experiment in 2D, where the optimal choice
of the Robin parameter in the OSM would lead to a non-local operator involving
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Fig. 2: Error as a function of iteration count of the method of Bank-Jimack with the original
partition of unity (left) and new partition of unity (right) for various numbers of global fine mesh
points.
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Fig. 3: Left: convergence of the method of Bank-Jimack using # = 128 gridpoints on the global
finemesh and various number of gridpoints on the coarse regions. Right: convergence of themethod
in 2D for various number of gridpoints on the global fine mesh, choosing =B = 2, and<1 = <2 = 2.

a DtN map, and the method of Bank-Jimack is choosing some approximation. The
study of the type of approximation chosen is our current focus of research.
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