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1 Introduction

Elliptic boundary value problems with oscillatory coefficients play a key role in
the mathematical modelling and simulation of complex multiscale problems, for
instance transport processes in porous media or the mechanical analysis of com-
posite and multifunctional materials. The characteristic properties of such processes
are determined by a complex interplay of effects on multiple non-separable length
and time scales. The challenge is that the resolution of all details on all relevant
scales may easily lead to a number of degrees of freedom and computational work
in a direct numerical simulation which exceed today’s computing resources by mul-
tiple orders of magnitude. The observation and prediction of physical phenomena
frommultiscale models, hence, requires insightful methods that effectively represent
unresolved scales, i.e., multiscale methods.

Homogenization is such a multiscale method. It seeks a simplified model that
is able to capture the macroscopic responses of the process adequately by a few
localized computations on the microscopic scale. Consider, e.g., prototypical second
order linear elliptic model problems with highly oscillatory periodic diffusion coef-
ficients that oscillate at frequency Y−1 for some small parameter 0 < Y � 1. Then,
the theory of homogenization shows that there exists a constant coefficient such that
the corresponding diffusion process represents the macroscopic behaviour correctly.
In practice, this yields a two- or multi-scale method that first computes the effective
coefficient which is implicitly given through some PDE on the microscopic periodic
cell, and then solves the macroscopic effective PDE. This is done for instance in
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the Multiscale Finite Element Method [8] or the Heterogeneous Multiscale Method
[2]. In certain cases, the error of such procedures can be quantified in terms of
the microscopic length scale Y. The approach and its theoretical foundation can be
generalized to certain classes of non-periodic problems. However, the separation of
scales, i.e., the separation of the characteristic frequencies of the diffusion coefficient
and macroscopic frequencies of interest, seems to be essential for both theory and
computation.

There is a more recent class of numerical homogenization methods that can deal
with arbitrarily rough diffusion coefficients beyond scale separation [31, 23]. While,
at first glance, these methods seemed to be only vaguely connected to classical ho-
mogenization theory, the recent paper [14] identifies them as a natural generalization
of some new characterization of classical homogenization. Another deep connec-
tion, which was always believed to exist in the community of domain decomposition
methods, is the one between homogenization and domain decomposition. This one
was made precise only recently by Kornhuber and Yserentant [28, 26, 27]. By com-
bining their iterative approach to homogenization and the results of [14], the present
paper illuminates the role of domain decomposition in the theory of homogenization
and provides homogenization limits without any advanced compactness arguments
or two scale limits. In addition, compared with [14], we are able to drop a technical
assumption on some artificial symmetries of the diffusion coefficient with respect to
the periodic cell.

Our new construction of effective coefficients (see Sections 3–4) is not necessarily
any easier than the classical one. For the simple diffusion model problem, this
is merely an instance of mathematical curiosity and we do not mean to rewrite
homogenization theory. However, the connection between homogenization theory
and domain decomposition and, in particular, the method of proof turn out to be very
interesting and, moreover, they unroll their striking potential for problems beyond
scale separation and periodicity. Using this approach, new theoretical results could
be derived and some of them are briefly discussed in Section 5.

2 Model problem and classical homogenization

For the sake of illustration we restrict ourselves to the simplest possible yet repre-
sentative and relevant setting. Let Ω = [0, 1]2 be the unit square and YΩ := [0, Y]2.
Moreover, let �1 ∈ !∞ (Ω;R2×2) be a symmetric, uniformly elliptic, Ω-periodic
(matrix-valued) coefficient and let �Y (G) := �1 ( GY ), G ∈ Ω. The extension to a
cuboidal domain in 3� is straight forward. We denote by + := �1

# (Ω)/R the equiva-
lence class of Ω-periodic functions in �1 (Ω) factorised by constants, and similarly,
by +Y := �1

# (YΩ)/R for their Y-periodic counterparts. The model problem under
consideration then reads: given 5 ∈ !2 (Ω), find a function DY ∈ + such that∫

Ω

�Y (G)∇DY (G) · ∇E(G) dG =
∫
Ω

5 (G)E(G) dG, (1)



From DD to Homogenization 31

for all E ∈ + . In order to ensure the well-posedness of the problem, we assume that
�Y ∈ MUV , whereMUV is defined as

MUV := {� ∈ !∞ (Ω) | U |b |2 ≤ b · �(G)b ≤ V |b |2 for all b ∈ R2 and a.a. G ∈ Ω}.

The idea behind classical homogenization is to look for a so-called effective
(homogenized) coefficient �0 ∈ MUV so that the solution D0 ∈ + of the problem∫

Ω

�0∇D0 · ∇E dG =
∫
Ω

5 E dG, (2)

for all E ∈ + , represents the limit of the sequence {DY}Y>0 of solutions of the problem
(1). In general, explicit representations of effective coefficients are not known, except
for the simple case of the one-dimensional or (locally) periodic setting. However, the
so-called energy method of Murat and Tartar ([34]) or the two-scale convergence
([3]) provide us with the following form(

�0

)
: 9

=

∫
Ω

(
�1 (G) (4 9 + ∇F 9 (G))

)
·
(
4: + ∇F: (G)

)
dG, (3)

where F 9 are defined as the unique solutions in + of the so-called cell problems∫
Ω

�1 (G)
(∇F 9 (G) − 4 9 ) · ∇E(G) dG = 0,

for all E ∈ + , with the canonical basis (4 9 )29=1 of R
2. The substitution G ↦→ G

Y
yields

0 = Y−2
∫
YΩ

�1

( G
Y

) (
∇ F 9

( G
Y︸︷︷︸

=:@̂ 9 (G)

)
− 4 9

)
· ∇ E

( G
Y

)
︸︷︷︸
=:EY (G)

dG

=

∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇EY (G) dG. (4)

Since all functions EY in +Y can be written as E( G
Y
) for a certain function E ∈ + ,

equation (4) yields that the function @̂ 9 ∈ +Y solves∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇EY (G) dG = 0, (5)

for all EY ∈ +Y . Moreover, @̂ 9 ∈ +Y ⊂ + solves the same problem in the space+ , i.e.,∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇E(G) dG = 0,

for all E ∈ + , since the solution of an elliptic model problem with periodic data
(coefficient, source function) is also periodic, with the same period.
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3 Novel characterization of the effective coefficient

In order to define the effective coefficient from the alternative perspective of finite
elements, we first introduce the necessary notation on meshes, spaces, and interpo-
lation operators.

We consider structured triangulations of Ω = [0, 1]2 as depicted in Figure 1,
where the triangles ) form the triangulation T� and the boldface squares & are part
of the square mesh Q� . The theoretical arguments below require the triangulation to
be aligned with the periodicity cells of the coefficient represented by the elements of
Q� . Moreover, T� should not introduce any nodes in the interiors of those cells. We
shall emphasize that the general numerical homogenization method of Section 5 can
deal with fairly general meshes. Denote the set of nodes by NT� = NQ� . Since we
are working with periodic boundary conditions, we will frequently understand Q�
and T� as periodic partitions (or partitions of the torus or partitions of the whole
R2), i.e., we identify opposite faces of the unit square. The parameter � denotes the
length of the quadrilaterals and is supposed to be not smaller than the microscopic
length scale Y of the model problem.

Fig. 1: Admissible triangulations.

Let P1 (T� ) denote the space of globally continuous piecewise affine functions
on Ω with periodic boundary conditions. As in the continuous case with + , we also
factor out the constants here, i.e., in fact we consider (P1 (T� ))/R, but still write
P1 (T� ) for simplicity. Since Y ≤ � is assumed, the finite element method with
the space P1 (T� ) does not yield faithful approximations of the solution DY to (1);
see, e.g., [37, Sec. 1]. We introduce a bounded local linear projection operator �� :
+ → P1 (T� ), which can be seen as a composition �� := �� ◦Π� , where a function
E ∈ + is first approximated on every element ) ∈ T� by its !2-orthogonal projection
Π� onto the space of affine functions. Hence, a possibly globally discontinuous
function Π� E is obtained. In the second step �� , the values at the inner vertices
of the triangulation are averages of the respective contributions from the single
elements, i.e.,
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�� ◦ Π� (E) (I) :=
1

#{) ∈ T� , I ∈ )}
∑
) ∈T�
I∈)

Π� (E) |) (I)

for all vertices I, where the triangulation is understood in a periodic manner, see
[35].

Let , := kern�� be the kernel of the quasi-interpolation operator �� . It can be
seen as the set of rapidly oscillating functions, which cannot be captured by standard
finite elements functions on the (coarse) mesh T� . Motivated by the reformulation
(5) of the cell problems and the interpretation of, as rapidly oscillating functions,
we define now the correctors @∞

&, 9
as the unique solutions in , of the following

variational problems∫
Ω

�Y (G)∇@∞&, 9 (G) · ∇F(G) dG =
∫
&

�Y (G)4 9 · ∇F(G) dG, (6)

for all F ∈ , , and the correctors are defined for every & ∈ Q� , 9 = 1, 2. We define
the following w.r.t. Q� piecewise constant numerical coefficient �∞

�
which will play

the main role in Proposition 1:[
�∞
� |&

]
: 9

=
1
|& |

∫
&

�Y (G)4 9 · 4: dG − 1
|& |

∫
Ω

�Y (G)∇@∞&, 9 (G) · 4: dG, (7)

for all & ∈ Q� , :, 9 = 1, 2.

Proposition 1 In the case that the mesh size � is an integer multiple of Y, the
coefficient �∞

�
coincides with the homogenized coefficient �0 from classical homog-

enization defined in (3).

Proof We will first show that the function @ 9 :=
∑
&∈Q� @

∞
&, 9

coincides with the
corrector @̂ 9 ∈ +Y , the unique solution of the problem (5). The crucial observation
needed for the proof is the fact that the space of Y-periodic functions is contained
in the kernel , of the quasi-interpolation operator �� , in the case of the present
setting with the triangulations T� and Q� . To see this we observe that, for an Y-
periodic function EY ∈ +Y , the values �� (EY) (I) coincide for all I ∈ NT� . That is,
�� (EY) ∈ P1 (T� ) is a global constant. As we factored out the constants, we can take
the zero function as representative, i.e., �� (EY) = 0.

Moreover, summing up the equations (6) over all & ∈ Q� and taking advantage
of the symmetry of �Y , we get that @ 9 :=

∑
&∈Q� @

∞
&, 9

solves∫
Ω

�Y (G)∇@ 9 (G) · ∇F(G) dG =
∫
Ω

�Y (G)4 9 · ∇F(G) dG (8)

=

∫
Ω

�Y (G)∇F(G) · 4 9 dG, (9)

for all F ∈ , , and in particular for all F ∈ +Y . The combination of (5) and (9)
readily yields that @ 9 ≡ @̂ 9 , 9 = 1, 2. Moreover, (9) with F = @∞

&,:
implies
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Ω

�Y (G)∇@∞&,: (G) · ∇4 9 dG =
∫
Ω

�Y (G)∇@ 9 (G) · ∇@∞&,: (G) dG

=

∫
Ω

�Y (G)∇@∞&,: (G) · ∇@ 9 (G) dG

=

∫
&

�Y (G)4: · ∇@ 9 (G) dG.

Hence, in the definition of �∞
�
we can replace the second term, namely(

�∞
� |&

)
: 9

=
1
|& |

∫
&

�Y (G)4 9 · 4: dG − 1
|& |

∫
&

�Y (G)4 9 · ∇@: (G) dG

=
1
|& |

∫
&

�Y (G)4 9 · (4: − ∇@̂: (G)) dG

=

(
�0

)
: 9

,

for 9 , : = 1, 2. �

4 Numerical effective coefficient by domain decomposition

The correctors @∞
&, 9

defined in the previous section require the solution of a global
problem involving the oscillating coefficient �Y . Employing domain decomposition,
we introduce localized variants and then use arguments from the theory of iterative
(domain decomposition) methods as presented in [26, 28] to show that the error
decays exponentially in the number of iterations. With the localized correctors, we
then introduce an effective localized coefficient �ℓ

�
which is piecewise constant on

Q� .
Let l8 be the union of all squares& ∈ Q� having the vertex I8 as a corner and let

,8 = {E − �� E | E ∈ �1
0 (l8)}.

We emphasize that l8 is understood as a subset of R2, i.e., it is continued over the
periodic boundary. The functions in,8 vanish outside a small neighbourhood of the
vertex I8 . The,8 are closed subspaces of the kernel, of �� , see [26]. Let %8 be the
0Y-orthogonal projection from + to,8 , defined via the equation

0Y (%8E, F8) = 0Y (E, F8), ∀F8 ∈ ,8 .

Introducing the with respect to the bilinear form 0Y (·, ·) symmetric operator

% = %1 + %2 + · · · + %=,

the following properties are proved in [26]:



From DD to Homogenization 35

Lemma 1 There are constants  1 and  2, independent of � and Y, such that

 −1
1 0Y (E, E) ≤ 0Y (%E, E) ≤  20Y (E, E)

for all E ∈ + . Moreover, for an appropriate scaling factor o only depending on  1
and  2, there exists a positive constant W < 1 such that

‖ id−o%‖L(+ ,+ ) ≤ W. (10)

Starting from @0
&, 9

= 0, 9 = 1, 2, the localized correctors @ℓ
&, 9

are defined for all
& ∈ Q� via

@ℓ+1&, 9 = @
ℓ
&, 9 + o%(G 9 1& −@ℓ&, 9 ), 9 = 1, 2, (11)

where 1& denotes the characteristic function of& and G 9 denotes the 9-th component
of the (vector-valued) function G ↦→ G. The scaling factor o is chosen as discussed
in Lemma 1. The correction %(G 9 1& −@ℓ&, 9 ) is the sum of its components �ℓ

8
=

%8 (G 9 1& −@ℓ&, 9 ) in the subspaces,8 of, , where the �ℓ
8
solve the local equations

0Y (�ℓ8 , F8) = 0Y (G 9 1&, F8) − 0Y (@ℓ&, 9 , F8), ∀F8 ∈ ,8 . (12)

The sloppy notation using 1& as argument in 0Y is to denote that the integration
is over the element & only, i.e., 0Y (G 9 1&, F8) =

∫
&
�Y4 9 · ∇F8 3G. Since the local

projections %8 only slightly increase the support of a function, we deduce inductively
that the support of @ℓ

&, 9
is contained in an ℓ�-neighbourhood of &. In particular, in

each step of (11) only a few local problems of type (12) have to be solved.
We now replace @∞

&, 9
by its localized variant @ℓ

&, 9
in the definition of the numerical

effective coefficient. This procedure is justified by an exponential error estimate in
Proposition 2. We define the piecewise constant (on the mesh Q� ) (localized)
effective matrix �ℓ

�
via(

�ℓ� |&
)
: 9
=

1
|& |

∫
&

�Y (G)4 9 · 4: 3G − 1
|& |

∫
Ω

�Y∇@ℓ&, 9 (G) · 4: 3G. (13)

Since the numerical effective coefficient (7) is the “true” one in the sense that
�∞
�
= �0, we simply need to estimate the error of the iterative approximation.

Proposition 2 Let H be an integer multiple of Y and let the localization parameter ℓ
be chosen of order ℓ ≈ | log� |. Then,

‖�∞� − �ℓ� ‖!∞ (Ω) . �. (14)

Proof We first estimate the error between the correctors @∞
&, 9

and @ℓ
&, 9

. Using
the definition of @∞

&, 9
in (6), we deduce that %(G 9 1&) = %(@∞&, 9 ). Hence, we can

characterize the error between the correctors @∞
&, 9

and their localized approximations
@ℓ
&, 9

via
@∞&, 9 − @ℓ&, 9 = (id−o%)ℓ@∞&, 9 .
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Using (10), this yields the exponential convergence of @ℓ
&, 9

towards @∞
&, 9

, i.e.,

‖∇(@∞&, 9 − @ℓ&, 9 )‖ . Wℓ ‖∇@∞&, 9 ‖ . Wℓ |& |1/2. (15)

By the definitions of �∞
�
in (7) and �ℓ

�
in (13), we obtain���(�∞� |&) 9: − (�ℓ� |&) 9: ��� = |& |−1

�����∫Ω �Y∇(@ℓ&, 9 − @∞&, 9 ) · 4: 3G
�����

. |& |−1‖4: ‖!2 (Ω) ‖∇(@ℓ&, 9 − @∞&, 9 )‖!2 (Ω) .

Estimate (15) and the choice ℓ ≈ | log� | readily imply the assertion. �

The same estimate was previously derived in [14] with a slightly different local-
ization strategy and with more restrictive conditions on the triangulation. There, the
homogenization error in the !2-norm is quantified as follows. Let Ω be convex. Let
DY ∈ + solve (1) and let D0 ∈ + be the solution to (2). For sufficiently small Y, it
holds that

‖DY − D0‖!2 (Ω) . Y | log Y |2‖ 5 ‖!2 (Ω) .

This estimate recovers the classical result that DY → D0 strongly in !2 and further-
more states that the convergence is almost linear for right-hand sides 5 ∈ !2 (Ω). We
shall emphasize that the proofs of [14] are solely based on standard techniques of
finite elements. The authors believe that such a result is also possible in the slightly
more general setup of this paper. However, it seems that there is no simple argument
but the generalization requires to revise the analysis of [14] step by step which is far
beyond the scope of this paper.

5 Beyond periodicity and scale separation

The numerical approach presented in Section 4 does not essentially rely on the
assumption of periodicity or separation of scales (between the length scales of
the computational domain and the material structures). Of course, in such general
situations, one cannot identify a constant effective coefficient. Instead the goal is
to faithfully approximate the analytical solution by a (generalized) finite element
method based on a (coarse) mesh, which does not need to resolve the fine material
structures and thereby is computationally efficient.

For this generalization, note that the definition (11) can be formulated verbatim
for any boundary value problem involving a potentially rough, but not necessarily
periodic diffusion tensor � ∈ !∞ (Ω). Moreover, the choice of the function G 9 1& in
the definition of @ℓ

&, 9
can be generalized to any function E ∈ + in the following way.

Define the operator �ℓ
)

: + → , inductively via �0
)
= 0 and

�ℓ+1) = �ℓ) + o%(id |) − �ℓ) )
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for all ) ∈ T� , see [26]. Instead of modifying the diffusion tensor as in the pre-
vious sections, we then modify the basis functions and define a generalized fi-
nite element method using the test and ansatz spaces +ℓ

�
:= (id+�ℓ)P1 (T� ) with

�ℓ :=
∑
) ∈T� �

ℓ
)
. This method is known as the Localized Orthogonal Decomposi-

tion (LOD) [23, 31, 19, 37] and originally arose from the concept of the Variational
MultiscaleMethod [24, 25]. Note that mostly a slightly different definition of the cor-
rectors�ℓ

)
based on patches of diameter ℓ� around the element) is used. The present

approach via domain decomposition and iterative solvers was developed recently in
[28, 26]. It has been shown in [31, 19] for instance, that the method approximates the
analytical solution with an energy error of the order � even in the pre-asymptotic
regime if the localization parameter ℓ is chosen of the order ℓ ≈ | log� | as in
Proposition 2. Hence, the Localized Orthogonal Decomposition can efficiently treat
general multiscale problems. Besides the abovementionedGalerkin-type ansatz with
modified ansatz and test functions, Petrov-Galerkin formulations of the method [9]
may have computational advantages [10] and even meshless methods are possible
[21].

The Localized Orthogonal Decomposition is not restricted to elliptic diffusion
problems and has underlined its potential in various applications and with respect to
different (computational) challenges. Starting from the already mentioned applica-
tion in the geosciences, we underline that the material coefficients are often charac-
terized not only by rapid oscillations but also by a high contrast, i.e., the ratio V/U is
large. Many error estimates, also for the standard LOD, are contrast-dependent, but
a careful choice of the interpolation operator, see [17, 40], can overcome this effect.
Apart from simple diffusion problems, porous media [7], elasticity problems [22]
or coupling of those such as in poroelasticity [4] play important roles in these (and
many other) applications. For instance in elasticity theory, not only heterogeneous
materials are treated, but also the effect of locking can be reduced by the multiscale
method in [22].

Another important area of research are acoustic and electromagnetic wave propa-
gation problems, where the considered prototypical equations are the Helmholtz and
Maxwell’s equations. It is well known that standard finite element discretizations
of the (indefinite) Helmholtz equation are only well-posed and converging under a
rather restrictive resolution condition between the mesh size and the wavenumber.
In a series of paper [6, 13, 38], it was analysed that the LOD can relax this resolution
condition if the localization parameter grows logarithmically with the wavenumber.
For large wavenumbers, this is a great computational gain in comparison to stan-
dard numerical methods that even allows the simulation of physical phenomena in
high contrast regimes [41]. Maxwell’s equations, studied in [12, 42], on the other
hand, pose a challenge as the involved curl-operator has a large kernel. Moreover,
the natural finite element space are Nédélec’s edge elements, for which stable in-
terpolation operators are much less developed than for Lagrange finite elements.
In the context of problems not based on standard Lagrange spaces, we also men-
tion the mixed problem utilizing Raviart-Thomas spaces in [16]. Considering wave
problems, the time-dependent wave equation with different time discretizations was
studied in [1, 30]. Concerning time-dependency, an important question for the LOD
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construction is how to deal with time-dependent diffusion tensors. [18] presents an a
posteriori error estimator in order to adaptively decidewhich correction to recompute
in the next time step.

Apart from the treatment of multiscale coefficients in a variety of partial differen-
tial equations, the methodology can also be seen as a stabilization scheme similar as
its origin the variational multiscale methods. This has been exploited to deal with the
pollution effect in Helmholtz problems mentioned above, for convection dominated
diffusion problems [29] and, more importantly, to bypass CFL conditions in the
context of explicit wave propagation on adaptive meshes [39].

Further unexpected applications are linear and nonlinear eigenvalue problems
[32, 33], in particular the quantum-physical simulation based on the Gross-Pitaevskii
equation. While the LOD can be employed to speed-up ground state computations
for rather rough potentials [20], the underlying technique of localization by domain
decomposition turned out to be of great value to provide (analytical) insight into the
phenomenon of Anderson localization in this context. The recent paper [5] predicts
and quantifies the emergence of localized eigenstates and might inspire progress
regarding the understanding of localization effects which are observed for many
other problems as well.

The present contribution aimed at unifying the view of the LOD and classical ho-
mogenization and domain decomposition. As already mentioned, close connections
exist with [14] and its extension to stochastic homogenization [15]. Further appli-
cations involve a multilevel generalization of LOD named gamblets [36] (due to
a possible game-theoretic interpretation). This multilevel variant allows surprising
results such as a sparse representation of the expected solution operator for ran-
dom elliptic boundary value problems [11] which may inspire new computational
strategies for uncertainty quantification in the future.
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