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1 Introduction

In many real physical phenomena, there is heterogeneity, e.g., in some ground flow
problems in heterogeneousmedia.When somefinite element discretizationmethod is
applied to a physical model, one usually obtains a discrete problemwhich is very hard
to solve by a preconditioned iterative method like, e.g., Preconditioned Conjugate
Gradient (PCG) method. One of the most popular methods of constructing parallel
preconditioners are domain decomposition methods, in particular, non-overlapping
or overlapping additive Schwarz methods (ASM), cf. e.g., [16]. In Schwarz methods,
a crucial role is played by carefully constructed coarse spaces. For multiscale prob-
lems with heterogeneous coefficients standard overlapping Schwarz methods with
classical coarse spaces fail often to be fast and robust solvers. Therefore we need new
coarse spaces which are adaptive to the jumps of the coefficients, i.e. the convergence
of the ASM method is independent of the distribution and the magnitude of the co-
efficients of the original problem. We refer to [6], [15] and the references therein for
similar earlier works on domain decomposition methods which used adaptivity in
the construction of the coarse spaces.

In our paper, we consider the Symmetric Interior Penalty Galerkin (SIPG) finite
element discretization, i.e., a symmetric version of the interior penalty discontinuous
Galerkin (DG) method. DG methods became increasingly popular in recent years,

Leszek Marcinkowski
Faculty of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Leszek.Marcinkowski@mimuw.edu.pl

Talal Rahman
Faculty of Engineering and Science, Western Norway University of Applied Sciences, Inndalsveien
28, 5063 Bergen, Norway Talal.Rahman@hvl.no
∗ This work was partially supported by Polish Scientific Grant: National Science Center:

2016/21/B/ST1/00350.

294



Adaptive DDM for DG 295

since they allow that the finite element functions can be completely discontinuous
across the element edges, cf. e.g. [14] for an introduction to DG methods.

In the case when the coefficients are discontinuous only across the interfaces
between subdomains and are homogeneous inside them, then Schwarz methods with
standard coarse spaces are fast and efficient, cf. e.g., [3, 16]. This is however not
true in the case when the coefficients may be highly varying and discontinuous
almost everywhere, what has in recent years brought many researchers’ interest to
the construction of new coarse spaces, cf. e.g. [11, 5, 7, 8, 9, 12, 13, 15, 10].

2 Discrete Problem

Let us consider the following elliptic second order boundary value problem in 2D:
Find D∗ ∈ �1

0 (Ω)∫
Ω

U(G)∇D∗∇E 3G =
∫
Ω

5 E 3G, ∀E ∈ �1
0 (Ω), (1)

where Ω is a polygonal domain in R2, U(G) ≥ U0 > 0 is the coefficient, and
5 ∈ !2 (Ω).

We introduce Tℎ the quasi-uniform triangulation of Ω consisting of closed tri-
angles such that Ω̄ =

⋃
 ∈Tℎ  . Further ℎ denotes the diameter of  , and let

ℎ = max ∈Tℎ ℎ be the mesh parameter for the triangulation.
We will further assume that U is piecewise constant on Tℎ . Let be given a coarse

non-overlapping partitioning of Ω into the open, connected Lipschitz polytopes Ω8 ,
called substructures or subdomains, such that Ω =

⋃#
8=1Ω8 . We also assume that

those substructures are aligned with the fine triangulation, i.e. any fine triangle of Tℎ
is contained in one substructure. For the simplicity of presentation, we further assume
that these substructures form a coarse triangulation of the domain which is shape
regular in the sense of [1]. Let Γ8 9 denote the open edge common to subdomains Ω8
and Ω 9 not in mΩ and let Γ be the union of all mΩ: \ mΩ .

Further let us define a discrete space (ℎ as the piecewise linear finite element
space defined on the triangulation Tℎ ,

(ℎ = (ℎ (Ω) := {D ∈ !2 (Ω) : D | ∈ %1,  ∈ Tℎ}.

Note that the functions in (ℎ are multivalued on boundaries of all fine triangles
of Tℎ except on mΩ. Therefore we introduce a set of all edges of elements of Tℎ as
Eℎ . Let the Emℎ ⊂ Eℎ be the subset of boundary edges i.e. the edges contained in mΩ,
and E �

ℎ
= Eℎ \ Emℎ be the subset of interior edges, i.e. the edges interior to Ω. We

define the !2-inner products over the elements and the edges respectively as follows,
(D, E)Tℎ =

∑
 ∈Tℎ

∫
 
DE 3G and (D, E)Eℎ =

∑
4∈Eℎ

∫
4
DE 3B for D, E ∈ (ℎ .

The following weights, cf. e.g. [2], are introduced l4+ = U−/(U+ + U−) and
l4− = U+/(U+ +U−), 4 ∈ E �ℎ , where 4 is the common edge between two neighboring
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triangles  + and  −, U+ and U− are the restrictions of U to  + and  −, respectively.
We have l4+ +l4− = 1.We also need the following notations: [D] = D+ =+ +D− =− and
{D} = l4+ D+ + l4− D−, where D+ and D− are the traces of D | + and D | − on 4 ⊂ E �ℎ ,
while =+ and =− are the unit outer normal to m + and m −, respectively. On the
boundary we introduce [D] = D = and {D} = D, where = is the unit outer normal to
the edge 4 ⊂ m ∩ mΩ, and D is the trace of D | onto 4. We consider SIPG method
discrete problems: (cf. [2]). Find D∗

ℎ
∈ (ℎ

0(D∗ℎ , E) = 5 (E) ∀E ∈ (ℎ , (2)

where 0(D, E) = (U∇D,∇E)Tℎ−({U∇D}, [E])Eℎ−({U∇E}, [D])Eℎ +W(Ψℎ [D], [E])Eℎ .
Here Ψℎ is a piecewise constant function over the edges of Eℎ , and W is a constant
positive penalty parameter. The function Ψℎ when restricted to 4 ∈ E �ℎ , is defined as
follows, cf. [2],Ψℎ |4 = ℎ−1

4 (l4+U+ +l4−U−) = ℎ−1
4

2
1
U+ +

1
U−

on 4 = m +∩m −,with
ℎ4 being the length of the edge 4 ∈ Eℎ .

We have, cf. e.g. [2], ℎ−1
4 U<8= ≤ Ψℎ |4 ≤ 2ℎ−1

4 U<8=, U<8= = min(U+, U−). On
a boundary edge 4 ∈ Em

ℎ
we define Ψℎ |4 = ℎ−1

4 U | . Note that ∇D∗
ℎ
is piecewise

constant over the fine elements. The discrete problem has a unique solution provided
the penalty parameter is sufficiently large, cf. [2]. Let us define a patch around an
interface (edge) Γ:; , denoted by ΓX

:;
, as the interior of the union of all closed fine

triangles having at least a vertex on Γ:; . For the simplicity of the presentation let us
assume that the patches cannot share a fine triangle. We divide any patch ΓX

:;
into

two disjoint open domains - subpatches, ΓX,8
:;
= ΓX

:;
∩Ω8 for 8 = :, ;.

The discrete boundary layer of Ω: : ΩX: , is defined as the sum of all subpatches
and parts of their boundaries belonging to a subdomain Ω: , i.e. we have Ω

X

: =⋃
Γ:;⊂mΩ:∩Γ Γ

X,:

:; . Each subdomain inherits a local triangulation Tℎ (Ω8) from Tℎ ,
thus we can define a local subspace extended by zero to the remaining substructures:
(8 := {D ∈ (ℎ : D | = 0  ⊄ Ω8} and its subspace (X

8
formed by the functions

from (8 which are also zero on the patch ΩX
8
.

Since the form 0(D, E) is positive definite over (X
8
we can introduce a local

projection operator P8 : (ℎ → (X
8
: find P8D ∈ (X8 such that for D ∈ (ℎ

0(P8D, E) = 0(D, E), ∀E ∈ (X8 .

Note that P8D can be computed by solving a local problem over Ω8 .
The discrete harmonic part of D ∈ (8 is defined as H8D := D |Ω8 − P8D ∈ (8 .

We say that a function D ∈ (ℎ is discrete harmonic if it is discrete harmonic in
each subdomain, i.e. D |Ω8 = H8D for 8 = 1, . . . , # . Knowing the values of discrete
harmonic D ∈ (8 on the patchΩX8 allows us to compute D over the remaining triangles
contained in Ω8 by solving a local problem. We also introduce spaces related to an
edge patch ΓX

:;
. Let (:; ⊂ (ℎ be the space formed by all discrete harmonic functions

which are zero on the all patches except ΓX
:;
. We see that (:; ⊂ (: ∪ (; .
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3 Additive Schwarz Method

In this section, we present our overlapping additive Schwarz method for solving (2).
Our method is based on the abstract Additive Schwarz Method framework, cf. e.g.,
[16] for details.

The space (ℎ is decomposed into the local sub-spaces and a global coarse space.
For the local spaces we take {(8}#8=1. We have (ℎ =

∑#
8=0 (8 . The global coarse

space (0 is defined in (7), cf. § 3.1, below. Note that the supports of two functions
D8 ∈ (8 , D 9 ∈ ( 9 for 8 ≠ 9 with 8, 9 > 0 are disjoint, but 0(D8 , D 9 ) may be nonzero
due to the edge terms in the bilinear form 0(D, E). Thus we see that (ℎ =

∑#
8=0 (8

is a direct sum, but not an orthogonal one in terms of 0(D, E). We can interpret
this space decomposition as an analog of a classical %1 continuous finite element
decomposition into overlapping subspaces with the minimal overlap.

Next we define the projection like operators )8 : (ℎ → (8 as

0()8D, E) = 0(D, E), ∀E ∈ (8 , 8 = 0, . . . , #. (3)

Note that to compute)8D 8 = 1, . . . , # wehave to solve# independent local problems,
but to get )0D we have to solve a global one, cf. § 3.1. Let ) := )0 +

∑#
8=1 )8 , be

the Additive Schwarz operator. We further replace (2) by the following equivalent
problem: Find D∗

ℎ
∈ (ℎ such that

)D∗ℎ = 6, (4)

where 6 =
∑#
8=0 68 and 68 = )8D

∗
ℎ
. Note that 68 may be computed without knowing the

solution D∗
ℎ
of (2), cf. e.g., [16]. The following theoretical estimated of the condition

number can be derived:

Theorem 1 For all D ∈ (ℎ , the following holds,

2

(
1 +max

Γ:;

1
_
Γ:;
=:;+1

)−1

0(D, D) ≤ 0()D, D) ≤ � 0(D, D),

where�, 2 are positive constants independent of the coefficientU, themesh parameter
ℎ and the subdomain size � and _Γ:;

=:;+1 is defined in (6).

Below, in § 3.2 we give a sketch of the proof.

3.1 Adaptive patch coarse space

We introduce our adaptive patch based coarse space in this section.
First, we introduce a DG analog of the classical multiscale space, see e.g. [7]. Let

(<B ⊂ (ℎ be the space of discrete harmonic functions such that for each patch ΓX
:;
a

function D ∈ (<B satisfies
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0:; (D, E) = 0 ∀E ∈ (E:; , (5)

where 0:; (D, E) =
∑
 ⊂ΓX

:;

∫
 
U∇D · ∇E 3G +∑

4⊂ΓX
:;
∪(mΩ∩mΓX

:;
) Ψℎ

∫
4
[D] [E] 3B, and

(E
:;
⊂ (:; is formed by the functions which are zero at all degrees of freedom which

are at the geometrical ends (crosspoints) of the edge Γ:; . Note that the second sum
in the definition of 0:; (D, E) is over the fine edges that are either interior to the patch
or are on the boundary of Ω.

We introduce the edge generalized eigenvalue problem, which is to find the
eigenvalue and its eigenfunction: (_:;

9
, k:;

9
) ∈ R+ × (E:; such that

0:; (k:;9 , E) = _Γ:;9 1:; (k:;9 , E), ∀E ∈ (E:; , (6)

where 0:; (D, E) is introduced above. The form 1:; (D, E) may be equal to 1 (0)
:;
(D, E) =

0(D, E) or as in [4] it can be equal to 1 (1)
:;
(D, E) = ℎ−2

∫
ΓX
:;

UDE 3G or equals the scaled

discrete !2-version of the 1 (1)
:;

form, namely, 1 (2)
:;
(D, E) = ∑

 ∈ΓX
:;
U | 

∑3
9=1 |D(E 9 ) |2.

Here in the last sum E 9 , for 9 = 1, 2, 3, denote the vertices of the fine triangle  . Thus
we get three different versions of the eigenproblem. Note that the last discrete form
1
(2)
:;

can be represented by a diagonal matrix in a matrix form of the eigenproblem.
Hence we see that this generalized eigenproblem can be rewritten as a standard
eigenproblem, which makes the computations cheaper, cf. also § 4.3 in [9].

We order the eigenvalues in the increasing way as follows 0 < _:;1 ≤ . . . ≤ _:;":;
for ":; = dim((E

:;
). We now can define the local face spectral component of the

coarse space for all Γ:; ⊂ Γ and the whole coarse space +0 as follows

(
486

:;
= Span(k:;9 )=:;9=1, (0 = (<B +

∑
Γ:;⊂Γ

(
486

:;
, (7)

where =:; ≤ ":; is the number of eigenfunctions k:;
9
chosen by us, e.g. in such a

way that the eigenvalue _:;=:; , is below a given threshold.

3.2 The sketch of the proof of Theorem 1

The proof follows the lines of the proof of Theorem 3 in [4] and is based on the
abstract framework of Additive Schwarz Method, cf. e.g. § 2.3 in [16]. Below �

denotes a generic constant independent of the mesh parameters and the problem
coefficients. We have to check three key assumptions. The latter two ones, namely,
the Strengthened Cauchy Inequalities and Local Stability are verified in a standard
way with constants independent of coefficients or mesh parameters. It remains to
verify the Stable Splitting assumption. Let D ∈ (ℎ and we first define D0 ∈ (0 as
D<B +

∑
Γ:;⊂Γ D:; where D<B ∈ (<B takes the values of D at all DOFs at crosspoints.

Next on any patch ΓX
:;
let D:; be the 1:;-orthogonal projection of D − D<B onto (486:; ,

i.e.



Adaptive DDM for DG 299

D:; =
∑
9≤=:;

1:; (k:;9 , D − D<B)
1:; (k:;9 , k:;9 )

k:;9 ∈ (486:; .

Finally, we define

D 9 := (D − D0)|Ω 9 ∈ ( 9 9 = 1, . . . , #,

what gives us the splitting: D = D0 +
∑#
9=1 D 9 .

Then we estimate the discrete harmonic part F = H(D − D0) = HD − D0, which
is zero at crosspoints. Namely, we have the following splitting: F =

∑
Γ:;
F:; ,

where F:; ∈ (E:; is a discrete harmonic function, which is equal to D − D0 on the
respective patch. Note that F:; is 1:;-orthogonal to (486:; . Next we can show that
0(F, F) ≤ �∑

Γ:;
1:; (F:; , F:;) for all types of the bilinear form 1:; .

Using the classical theory of the eigenvalue problems, and some technical tools
related to SIPG discretizations we can show the stable splitting

0(D0, D0) +
#∑
:=1

0(D: , D: ) ≤ �
(
1 +max

Γ:;

1
_
Γ:;
=:;+1

)
0(D, D).

The statement in Theorem 1 follows from the abstract ASM theory.

4 Numerical tests

In the tests, our model problem is defined on the unit square with zero Dirichlet
boundary condition and a constant force function. We solve it using the SIPG dis-
cretization, and the PCG iteration with our additive Schwarz preconditioner. The
RHS form in the eigenvalue problem is the scaled !2 one, i.e., 1 (1)

:;
. We decompose

the domain into 8× 8 non-overlapping square sub-domains. We have �/ℎ = 16. The
penalty parameter W is equal to four, and the iterations are stopped when the relative
residual norm became less than 10−6.
Fig. 1: The coefficient is equal to one on the background and U0 on the channels. A domain with
8G8 subdomains. The channels are crossing each other.
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For the adaptive coarse space the threshold for including an eigenfunction is
_ ≤ 0.18.

DG on distribution Fig. 1
#Enrichments= 0 #Enrichments= 2 #Enrichments= 4 Adaptive

U0 Cond. Cond. Cond. Cond.
100 57.31(53) 15.65(31) 9.64(24) 15.65(31)
102 1.41 × 102 (83) 27.03(44) 12.01(31) 26.77(44)
104 2.12 × 102 (97) 46.71(57) 12.12(32) 27.05(45)
106 2.13 × 102 (102) 46.78(59) 11.39(35) 26.98(48)

Table 1: Numerical results showing condition number estimates and iteration counts (in parenthe-
ses). #Enrichments is per patch (edge).
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