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1 Introduction

In the context of Numerical Weather Prediction (NWP) and more precisely in the
context of regional weather prediction models, the spatial domains considered usually
are non-convex, because of the orography representing mountain ranges. Moreover,
the grids used are highly constrained: mesh cells for solving the prognostic equations
numerically are much longer and larger than high, e.g. 1.1km X 1.1km X 10m in
COSMO-1. A common practice in NWP is to use terrain-following grids defined
such that the distance between the levels grows with altitude (see Figure 1 left). Most
weather prediction models use a coordinate change in order to solve the modified
prediction equations in a computational domain which uses an equidistant grid (see
Figure 1 middle and right). This has the advantage that simple numerical methods
such as the finite difference method can be used. However, this also leads to metric
terms in the equations due to the mapping, which can cause numerical difficulties.
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Fig. 1: Mapping of an irregular terrain-following grid to a regular equidistant grid.
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In a terrain-following coordinate system, the lowest surface of constant vertical
coordinate is conformal to the orography. Any monotonic function can then be used
to define the vertical coordinate, denoted by . The COSMO local model [1] offers
three options for the terrain-following coordinate. The first one is a pressure-based
vertical coordinate, the second one is a height based coordinate, and the third one
is a height based SLEVE (Smooth Level Vertical) coordinate. Both height based
coordinates are similar to the Gal-Chen coordinate [3]. Figure 1 illustrates the height
based hybrid coordinate and its mapping to a regular grid.

Definition 1 Let 2(x) denote the height of the local topography. The height based
hybrid coordinate is defined by

- h(x
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where z7 is the model top.

Numerical weather prediction models are based on a set of seven governing
equations. They comprise the equations of motion, the thermodynamic equation, the
continuity equation, the equation of state and the water vapour equation. These equa-
tions contain diffusion and advection terms which are treated, in the COSMO model,
using a time-splitting method. The diffusion is treated implicitly which implies the
solution of a Poisson equation of the form

Ap = f, 6]

where ¢ can represent wind components, temperature or pressure.

In order to solve a Poisson equation (1) on the original irregular terrain-following
grid Q, the coordinate transformation described above mapping € to a regular
equidistant grid is used (see Figure 1). The new coordinates are denoted by (&, {)
and we need to compute the transformed Laplace operator in the new coordinate
system (A (¢ £)). The derivatives of the new coordinates with respect to the original
ones are expressed using subscripts and are called the metric terms of the coordinate
change.

Proposition 1 Let F be a mapping from Q. ;) to Q(g’g). Let u = u(x, z) be a func-
tion defined on Q and F (u) = (&, ) be a function defined on Q. The transformed
Laplace operator on L when &(x, z) = x is given by
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The normal derivative on 0Q is expressed by
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Proof Using the chain rule, we find that the second order derivatives on £ can be
expressed by derivatives taken in Q by
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Since & = x, we have &, = 1, éxx = &, = &;; = 0 so the second order derivatives
reduce to
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which when summed give equation (2). In order to prove (3), we simply need to
write the gradient using the chain rule which leads to
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The first disadvantage of this method is that the metric terms {y, {xx, {; and {;,
have to be approximated which leads to instabilities when the mesh size of the grid is
very small in the vertical direction in comparison with the horizontal direction, which
is typically the case in numerical weather prediction, as we have seen. Moreover,
when it is used to solve a time-dependent problem, its CFL condition is quite
restrictive. The second disadvantage is that the topography in weather prediction
models is represented by the grid as a polygon in contrast to the smooth drawing
in Fig. 1 (left). This has as an effect that the first and higher order derivatives of
the solution expressed in the new set of coordinates (2) lack continuity in general
and so the convergence of the scheme is hampered, as we will see in Section 3. We
propose a new method to solve the diffusion equation on such domains and grids;
the Discrete Duality Finite Volume (DDFV) method.

2 Discrete Duality Finite Volume Method

The DDFV method was introduced by K. Domelevo and P. Omnes in 2005 (see
[2]). F. Hermeline introduced a finite volume method in 2000 which turned out to
be equivalent but the construction had less inherent properties (see [6]). DDFV has
the advantage that it is adapted to almost arbitrary meshes and geometries.

We now give the notations which we use to define the DDFV method and which
are exemplified in Figure 2. The primal mesh forms a partition of Q and is composed
of I elements 7;. With each element T; we associate a primal node G; located inside T;.
The function Hl.T is the characteristic function of the cell T;. We denote by J the total
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Fig. 2: Notations for the DDFV method.

number of sides of the primal mesh, and by J¥ the number of these sides which are
located on the boundary. We denote the sides of the primal mesh by A ;, and assume
that they are orderedsothat A; cI' & je {J-J T+ 1,J}. We introduce additional
primal nodes to each boundary A, denoted by G; withi € {I+1,....,1 + Jr}. The
nodes of the primal mesh, the dual nodes are denoted by Sy with k € {1,..,K}. To
each S, we associate a dual cell Py obtained by joining the points G; associated
with the elements of the primal mesh of which S is a node. The dual mesh also
forms a partition of Q and its sides are denoted by A;. We assume that Sy € I"if and
onlyif k e {K —J' +1,....K}.

To each A; we associate a diamond-cell obtained by joining the nodes of A;
with the primal nodes associated with the primal cells which share the side A; (see
Figure 2). The unit vector normal to A; is denoted by n; and is oriented such that
(Gir(j) =Gy (j-1;) = 0. Similarly, the unit vector normal to A’ is denoted by n’; and
is oriented so that (Sg,(;) — S, ()1 'Y= 0.Foralli e {l,...,I}, j € V(i) (resp.
ke{l,...,K},je€ &(k)) wedefine s j; (resp. s o) tobel 1fn] points outward of T;
and -1 otherw1se (resp. 1 if 11 points outward of Pk and -1 otherw1se) We thus can
define the outward pointing unit normal vectors n;; = sjn; and n’, = s, n’. We
define V(i) ={j e {l,....J} |A; cT;}and E(k) := {j € {1, .. J} | Sk e A}

Definition 2 Let ¢ be defined on Q. The discrete gradient is defined on each
diamond-cell by

(V) = 37 ~— ((0F, ~ 00147 + (o, — 6Tl Iy

where ¢17.; = ¢(G;,) and ¢,fy = ¢(Sk,) fory € {1,2}.

Definition 3 The discrete divergence V- is defined by its values over the primal and
dual cells
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Let us consider the Poisson equation (1) with homogeneous Dirichlet boundary
conditions. We use the discrete DDFV divergence and gradient operators defined
above to approximate the Laplacian which leads to the scheme

(VI - (Vap))i = f1 Vie{l,....I}

~(VP (Vi) = fE Vke{l,...,k-J"}
¢ =0 Vie{I+1,....1+J'},
¢y =0 Vke{K-J +1,....K},

(6)

where

1 1
fisz'/T-f(x)dx, fkp=m i f(x) dx.

Proposition 2 ([2], Proposition 3.2.) The linear system given by (6) possesses a
unique solution in'V where V is defined by

V= {¢=((¢f),(¢,{’)) eRM xRK | ¢l =0Vie {I+1,....1+J"}

and(pf:owce{K—JF+1,...,K}}.

3 Coupling of DDFV and FV4

One of the main concerns of weather prediction services is computational costs. Due
to the fact that the DDFV method introduces additional nodes, the size of the linear
system which has to be solved is roughly twice as large as the one associated with
the classical Finite Volume (FV4) method. A coupling of FV4 and DDFV allows to
reduce the size of this linear system considerably. Such a coupling could be achieved
using optimized Schwarz techniques, see for example [7, 5, 4], but we propose here
a different approach using interpolation. Let us consider a rectangular domain Q
which has a mountain at its center with slope @, see Figure 3. All cells which are
not directly above the mountain are rectangular, so the standard FV4 scheme can be
applied on those cells. To the cells which are irregular quadrilaterals, we apply the
DDFV method (see Figure 3, left). The points at the interface (“black diamonds™) are
dual points which were needed for the DDFV equations associated with primal points
(“white squares”) and the dual points (“black squares”) at the interface. However,
they are not associated with a dual cell (see Figure 3, right), so we need to define
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Fig. 3: (Left) Hatched area: Finite volume. White area: DDFV. (Right) FV4 point, primal DDFV
points, dual DDFV points and interface points.

a coupling equation. An intuitive way to define the coupling is to set the value of
the interface dual points to be the weighted average of its four primal neighboring
points, which defines our DDFV-FV4 coupled scheme. For testing purposes, let us
consider the problem

Au = =577 sin(27x) sin(7ry) on Q,

with Dirichlet boundary conditions on the left and right of the domain and Neu-
mann boundary conditions at the top and the bottom of the domain. The order of
convergence of both the DDFV method and the DDFV-FV4 coupled method for this
problem is 2 (see Figure 4). As for the error, which we define to be the infinity-
norm of the difference between the exact solution and the numerical solution, it has
a stronger dependence on the mountain angle o for the DDFV method. We then
compare the time in seconds needed to solve the linear system associated with the
coupled scheme and the DDFV scheme alone. We consider different domains which
induce different percentages of the domain to be covered by the DDFV method i.e.
different percentages of cells which are not rectangular (column “DDFV-FV4” in
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Fig. 4: Error of the DDFV method on the left and error of the DDFV-FV4 coupled scheme on the

right.
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DDFV-FV4 n time in sec. error

|COSMO n time in sec. error

14% 128 0.092837  0.0035973 14% 128 0.07799  0.038027
256 0.47006  0.0010113 256 0.42181  0.022181
18% 128 0.10192  0.0036404 18% 128 0.083277 0.037821
256 0.58811  0.0010218 256 0.43485  0.021982
37% 128 0.13081  0.004225 37% 128 0.088778 0.10018
256 0.73254  0.00111 256 0.50752  0.048907
56% 128 0.20006  0.0038666 56% 128 0.10705  0.085701
256 1.0613 0.00096342 256 0.53349  0.051025
79% 128 0.23772  0.0048132 79% 128 0.12153  0.12076
256 1.1817 0.0012051 256 0.60488  0.05706
128 0.19662  0.0044965
79% DDEV 256 0.98724  0.0011279

Table 1: Computational time and error of the DDFV-FV4 coupled scheme.

Table 1). We also compute the time and error obtained when using the scheme based
on the coordinate transformation described in Section 1 (column “COSMO” in Table
1). We see that the coupled scheme leads to excellent accuracy, even when only a
small percentage of DDFV is needed. We note however that even though the coupling
method has less degrees of freedom, it is not always faster than the DDFV method.
This is due to the fact that our linear system associated with the coupled method is
non-symmetric, see Figure 5, whereas the DDFV method gives a symmetric matrix,
which is inverted more efficiently by the Matlab solver we use.
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Fig. 5: Structure of the linear system associated to the DDFV method (left) and DDFV-FV4 method
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4 Conclusion

We presented a DDFV scheme which does not need a mapping to a regular grid on
a rectangular domain for a faithful discretization of diffusion operators on the high
aspect ratio grids typical in numerical weather prediction. Moreover, the scheme
presented converges on domains which lead to discontinuities in the derivatives of
the solution when a mapping to a regular grid is used. Since DDFV uses twice as
many unknowns than a standard FV4, we also introduced a coupled DDFV-FV4
scheme which only uses DDFV where it is needed due to the mountain orography.
We observed second order convergence for both DDFV and DDFV-FV4. When
measuring computing times, the coupled scheme is only faster when less than half
the domain is treated by DDFV, even though it always has less unknowns than the
DDFV method. We identified the reason for this to be the non-symmetry introduced
by our coupling through interpolation between DDFV and FV4. It is currently an
open question if a symmetric coupling of these two schemes is possible.
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