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1 Introduction

We consider the Helmholtz equation in harmonic regime in a domain Ω ⊂ R3 ,
3 = 2 or 3, and a first order absorbing condition on its boundary Γ with unit outward
normal vector n. Let : ∈ R be a constant wave number and 5 ∈ !2 (Ω), we seek
D ∈ �1 (Ω) such that {

−ΔD − :2D = 5 , in Ω,
(mn + 8:) D = 0, on Γ.

(1)

In previous works [2, 3, 5], a domain decomposition method (DDM) using non-local
transmission operator with suitable properties was described. The relaxed Jacobi
algorithm written at the continuous level was proven to converge exponentially.
However, it was only a conjecture, hinted at by numerical experiments in [5, Section
8], that the discretized algorithm using finite elements has a rate of convergence
uniformly bounded with respect to the discretization parameter, hence does not
deterioratewhen themesh is refined. In this workwe prove this conjecture for the case
of Lagrange finite elements. Numerical experiments in [5, Section 8.3] highlighted
that this important property is not shared by DDM based on local operators [4] or
rational fractions of local operators [1].
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2 DDM algorithm: the continuous case

Impedance based transmissionproblem.Wesuppose that the domain is partitioned
into two non-overlapping subdomains Ω = Ω− ∪ Ω+. The transmission interface
between the subdomains is noted Σ, with a unit normal vector n oriented from Ω+
to Ω−, and we suppose1 that Σ does not intersect Γ. We then consider the following
transmission problem{

−ΔD± − :2D± = 5 |Ω± , in Ω±,
(±mn + 8:T) D± = (±mn + 8:T) D∓, on Σ,

(2)

with (mn + 8:) D± = 0 on Γ∩mΩ±. T is a suitable impedance operator supposed to be
injective, positive and self-adjoint so that the coupled problems (2) are well posed
and equivalent to the model problem (1), see [2, Th. 3] and [5, Lem. 1].

Reformulation at the interface. Let +± = �1 (Ω±), + = ++ × +− and +Σ =
�−1/2 (Σ). We define the lifting operator R

R : +2
Σ 3 (G+, G−) ↦→ (R+G+,R−G−) ∈ +. (3)

where D± = R±G± are solutions of the following decoupled boundary value problems

−ΔD± − :2D± = 0, in Ω±, (±mn + 8:T) D± = G±, on Σ, (4)

and (mn + 8:) D± = 0 on Γ ∩ mΩ±. We define the scattering operator S

S : +2
Σ 3 (G+, G−) ↦→ (S+G+, S−G−) ∈ +2

Σ , (5)

with S±G = −G + 28:T(R±G) |Σ for G ∈ +Σ. We finally define the operator A = ΠS
on +2

Σ
, where Π is an exchange operator: Π (G+, G−) = (G−, G+) for a couple of traces

(G+, G−) ∈ +2
Σ
. The following result provides equivalence between the decomposed

problem (2) and a problem at the interface (6), see [2, Th. 5] and [5, Prop. 3].

Theorem 1 If D = (D+, D−) ∈ + is solution of (2) then the trace G = (G+, G−) ∈ +2
Σ

defined as G± := (±mn + 8:T) D∓ |Σ is solution of the interface problem

G = �G + 1, on Σ, (6)

where 1 = 28: (T�− |Σ,T�+ |Σ) ∈ +2
Σ
and � = (�+, �−) ∈ + is such that −Δ�± −

:2�± = 5 |Ω± in Ω±, (±mn + 8:T) �± = 0 on Σ and (mn + 8:) �± = 0 on Γ ∩ mΩ±.
Reciprocally, if G ∈ +2

Σ
is solution of (6), then D = (D+, D−) ∈ + defined as

D = 'G + � is solution of (2).

Continuous DDM algorithm. The solution of (2) is computed iteratively using a
relaxed Jacobi algorithm on the interface problem (6). From an initial trace G0 ∈ +2

Σ

and a relaxation parameter A ∈ (0, 1), iteration = writes,
1 In the presence of such intersections, the proof fails and as a matter of fact the exponential
convergence is not observed numerically.
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G= = (1 − A)G=−1 + AAG=−1 + 1. (7)

Note that the application of � involves solving the decoupled local problems (4)
which can be done in parallel. The previous theorem guarantees that the solution
of (7) satisfies (2) at convergence. In the following we assume in addition that

T : �1/2 (Σ) → �−1/2 (Σ) is a self-adjoint isomorphism. (8)

Only non-local operators, constructed in practice using integral operators with appro-
priate singular kernels, can fit in this framework. Under those additional assumptions
the algorithm (7) converges exponentially, see [2, Th. 7] and [5, Th. 1].

3 DDM algorithm: the discrete setting

We consider two series (+±,ℎ)ℎ of finite dimensional subspaces+±,ℎ ⊂ +± conformal
at the interface i.e.+Σ,ℎ = {D±,ℎ |Σ | D±,ℎ ∈ +±,ℎ} ⊂ +Σ. Let+ℎ = ++,ℎ×+−,ℎ ⊂ + .We
define the sesquilinear form 0

Ω̃
for a domain Ω̃ ∈ {Ω,Ω+,Ω−}: for all D, D′ ∈ �1 (Ω̃),

0
Ω̃
(D, D′) = (∇D,∇D′)

!2 (Ω̃) − :2 (D, D′)
!2 (Ω̃) + 8: (D, D′)!2 (Γ∩mΩ̃) . (9)

By Assumption (8), the transmission operator T induces a continuous and coercive
sesquilinear form C on �1/2 (Σ) × �1/2 (Σ) such that

C (I, I′) = 〈TI, I′〉Σ, ∀I, I′ ∈ �1/2 (Σ). (10)

Reformulation at the interface.We follow the approach of the continuous setting
and define the discrete version Rℎ of the lifting operator R given in (3) by

Rℎ : +2
Σ,ℎ 3

(
G+,ℎ , G−,ℎ

) ↦→ (
R+,ℎG+,ℎ ,R−,ℎG−,ℎ

) ∈ +ℎ . (11)

withR±,ℎ , the discrete versions ofR± given in (4), such that D±,ℎ = R±,ℎG±,ℎ satisfies

0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ) = 〈G±,ℎ , D′±,ℎ〉Σ, ∀D′±,ℎ ∈ +±,ℎ . (12)

Similarly, the discrete version Sℎ of the scattering operator S defined in (5) is

Sℎ : +2
Σ,ℎ 3

(
G+,ℎ , G−,ℎ

) ↦→ (
S+,ℎG+,ℎ , S−,ℎG−,ℎ

) ∈ +2
Σ,ℎ , (13)

with the discrete versions S±,ℎ of S± are such that: for all F′±,ℎ ∈ +Σ,ℎ ,

〈S±,ℎG±,ℎ , F′±,ℎ〉Σ = −〈G±,ℎ , F′±,ℎ〉Σ + 28: C
(
R±,ℎG±,ℎ , F′±,ℎ

)
. (14)

We finally define the discrete operator Aℎ = ΠSℎ on+2
Σ,ℎ

. It can then be proven, in a
similar fashion as for the continuous case, that the discretization of the problem (2)
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is equivalent to a discrete counterpart of the interface problem (6): find Gℎ ∈ +2
Σ,ℎ

such that Gℎ = AℎGℎ + 1ℎ , where 1ℎ is the discrete counterpart of 1.
Discrete DDM algorithm. In the following we analyse the convergence of the

discretization of the DDM algorithm (7): from an initial trace G0
ℎ
∈ +2

Σ,ℎ
and for a

relaxation parameter A ∈ (0, 1), iteration = writes

G=ℎ = (1 − A)G=−1
ℎ + AAℎG=−1

ℎ + 1ℎ . (15)

4 An abstract uniform exponential convergence result

We now state an abstract result specifying the conditions under which uniform
exponential convergence is achieved.
Theorem 2 If Aℎ is contractant in +2

Σ,ℎ
and I − Aℎ is an isomorphism in +2

Σ,ℎ
with

uniformly bounded inverse, then the relaxed Jacobi algorithm (15) with A ∈ (0, 1)
converges exponentially uniformly (� and g are independent of ℎ below):

∃ g ∈ (0, 1), � > 0, ℎ0 > 0, ∀ℎ < ℎ0, = ∈ N, ‖D=ℎ − Dℎ ‖+ ≤ �g=. (16)

Proof At each iteration =, the surface error Y=
ℎ
= G=

ℎ
− Gℎ satisfies

Y=+1ℎ = (1 − A)Y=ℎ + AAℎY=ℎ . (17)

By hypothesis we have (for some X ∈ (0, 2] independent of ℎ)

‖AℎY=ℎ ‖+ 2
Σ
≤ ‖Y=ℎ ‖+ 2

Σ
, and ‖(I − Aℎ)Y=ℎ ‖+ 2

Σ
≥ X‖Y=ℎ ‖+ 2

Σ
. (18)

We have the identity for A ∈ (0, 1) and 0, 1 ∈ +2
Σ

‖(1 − A)0 + A1‖2
+ 2
Σ

= (1 − A)‖0‖2
+ 2
Σ

+ A ‖1‖2
+ 2
Σ

− A (1 − A)‖0 − 1‖2
+ 2
Σ

. (19)

Using this identity (take 0 = Y=
ℎ
and 1 = AℎY=ℎ) together with (17) and (18) we get

‖Y=+1ℎ ‖+ 2
Σ
≤ g ‖Y=ℎ ‖+ 2

Σ
, with g =

√
1 − A (1 − A)X2, (20)

and where g is well defined in R since X ∈ (0, 2]. Since we have D=
ℎ
− Dℎ = RℎY=ℎ ,

the well-posedness of the local problems yields the existence of a constant 2 > 0
independent of ℎ such that, for ℎ sufficiently small, ‖D=

ℎ
− Dℎ ‖+ ≤ 2‖Y=ℎ ‖+ 2

Σ
. �

Since T is assumed to be a self-adjoint isomorphism from �1/2 (Σ) to �−1/2 (Σ),
the contractive nature of Aℎ and the fact that I−Aℎ is an isomorphism can be proven,
see [2, Th. 3 and Lem. 6] and [5, Lem. 2 and 3]. However, the uniform boundedness
of the inverse of I − Aℎ was recognized as an open question in [5, Rem. 3]. The
previous proof highlights that this property is essential to prevent the convergence
rate from potentially degenerating (tending to 1 as ℎ goes to 0).
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5 An abstract sufficient condition for exponential convergence

The next theorem states that a sufficient condition for the operator I − Aℎ to be
an isomorphism with uniformly continuous inverse relies on the existence of two
liftings with suitable properties.

Theorem 3 Assume that there exists two liftings !±,ℎ from +Σ,ℎ to +±,ℎ uniformly
continuous and preserving Dirichlet boundary conditions: namely there exists 2 > 0,
independent of ℎ, such that for all G±,ℎ ∈ +Σ,ℎ ,(

!±,ℎG±,ℎ
) |Σ = G±,ℎ , and ‖!±,ℎG±,ℎ ‖+± ≤ 2‖G±,ℎ ‖+Σ . (21)

Then I − Aℎ is an isomorphism in +2
Σ,ℎ

with uniformly bounded inverse (� is
independent of ℎ below):

∃� > 0, ℎ0 > 0, ∀ℎ < ℎ0, Gℎ ∈ +2
Σ,ℎ , ‖Gℎ ‖+ 2

Σ
≤ � ‖(I − Aℎ)Gℎ ‖+ 2

Σ
, (22)

To prove this result, we closely follow the lines of the proof in the continuous case,
which we recall below. Let H = (H+, H−) ∈ +2

Σ
we aim at finding G = (G+, G−) ∈ +2

Σ

such that (I−A)G = H. From the definitions of Section 2, this is equivalent to finding
D± ∈ +± and G± ∈ +Σ such that (omitting the boundary condition on Γ ∩ mΩ± here
and in the following for brevity){

−ΔD± − :2D± = 0, in Ω±, (±mn + 8: )) D± = G±, on Σ,
G± − (−G∓ + 28: )D∓) = H±, on Σ.

(23)

Step 1: Definition of two jumps.A key point is to recognize that the property (8)
of T allows to define the Dirichlet and Neumann jumps D� and D# such that

D� = (8: ))−1 H+ − H−
2

∈ �1/2 (Σ), D# =
H− + H+

2
∈ �−1/2 (Σ). (24)

Step 2: Transmission problem. It is then straightforward to check that the
system of equations (23) is equivalent to compute directly G± = (±mn + 8: )) D±
where (D+, D−) ∈ + is solution of the transmission problem

−ΔD± − :2D± = 0, in Ω±, D+ − D− = D� , mnD+ − mnD− = D# , on Σ. (25)

Step 3: Construction of the solution. The solution D± of (25) is sought in the
form D± = D2 |Ω± + D3± with (D3+ , D3−) ∈ + (discontinuous across Σ) and D2 ∈ �1 (Ω)
(continuous across Σ), constructed as follows. We first construct D3± as the result
of two liftings !± from +Σ to +± such that D3± = ± 1

2 L±D� . The liftings !± can be
obtained for instance by solving amodified (coercive)Helmholtz equation in the local
domains. Having found such a D3± which satisfies by construction D3+ − D3− = D� , it is
clear that D± = D2 |Ω± + D3± solves (25) if D2 ∈ �1 (Ω) satisfies (writing D2± = D2 |Ω± )
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−ΔD2± − :2D2± = ΔD3± + :2D3±, in Ω±,
mnD

2+ − mnD
2− = D# − mnD

3+ + mnD
3−, on Σ.

(26)

The problem (26) is well-posed in �1 (Ω) by application of Fredholm’s alternative.
The solution G = (G+, G−) ∈ +2

Σ
of (23) can finally be computed directly as G± =

(±mn + 8: )) D±.
The proof at the discrete level mimics this procedure but we need to systematically

verify at each step that uniform bounds hold. In the following, � denotes a constant
possibly taking different values from one inequality to another.

Proof (of Theorem 3) Let Hℎ ∈ +2
Σ,ℎ

, using the definitions of Section 3 the problem
of finding Gℎ ∈ +2

Σ,ℎ
such that (I − Aℎ)Gℎ = Hℎ writes: find D±,ℎ ∈ +±,ℎ and

G±,ℎ ∈ +Σ,ℎ such that, for all D′±,ℎ ∈ +±,ℎ and I′±,ℎ ∈ +Σ,ℎ ,{
0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ) = 〈G±,ℎ , D′±,ℎ〉Σ,
〈G±,ℎ , I′±,ℎ〉Σ −

(
−〈G∓,ℎ , I′±,ℎ〉Σ + 28: C (D∓,ℎ , I′±,ℎ)

)
= 〈H±,ℎ , I′±,ℎ〉Σ.

(27)

Step 1: Definition of two jumps. Let E�,ℎ and D# ,ℎ be such that

E�,ℎ := (8:)−1 H+,ℎ − H−,ℎ
2

, D# ,ℎ :=
H−,ℎ + H+,ℎ

2
. (28)

Both quantities belong to +Σ,ℎ and we have, with � independent of ℎ,

‖E�,ℎ ‖+Σ ≤ � ‖Hℎ ‖+ 2
Σ
, ‖D# ,ℎ ‖+Σ ≤ � ‖Hℎ ‖+ 2

Σ
. (29)

Note that E�,ℎ is not the discrete counterpart of D� . A good candidate would be
D�,ℎ = )

−1
ℎ
E�,ℎ where )ℎ is a discrete version of ) . This leads us to the definition

D�,ℎ = )
−1
ℎ E�,ℎ ⇔ C (D�,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ, ∀I′ℎ ∈ +Σ,ℎ . (30)

Since C is supposed to be strictly coercive, such a D�,ℎ exists and it holds, with �
independent of ℎ,

‖D�,ℎ ‖� 1/2 (Σ) ≤ � ‖E�,ℎ ‖+Σ . (31)

Step 2: Transmission problem. The solutions G±,ℎ ∈ +Σ,ℎ of (27) must satisfy

〈G±,ℎ , D′±,ℎ〉Σ = 0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ), ∀D′±,ℎ ∈ +±,ℎ , (32)

where D±,ℎ ∈ +±,ℎ must satisfy a discrete version of the transmission problem (25){
C (D+,ℎ − D−,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ, ∀I′

ℎ
∈ +Σ,ℎ ,

0Ω+ (D+,ℎ , D′+,ℎ) + 0Ω− (D−,ℎ , D′−,ℎ) = 〈D# ,ℎ , D′ℎ〉Σ, ∀(D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω).
(33)
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where the equation on the first line is obtained by taking the difference of the two
equations in the second line of (27) and the equation on the second line is obtained
by summing all equations in (27) with a test function in +ℎ ∩ �1 (Ω).

Reciprocally, let D±,ℎ ∈ +±,ℎ and G±,ℎ ∈ +Σ,ℎ be solutions of (33) and (32). For
any I′

ℎ
∈ +Σ,ℎ , there exists by assumption D′

ℎ
= (D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω) such

that D′±,ℎ |Σ = I′ℎ . By taking linear combinations of equations of (33) with these test
functions I′

ℎ
and D′

ℎ
one obtains the two equations on the second line of (27).

Step 3: Construction of the solution. The solution D±,ℎ of (33) is sought in the
form D±,ℎ = D2ℎ |Ω± + D3±,ℎ with (D3+,ℎ , D3−,ℎ) ∈ +ℎ and D2ℎ ∈ +ℎ ∩ �1 (Ω) constructed
as follows. We first construct D3±,ℎ = ± 1

2 L±,ℎD�,ℎ , by hypothesis on the liftings we
have

‖D3±,ℎ ‖+± ≤ � ‖D�,ℎ ‖� 1/2 (Σ) , (34)

with � independent of ℎ. By construction C (D3+,ℎ − D3−,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ for all
I′
ℎ
∈ +Σ,ℎ . Hence, using the last equation in (33), D±,ℎ = D2ℎ |Ω± +D3±,ℎ will be solution

of (33) if D2
ℎ
∈ +ℎ ∩ �1 (Ω) is such that, for all (D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω),

0Ω (D2ℎ , D′ℎ) = 〈D# ,ℎ , D′ℎ〉Σ − 0Ω− (D3−,ℎ , D′−,ℎ) − 0Ω+ (D3+,ℎ , D′+,ℎ). (35)

Since 0Ω is �1 (Ω)-coercive, it is well known from the theory of Galerkin approxi-
mation of Fredholm type problem that for ℎ sufficiently small, such a D2

ℎ
exists and

it holds, with � independent of ℎ,

‖D2ℎ ‖+ ≤ �
(
‖D# ,ℎ ‖+Σ + ‖D3−,ℎ ‖+− + ‖D3+,ℎ ‖++

)
. (36)

From D±,ℎ = D3±,ℎ + D2ℎ |Ω± in +±,ℎ we have, with � independent of ℎ,

‖D±,ℎ ‖+± ≤ �
(
‖D3±,ℎ ‖+± + ‖D2ℎ |Ω± ‖+±

)
. (37)

The solution G±,ℎ ∈ +Σ,ℎ of (32) hence (27) are computed using (33) hence satisfy,
with � independent of ℎ,

‖G±,ℎ ‖+Σ ≤ � ‖D±,ℎ ‖+± . (38)

Since all the quantities computed at each step are bounded uniformly by the data
used for their construction, see (29), (31) , (34), (36) and (37), the uniform bound of
Theorem 3 with respect to ℎ is established. �

6 Application to finite element approximations

In this sectionwe assume thatΩ± are bounded open polyhedral Lipchitz domains dis-
cretized using conforming simplicial mesh elements and consider classical Lagrange
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finite element spaces. The previous proof relies on the existence of two uniformly
stable liftings !±,ℎ from +Σ,ℎ to +±,ℎ which must preserve the Dirichlet trace on Σ.
A theoretical construction of such liftings !±,ℎ can be obtained as !±,ℎ = %ℎ ◦ !±
where %ℎ : +± → +±,ℎ is an interpolator and !± : +Σ → +± are two continuous
liftings. The construction of !±,ℎ is hence reduced to the construction of %ℎ . The
classical Lagrange interpolator fails to provide a practical answer because it lacks
the continuity property for non-smooth functions (point-wise function evaluations).
The Clément interpolator is continuous but fails to preserve the prescribed trace on
the boundary. An interpolator featuring the suitable properties have been proposed
by Scott and Zhang [6] for general conforming Lagrange finite elements of any order
in R3 , 3 = 2, 3. For the sake of illustration, we briefly recall below the construction
of this operator for P1 Lagrange finite elements on triangles.

For each vertex "8 of the mesh, choose arbitrarily f8 an edge connected to
"8 . The application E ∈ P1 (f8) ↦→ E("8) ∈ R is a continuous linear form on
P1 (f8) ⊂ !2 (f8). From Riesz theorem, there exists a unique k8 ∈ P1 (f8) such that,
for all E ∈ P1 (f8), we have E("8) = (k8 , E)!2 (f8) . Let F8 be the P1 Lagrange basis
function associated to the vertex "8 . There is a natural definition of an interpolation
operator %ℎ on �1 (Ω) such that: for all E ∈ �1 (Ω),

%ℎE :=
∑
8

(k8 , E)!2 (f8)F8 . (39)

From the trace theorem, %ℎ is a continuous linear mapping from �1 (Ω) to+ℎ and is
invariant on+ℎ . To preserve the trace on the boundary, we require in addition that for
all vertices"8 on the boundary ofΩ, the edgef8 is chosen to belong to the boundary.
This operator %ℎ is the Scott-Zhang operator and satisfies Hypothesis (21), see [6,
Th. 2.1 and Cor. 4.1].
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