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1 Introduction

Linear Elasticity models how elastic solids deform in the presence of surface and
volume forces. The model of Linear Elasticity is valid for small deformations. For
large deformations, the nonlinear theory of elasticity should be used instead. For
an introduction to Linear Elasticity, we refer the reader to [3]. Linear Elasticity is
commonly discretized using Finite Element Methods, see [1, Chap. 11].

Domain DecompositionMethods (DDMs) have previously been applied to Linear
Elasticity [2, 6, 5, 7, 10, 11, 14, 15, 13, 19, 18, 16]. However, we found no reference
on applying OSMs to the equations of Linear Elasticity.

Optimized Schwarz methods(OSMs) are a family of Domain Decompositions
Methods. In iterative OSMs, at each iteration, the interior equation is solved inside
each subdomain with artificial conditions on each subdomain boundary. Then, data is
exchanged between neighboring subdomains to update those boundary conditions.
The process is reiterated until convergence. See [8] for a full analysis of OSMs.
The most common transmission conditions are Robin transmission conditions and
Ventcell transmission conditions. In [9], the authors showed that we should lump (and
even overlump)Robin transmission conditionswhen applyingOSMs to a FEM(Finite
Element Method) discretization of Poisson Equations.

In this paper, our main goal is to apply one-level Optimized Schwarz Methods
(OSM) to the Finite Element Discretization of the Linear Elasticity problems. We
first present some basic definitions on Linear Elasticity in §2. To this end, we derive
transmission conditions applicable to Linear Elasticity, obtain an OSM for Linear
Elasticity, and establish convergence in §3 using energy estimates. Finally, in §4, we
present numerical results, and observe that numerically, overlumping transmission
conditions at the discrete level yields a better convergence rate.
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2 Basic Linear Elasticity Definitions

LetΩ be a domain ofR3. Let u : Ω→ R3 be a vector field called small displacements.
The strain tensor Y is defined as Y8 9 (u) = 1

2

(
mD8
mG 9
+ mD 9
mG8

)
, and the stress tensor f is

defined as f8 9 (u) =
∑
:ℓ C8 9:ℓY:ℓ (u). The tensor C8 9:ℓ is called the stiffness tensor,

depends on the material, and satisfy C8 9:ℓ = C:ℓ8 9 and C8 9:ℓ = C 98:ℓ . In addition,
the stiffness tensor is positive definite, i.e., there exists U > 0 such that∑

8, 9 ,:,ℓ

C8 9:ℓ (x)Y8 9Y:ℓ ≥ U
∑
8 9

|Y8 9 |2.

In this paper, we only consider homogenous isotropic materials. For isotropic mate-
rial,

C8 9:ℓ =
�

1 + a X
:
8 X
ℓ
9 +

�a

(1 + a) (1 − 2a) X
9

8
Xℓ: ,

where � is the Young modulus, and a is the Poisson coefficient.
Let 5E : Ω → R3 be the vector field of volume forces applied to the solid body.

Let Γ3 ⊂ mΩ. Let 5B : Γ3 → R3 be the vector field of surface forces applied
to Γ 5 ⊂ mΩ. And let d be the known displacements on Γ3 = mΩ \ Γ 5 . In the
variational formulation of Linear Elasticity, a weak solution is defined as a u in +
such that for all v in +ℓ∫

Ω

f(u) : Y(v)dx =
∫
Ω

5Evdx +
∫
Γ 5

5Bvd((x. (1)

where

+ = {u ∈ �1 (Ω;R3) : u = d on Γ3}, +ℓ = {v ∈ �1 (Ω) : v = 0 on Γ3}.

3 Optimized Schwarz Methods for Linear Elasticity

3.1 At the continuous level

In iterative OSMs, at each iteration, the interior equation is solved inside each sub-
domain with artificial transmission conditions at the interface between subdomains.
Then, in order to update these conditions, data is exchanged between neighboring
subdomains.

In order to apply OSMs to Linear Elasticity, adequate transmission conditions
are needed. For Poisson equations, the simplest transmission conditions are Robin
transmission conditions. Robin conditions are a linear combination of Dirichlet
and Neumann boundary conditions. The Neumann conditions originates from the
following integral equality:
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Ω

∇q · ∇kdx −
∫
Ω

(−Δq)kdx =
∫
mΩ

mq

mn
kd((x).

for all q : Ω→ R, and k : Ω→ R regular enough and where n is the outer-pointing
normal toΩ. Likewise, from the variational formulations of Linear Elasticity (1), we
get ∫

Ω

f(u) : Y(v)dx −
∫
Ω

(−div(f(u)))vdx =
∫
mΩ

(f(u)n) · vd((x).

Hence, the equivalent to the Neumann boundary condition for Linear Elasticity is
f(u)n.

To define OSMs on the equations of linear elasticity, we consider a domain Ω
divided in # subdomains Ω8 Γ8 9 B mΩ8 ∩ mΩ 9 . Let n8 9 be the normal to Γ8 9
pointing from Ω8 to Ω 9 . Let S8 9 be operators on some functional space defined over
Γ8 9 B mΩ8 ∩ mΩ 9 . Transmission conditions for Linear Elasticity are:

f(u=+18 )n8 9 + (8 9u=+18 = f(u=9 )n8 9 + (8 9u=9
In particular, Robin transmission conditions for Linear Elasticity are obtained when
(8 9 (u) = ?u with ? ∈ R+ being the Robin parameter. In this paper, we always
suppose (8 9 = ( 98 . The Optimized Schwarz Algorithm for the equations of Linear
Elasticity at the continuous level is given in Algorithm 1.

Algorithm 1: (Optimized Schwarz for Linear Elasticity)
Initialize 60

8 9
: Γ8 9 → R3, to some initial guess in !2 (Γ8 9 ).

for = ≥ 0 and until convergence do
In each subdomain Ω8 , compute the iterates u=

8
in parallel as the solutions in

Ω8 to the variational formulation of:
div(f(u=8 )) + f E = 0 in Ω8 ,

f(u=8 )n8 9 + (8 9u=8 = 6=8 9 on Γ8 9 ,
u=8 = d on mΩ8 ∩ Γ3 ,

f(u=8 )n = f B on mΩ8 ∩ Γ 5 .

For all neighboring subdomains Ω8 and Ω 9 , set 6=+18 9
B −6=

98
+ ((8 9 + ( 98)D=+19

.
end for

Using Energy Estimates introduced in [17, 4] for the Poisson equation, we can
prove the convergence of OSMs applied to Linear Elasticity at the continuous level.

Theorem 1 If (ℎ
8 9
= (ℎ

98
, if each (8 9 is symmetric positive definite, and if there is

one subdomain where Γ3 ∩ mΩ8 is of nonzero surface measure, then the Optimized
Schwarz Method (1) at the continuous level is convergent.

Proof Due to the linearity of the equations, we canwithout loss of generality suppose
that the volume forces f B , surface forces f E and known displacements d are null.
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For each subdomain Ω8 , we multiply the interior equation satisfied by u=
8
by u=

8
then

integrate over Ω8 . After applying Green’s formulas, we get:∫
Ω8

f(u=8 ) : Y(u=8 )dx =
∑
9

∫
Γ8 9

(f(u=8 )n8 9 ) · u=8 d((x). (2)

By [12, Theorem 3.35], (8 9 has a symmetric definite positive square root which we
denote by "8 9 B (

1/2
8 9

. And we have:∫
Γ8 9

(f(u=8 )n8 9 ) · u=8 d((x) =
∫
Γ8 9

("−1
8 9 f(u=8 )n8 9 ) · "8 9u=8 d((x)

=
1
4

( ∫
Γ8 9

|"−1
8 9 (f(u=8 )n8 9 + (8 9u=8 ) |2d((x) −

∫
Γ8 9

|"−1
8 9 (f(u=8 )n8 9 − (8 9u=8 ) |2d((x)

)
,

=
1
4

(∫
Γ8 9

|"−16=8 9 |2d((x) −
∫
Γ8 9

|"−16=+18 9 |2d((x)
)

Combining this equality with (2), and summing over the subdomain index 8, and over
the iteration index =, we get

+∞∑
==0

#∑
8=1

∫
Ω8

f(u=8 ) : Y(u=8 )dx ≤
1
4

∑
8 9

∫
Γ8 9

|"−160
8 9 |2d((x) < +∞.

Since the stiffness tensor C8 9:ℓ is positive definite, this implies Y(u=+1
8
) converges to

0 as = goes to infinity. This proves that inside each subdomain, the iterates converges
to an equiprojective vector field. This implies the limit is zero on the subdomain
where Γ3 ∩ mΩ8 is of nonzero measure. Since a domain is always connected by
definition, and using the transmission condition, one gets the limit is also zero on
the other subdomains. �

3.2 FEM Discretization of OSMs for Linear Elasticity

In this section, we describe how to discretize OSMs for Linear Elasticity with Finite
Element Methods. Let’s consider a tetrahedral mesh T ℎ of Ω compatible with the
domain decomposition of Ω in # subdomains (Ω8)1≤8≤# . Let T8 be the restriction
of mesh T to subdomain Ω8 . We use P1 elements for each component of the small
displacements. So at most three degrees (one per component) of freedom per node.

Let " be the number of degree of freedoms. Let the 5: be the elementary basis
functions of the finite element space. For any : in È1, "É, 5: is null on every node
of the mesh except one. And on this node, 5: belongs to the canonical basis of
R3. Let I8 be the subset of È1, "É of indices corresponding to degrees of freedoms
located on a node of T8 . The I8 are not disjoint. For all :, ℓ in I8 , we set:
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(�ℎ8 ):,ℓ B
∫
Ω8

f(5: ) : Y(5ℓ), ( f ℎ8 ): =
∫
Ω8

5 · 5: .

There are multiple ways to discretize the transmission condition. For a consistent
discretization, we set:

((ℎ,cons
8, 9

):,ℓ B
∫
Γ8 9

(f(5: )n) · 5ℓ ,

for all :, ℓ inI8∩I9 . Alternatively,we can use a lumpdiscretization, and define (ℎ,lump
8, 9

as the diagonal matrix obtained by lumping (ℎ,cons
8, 9

. We also set the overlumped
matrix (ℎ,l

8 9
≔ (1 − l)(ℎ,cons

8
+ l(ℎ,lump

8 9
. For Poisson equation, overlumping has

been shown to be beneficial in [9].
The main issue is deciding how transmission conditions should be updated, espe-

cially near cross-points (or cross-edges). This is especially true when cross-points (or
cross-edges in 3d) are present. When using a FEM discretization of Linear Elasticity,
the discrete value of f(u8)n is only known as a variational quantity, as an integral
over the boundary of mΩ8 . Near cross-point, this variational quantity represents an
integral over multiple surfaces each shared by mΩ8 with another subdomain. Ide-
ally, this quantity must be split before being sent to the neighboring subdomains.
Unfortunately, near cross-points, there is no canonical way to do so. See [9], for
an explanation on how to discretize OSMs near cross-points for Poisson Equation,
including the “Auxiliary Variable Method”. When there are cross-points, at the dis-
crete level, the 6=+1

8 9
cannot be derived from the discrete D=

8
. However, using (3b),

they can be derived from both the 6=
8 9
and the D=

8
. Hence, in the Auxiliary Variable

Method, the unknowns are not the discrete D=
8
, but the discrete 6=+1

8 9
.

The OSM iteration can be written at the discrete level as:

�ℎ8 u
=
8 = f ℎ8 +

∑
9

(ℎ8 96
=
8 9 , (3a)

6=+18 9 B −6=98 + ((ℎ8 9 + (ℎ98)D=9 . (3b)

Theorem 2 If (8 9 = ( 98 , if each (8 9 is symmetric positive definite, and if there is
one subdomain where Γ3 ∩ mΩ8 is of nonzero surface measure, then the Auxiliary
Variable Method OSM, Eq. (3), applied to a FEM-discretization of Linear Elasticity
is convergent. I.E., if (D8)1≤8≤# represents the discrete mono-domain solution, D8−D=8
converges to 0.

Proof There exists a finite sequence of (68 9 )8 9 that is a fixed point of the (3b) iterate.
Hence, we can suppose f ℎ null. Using D=

8
as the test function, we get∫

Ω8

f(u=8 ) : Y(u=8 )dx =
∑
9

∫
Γ8 9

(6=8 9 − (8 9D=8 9 ) · D=8 9dx
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Then, we can reuse the end of the proof of Theorem1 almost verbatim. �

4 Numerical Results

We consider a cylindrical domain with a diameter of 1 and a heigh of 3.2. We
subdivide this domain in two identical cylindrical subdomains. The domain ismeshed
using 4144 tetrahedrons.We set theYoungModulus� = 1 and the Poisson coefficient
to either a = 0.1 or a = 0.49. We tested various values of the Robin parameter
? and of the lump parameter l. We found the best convergence for ? = 0.4.
As for Poisson equations, we found that overlumping the transmission condition
substantially improves convergence, see convergence curves in Figures 1 and 2.
Convergence is slower when the Poisson coefficient is near 1/2.

We also did a similar test by subdividing the same cylindrical domain into ten
identical cylindrical subdomains. We set the Young Modulus � = 1 and the Poisson
coefficient a = 0.1. See convergence curves in Figure 3. As expected in the absence
of coarse spaces, the convergence of the Optimized Schwarz Method is considerably
slower with ten subdomains.
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Fig. 1: Numerical Results for two subdomains with a = 0.1

5 Conclusion

In this paper, we showed how to to derive the equivalent of Robin boundary trans-
mission for the equations of linear elasticity. Using overlumping, we improved these
boundary transmission condition without the need to discretize higher order trans-
mission conditions. We proved the theoretical convergence of Non Overlapping
Optimized Schwarz Methods for linear elasticity.
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Fig. 2: Numerical Results for two cylindrical subdomains with � = 1.0 and a = 0.49
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Fig. 3: Numerical Results for ten cylindrical subdomains with � = 1.0 and a = 0.1

As future works, we currently see three ways to expand upon this work. First,
we will further study how to discretize the OSMs method for linear elasticity when
cross-points are present. Then, we will generalize the Robin boundary condition for
linear elasticity by replacing the scalar Robin parameter ? with a 3 by 3 matrix.
Finally, we are planning to add a coarse space to OSMs for linear elasticity.
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