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1 Introduction

Now it is necessary to advance our capabilities to direct simulation of many emerg-
ing problems of coastal ocean flows. Two examples of such flow problems are the
2010 Gulf of Mexico oil spill and the 2011 Japan tsunami. The two examples come
from different backgrounds, however, they present a same challenge to our modeling
capacity; the both examples involve distinct types of physical phenomena at vastly
different scales, and they are multiscale and multiphysics flows in nature. In particu-
lar, at the bottom of ocean, the spill appeared as high-speed, three dimensional (3D)
jets at scales of O(10) m, whereas on the ocean surface, it became two dimensional
(2D) patches of oil film at horizontal sizes of O(100) km [1]. The tsunami started as
surface waves with tiny amplitude in a deep ocean, then evolved into walls of water
as high as 39 m near seashore, and finally impacted coastal structures such as bridges
at scales of O(10) m [5]. These phenomena take place at different scales, and they
are better and more efficiently simulated using different governing equations and nu-
merical methods. Currently there is lack of appropriate computational methods and
corresponding computer software packages that can directly and integrally simulate
those multiple physics phenomena.

A natural andmost feasible approach to simulation of multiscale andmultiphysics
coastal ocean flows is coupling of the Navier-Stokes (NS) equations and hydrostatic
versions of the Navier-Stokes (HNS) equations. In the past few decades, various
computational fluid dynamics (CFD) models (i.e., computer software packages)
have been built on the NS equations for fully 3D fluid dynamics at complicated,
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small scales (O(1) cm – O(10) km), such as jet flows similar to those of above oil
spill [7]. At the same time, a number of CFD models have also been designed on
the basis of HNS equations for geophysical fluid dynamics at large scales (O(10)-
O(10, 000) km), such as the ocean currents carrying above oil patches [3]. Since
the NS equations and the HNS equations are better bases for simulation of ocean
flows at small and large scales, respectively, and coupling of them will enable us to
conduct simulation of phenomena at larger or even full ranges of scales.

2 Governing Equations

The NS equations describe motion of flows, and they consist of the continuity
equation and the momentum equation:

5 · u = 0
uC + 5 · uu = 5 · (a 5 u) − 5?/d − 6k (1)

Here, u is the velocity vector, with D and E as the components in G and H direction,
respectively, on the horizontal plane, and F as the component in I direction, or, the
vertical direction, k. a is the viscosity, d the density, ? the pressure, and 6 the gravity.

HNS equations are widely used for coastal ocean flows, and they are simplified
from above NS equations; with the hydrostatic assumption, only the gravity and
pressure terms are kept and all others are ignored in the vertical component of the
momentum equation. As a result, the governing equations of the HNS equations
consist of the continuity equation and the simplified momentum equation, which
read as

5 · u = 0
vC + 5 · uv = 5 · (a 5 v) − 5� ?/d
? = d6([ − I)

(2)

where v = (D, E), [ is the elevation of water surface, and 5� is the gradient in the
horizontal plane.

In view of the third equation for pressure in (2), its momentum equation in the
horizontal plane can be rewritten as

vC + 5 · uv = 5 · (a 5 u) − 6 5� [ (3)

Additionally, by pressure splitting ? = ?3 + d6([ − I), where ?3 is the dynamic
pressure, the momentum equation in (1) becomes

uC + 5 · uu = 5 · (a 5 u) − 5?3/d − 6 5� [ (4)
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3 Computational Methods

3.1 Transmision Condition

Fig. 1: Division of a flow region into a NS
region abd a HNS region.

Let a flow field l be divided into subdomains
of NS and HNS by their interface W, as shown
in Fig. 1. Consider the weak solution of the
continuity equation in (1) and (2) that satisfies∫

l

u · 5q3l = 0 (5)

for any q ∈ �∞0 . Let l be an arbitrarily
selected a region across the interface, and
l = l1 ∪ l2, with l1 and l2 falling in the
regions of NS and HNS, respectively (Fig. 1).
In view that

∫
l
u · 5q3l =

∫
W
q(u= |W− − u= |W+ )3l
−

∫
l1∪l2

q 5 ·u3l(6)

it is readily seen that, under the divergence-free condition (i.e., the first equation in
(1) or (2)), continuity of normal velocity across the interface

u= |W− = u= |W+ (7)

is a sufficient and necessary condition for u to be a weak solution. Here = means the
normal direction of W pointing from l1 to l2, u= = u · n, and W− and W+ indicate
the l1- and l2-side of interface W, respectively. Therefore, condition (7) can be a
transmission condition.

Similar analysis may bemade for the momentum equations in the horizontal plane
in (1) and (2), and it leads to the following transmission condition:

(u=v + ?=′/d − amv/m=)W− = (u=v + ?=′/d − amv/m=)W+ (8)

here =′ refers to the normal direction, pointing from l1 to l2, of the interface’s
projection onto the horizontal plane. It is noted that since ? is a scalar, ?=′ may be
replaced by ? in (8). Also, a condition similar to (8) has been proposed in [2]. In
correspondence to Eqs. (3) and (4) and also in view that surface elevation can be
determined by HNS equations (see discussion in Sect. 4), its values on W− and W+
cancel each other as long as the elevation is continuous across the interface. As a
result, interface condition (8) becomes
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u=v + ?3=′/d − amv/m=

)
W− = (u=v − amv/m=)W+ (9)

where, for a similar reason, ?3=′ may be replaced by ?3 , and its value is zero in the
hydrostatic region.

It is noted that, instead of those described as above, different interface conditions
may be used:

u|W− = u|W+ , m?3/m=|W− = 0. (10)

Here, the continuity of whole velocity is required across the interface. Interface
condition (10) is commonly used to solve NS equations, and it has been used in
coupling of NS and HNS equations, see Sect. 4.

3.2 Schwarz Iteration

Let discretization of NS equations and HNS equations be written as

F(f) = 0, H(h) = 0, (11)

in which f = (u, ?3), and h = (u, [), with the former and the latter being the solution
for NS and HNS, respectively. Since the discretization is nonlinear, an iteration
within each of the two equations in (11), named as the internal iteration, is needed
for their solutions. Also, because the two equations in (11) are coupled with each
other, another iteration between them, referred to as the external iteration, is also
necessary.

From time level = to = + 1, a Schwartz waveform relaxation approach is used to
compute the discretization and exchange solution at the interfaces:

f
0, 1

= f=, h
0, 2

= h=
�> 1 < = 1, "

F(f<,:1 ) = 0,
:1 = 1, 2, . . . ,  1, x ∈ l1

f
<,:1

= f̂<, x ∈ W1


H(h<,:2 ) = 0,
:2 = 1, 2, . . . ,  2, x ∈ l2

h
<,:2

= ĥ<, x ∈ W2

(12)

1 �=3 �>

f=+1 = f
", 1

, h
=+1

= h
", 2

in which f̂< = ^1 (h<−1, 2 ), ĥ< = ^2 (f<−1, 1 ), being operators for solution exchange
between NS and HNS equations on their interfaces W1 and W2, respectively (W1 and
W2 overlap when the subdomains of NS and HNS patch with each other). " is a
prescribed external iteration number, and  1 and  2 are prescribed internal iteration
numbers.
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An issue is how to compute (12) efficiently. A possible approach to speed up its
convergence is to introduce relaxation to solution exchange at the interfaces, or, to
the external iteration:

f
<,:1

= f̂<−1 + U(f̂< − f̂<−1), x ∈ W1

h
<,:2

= ĥ<−1 + U(ĥ< − ĥ<−1), x ∈ W2
(13)

As U < 1 and > 1, the iteration “under-relaxation" and “over-relaxation", respec-
tively. An optimal value for U may be determined as the one that leads to a quick
reduction of the residual of Eq. (11). For instance, let

&(f, h) = 〈F,F〉 + 〈H,H〉 ≥ 0 (14)

By Taylor expansion and Eq. (13), one has

&(f<, 1
, h
<, 2 )

= &(f<−1, 1
, h
<−1, 2 )

+ 〈m&/mf|< (f<, 1 − f<−1, 1 )〉l1\W1 + 〈m&/mh|< (h
<, 2 − h<−1, 2 )〉l2\W2

+ U
(
〈m&/mf|< (f̂< − f̂<−1)〉W1 + 〈m&/mh|< (ĥ

< − ĥ<−1)〉W2

)
+ U2 (· · · ) + · · ·

(15)

An expression for an optimal U can be derived from above equation by, say, letting
&(f<, 1

, h
<, 2 ) = 0 or m&/mU = 0, hoping that f

<, 1 and h
<, 2 are the fixed point

of the iteration. It is noted that in pursuing above iteration with relaxation, it may be
important to enforce the divergence-free condition.

Another approach to speed up the convergence in computation of (12) is via an
optimal combination of the internal and external iterations. A natural arrangement of
them is that the external iteration marches forwards only after the internal iterations
converge, i.e., at sufficiently large  1 and  2. However, it is expected that an optimal
combination of  1 and  2 is possible in terms of fast convergence to solutions at
time level = + 1. With such an optimal combination, a new external iteration may
start before the full convergence of the two internal iterations, and this could be an
interesting topic.

4 Implementation of Model Coupling

The Solver of Incompressible Flow on Overset Meshes (SIFOM) is developed to
compute NS equations (e.g., [6]), and its governing equations are

5 · u = 0
uC + 5 · uu = 5 · ((a + aC ) 5 u) − 5?′3/d − 6 5� [

(16)

in which aC is the turbulence viscosity. SIFOM discretizes above equations in curvi-
linear coordinates using a finite difference method [6].
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An HNS solver is the Finite Volume Method Coastal Ocean Model (FVCOM),
and its hydrostatic version consists of an external and an internal mode [4]. The
governing equations for the external mode are the vertically averaged continuity and
momentum equations:

[C + 5� · (V�) = 0
(V�)C + 5� · (VV�) = −6� 5� [ + (gB − g1)/d + E. (17)

The governing equations of the internal mode are the 3D continuity and momentum
equations associated with the hydrostatic assumption:

[C + 5� · (v�) + lf = 0,
(v�)C + 5� · (vv�) + (vl)f = −6� 5� [ + 5� · (^e)

+(_vf)f/� + I,
(18)

In the external mode, V is the depth-averaged velocity vector, � is the water depth,
and gB and g1 are the shear stress on water surface and seabed, respectively. E
includes the other terms such as the Coriolis force. In the internal mode, f is the
vertical coordinate, l the vertical velocity in the f-coordinate, e the strain rate,
subscript f the derivative over f, and I the other terms. ^, and _ are coefficients.
FVCOM solves Eqs. (17) and (18) on a triangular grid in the horizontal plane and a
f-grid in the vertical direction using a finite volume method.

An approach to integrate SIFOM and FVCOM is to couple Eqs. (16) and (18).
The integration follows the algorithm (12). Interface transmission condition (10)
is used for both SIFOM and FVCOM at their interfaces. It is noted that water
surface elevation in SIFOM, or Eq. (16), is computed by FVCOM, or Eq. (17). Also,
SIFOM and FVCOM are models for complicated, realistic flow problems, and their
governing equations are not exactly but approximately same to the NS and HNS
equations, respectively. For instance, Eq. (18) is a form transformed from Eq. (2).
More details on the interface treatments and numerical algorithms can be found in
[8].

As an example on performance of the SIFOM-FVCOM system, simulation has
been made for a flow over a sill in a channel, see Fig. 2. In the simulation, SIFOM
occupies the contraction section of the channel, and FVCOM covers all the chan-
nel, except a blanked region within the zone of SIFOM. Here, two regions for the
SIFOM’s are used; one is bigger and the other is smaller, and they lead to different
interface locations. In the figure, it is seen that the simulated flow passes the inter-
faces of SIFOM smoothly, and no obvious artifact is generated there. However, the
simulations with the two SIFOM regions present certain difference; as illustrated by
streamlines, the simulation with the larger region presents more vibrating vertical
motion after the contraction section, which is anticipated because SIFOM permits
strong vertical motion. More simulated results for the flow are available in [8, 9],
and they show that solution presents patterns similar to that by SIFOM alone, e.g.,
the vortical structures after the contraction section, and this is an intention of the
coupling approach.

Simulation of actual ocean flows is challenging. For instance, as seen in Fig. 2, the
simulated solution with a bigger SIFOM region is somewhat different from that with
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Fig. 2: Simulated instantaneous solutions of the sill flow. The solid white lines are SIFOM’s
interfaces, The top two panels have a bigger SIFOM region, and the bottom two panels have a
smaller SIFOM region. In each set of the two panels, the first one is a side view, and the second one
is a top view. In this simulation, to make it simple, " is set as 1, or, no iteration is made between
SIFOM and FVCOM.

a smaller SIFOM region, indicating the influence of the size of the SIFOM’s region
and locations of the interfaces. Moreover, since it involves multiple times of runs of
both SIFOM and FVCOM in marching from time level = to = + 1, Schwarz iteration
(12) is expensive, and it is significant to speed up the iteration. For this purpose, a
preliminary effort has been made by running the SIFOM-FVCOM system with a few
prescribed values for U in Eq. (13). However, no obvious speedup in convergence
has been achieved, and this indicates that a deliberate design for the value of U is
necessary.

Finally, it is noted that, in a recent study, another solver for the NS equations
and implemented with a volume of fraction method has been coupled to FVCOM
using techniques similar to those of the SIFOM-FVCOM system, and the results are
encouraging [10].
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5 Concluding Remarks

An successful coupling of NS andHNS equationswill lead to an avenue to simulation
of multiscale and multiphysics in many emerging coastal ocean flow problems. This
paper presents a preliminary study on such coupling with regard to transmission
conditions, Schwartz iterations, and coupling of actual models. In view that it is
a relatively new topic and its realization is complicated, the coupling deserves
systematic theoretical analysis and numerical experimentation, and we shall keep
what discussed in this paper, in particular, the transmission conditions and the
Schwarz iterations, for future study, and explore their effectiveness.
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