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1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) algorithms, intro-
duced in [4], are nonoverlapping domain decomposition methods. The coarse prob-
lems in the BDDC algorithms are given in terms of a set of primal constraints.
An important advantage with such a coarse problem is that the Schur complements
that arise in the computation will all be invertible. The BDDC algorithms have
been extended to many different applications with different discretizations such as
[9, 10, 13, 14, 2] and [11, 12].

In this paper, the BDDC algorithm is developed for the incompressible Stokes
equation with an Hybridizable Discontinuous Galerkin (HDG) discretization. The
HDG discretization for incompressible Stokes flow was introduced in [7] and ana-
lyzed in [3]. The main features of the HDG is that it reduces the globally coupled
unknowns to the numerical trace of the velocity on the element boundaries and the
mean of the pressure on the element. The size of the reduced saddle point problem is
significantly smaller compared to the original one. In [7], the reduced saddle point
problem is solved by an augmented Lagrange approach. An additional time depen-
dent problem is introduced and solved by a backward-Euler method. Here, we solve
the reduced saddle point problem directly using the BDDC methods. Similar to the
earlier domain decomposition works on saddle point problems such as [8, 5, 6], and
[9], we reduce the saddle point problem to a positive definite problem in a benign
subspace and therefore the conjugate gradient (CG) method can be used to solve
the resulting system. Due to the discontinuous pressure basis functions in this HDG
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discretization, the complicated no-net-flux condition, which is needed to make sure
all CG iterates are in the benign subspace, can be ensured by edge and face average
constraints for each velocity component in two and three dimensions, respectively.
These required constraints are the same as those for the elliptic problems with the
HDG discretizations, cf. [11].

The rest of the paper is organized as follows. The HDG discretization for the
Stokes problem are described in Section 2. In Section 3, the original system is
reduced to an interface problem and a BDDC preconditioner is then introduced. The
condition number estimate for the system with the BDDC preconditioner is provided
in Section 4. Finally, we give some computational results in Section 5.

2 A Stokes problem and an HDG Discretization

The following Stokes problem is defined on a bounded polygonal domain Ω, in two
or three dimensions, with a Dirichlet boundary condition:

−4u + ∇? = f, in Ω,

∇ · u = 0, in Ω,

u = 6, on mΩ,
(1)

where f ∈ !2 (Ω) and 6 ∈ �1/2 (mΩ). Without loss of generality, we assume that
6 = 0. The solution of (1) is unique with the pressure ? determined up to a constant.
Here we will look for the solution with the pressure ? having a zero average over the
domain Ω.

We follow the approach in [7] and rewrite (1) as follows:
L − ∇u = 0, in Ω,

−∇ · L + ∇? = f, in Ω,

∇ · u = 0, in Ω,

u = 0, in mΩ.

(2)

Let %: (�) be the space of polynomials of order at most : on �. We set P: (�) =
[%: (�)]= (= = 2 and 3 for two and three dimensions, respectively) and P: (�) =
[%: (�)]=×=. L, u, and ? will be approximated by these discontinuous finite element
spaces defined on a shape-regular and quasi-uniform triangulation of Ω, denoted by
Tℎ . Let ℎ be the characteristic element size ℎ of Tℎ and ^ be an element in Tℎ . The
union of edges of elements ^ is denoted by E. E8 and Em are two subsets of E, for
the edges in the interior of the domain and on its boundary, respectively. Define the
following finite element spaces: G: = {Gℎ ∈

[
!2 (Ω)]=×= : Gℎ |^ ∈ P: (^), ∀^ ∈

Ω}, V: = {vℎ ∈
[
!2 (Ω)]= : vℎ |^ ∈ P: (^), ∀^ ∈ Ω},,: = {?ℎ ∈ !2 (Ω) : ?ℎ |^ ∈

%: (^),
∫
Ω
?ℎ = 0, ∀^ ∈ Ω}, M: = {`ℎ ∈

[
!2 (e)]= : `ℎ |4 ∈ P: (4), ∀4 ∈ E},

and �: = {`ℎ ∈ M: : `ℎ |4 = 0, ∀4 ∈ mΩ}. To make our notation simple, we
drop the subscript : from now on. The discrete problem resulting from the HDG
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discretization can be written as: to find (Lℎ , uℎ , ?ℎ , _ℎ) ∈ (G,V,,,�) such that
for all (Gℎ , vℎ , @ℎ , `ℎ) ∈ (G,V,,,�)
(Lℎ ,Gℎ)Tℎ + (uℎ ,∇ ·Gℎ)Tℎ − 〈_ℎ ,Gℎn〉mTℎ = 0,
(Lℎ ,∇vℎ)Tℎ − (?ℎ ,∇ · vℎ)Tℎ − 〈Lℎn − ?ℎn − g^ (uℎ − _ℎ), vℎ〉mTℎ = (f, vℎ)Tℎ ,
− 〈Lℎn − ?ℎn − g^ (uℎ − _ℎ), `ℎ〉mTℎ = 0,
−(uℎ ,∇@ℎ)Tℎ + 〈_ℎ · n, @ℎ〉mTℎ = 0.

(3)
where g^ is a local stabilization parameter, see [7] for details.

The matrix form of (3) can be written as
�LL �)uL �)

_L 0
�uL �uu �)

_u �
)
?u

�_L �_u �__ �
)
?_

0 �?u �?_ 0




L
u
_

?

 =


0
Fℎ
0
0

 , (4)

where Fℎ = −(f, vℎ)Tℎ and we use L, u, _, and ? to denote the unknowns associated
with Lℎ , uℎ , _ℎ , and ?ℎ , respectively. In each ^, we decompose the pressure degrees
of freedom ? into the element average pressure ?04 and the rest called the element
interior pressure ?8 and let, = ,8 ⊕,04, correspondingly. We can easily eliminate
L, u and ?8 element-wise from (4) and obtain the system for _ and ?04 only[

� �)

� 0

] [
_

?04

]
=

[
1

0

]
. (5)

The global problem (4) can also be written as the following saddle point problem[
�0 �

)
0

�0 0

] [
D0
?

]
=

[
F0
0

]
, (6)

where

�0 =


�LL �)uL �)

_L
�uL �uu �)

_u
�_L �_u �__

 , �)0 =


0
�)?u
�)
?_

 , D0 =


L
u
_

 , and F0 =


0
Fℎ
0

 . (7)

We note that �0 is the same as the matrix obtained using HDG discretization for
elliptic problem as discussed in [11].

3 The BDDC algorithm

We decompose Ω into N nonoverlapping subdomain Ω8 with diameters �8 , 8 =
1,. . . , # , and set � = max8 �8 . We assume that each subdomain is a union of shape-
regular coarse triangles and that the number of such elements forming an individual
subdomain is uniformly bounded. We define edges/faces as open sets shared by two
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subdomains. Two nodes belong to the same edge/face when they are associated with
the same pair of subdomains. Let Γ be the interface between the subdomains. The
set of the interface nodes Γℎ is defined as Γℎ :=

(∪8≠ 9mΩ8,ℎ ∩ mΩ 9 ,ℎ ) \ mΩℎ , where
mΩ8,ℎ is the set of nodes on mΩ8 and mΩℎ is that of mΩ. We assume the triangulation
of each subdomain is quasi-uniform.

We decompose the velocity numerical trace� = �� ⊕ �̂Γ and the element average
pressure ,04 = ,� ⊕ ,0, where �̂Γ denotes the degrees of freedom associated
with Γ. �� =

∏#
8=1 �

(8)
�

and ,� =
∏#
8=1,

(8)
�

are products of subdomain interior
velocity numerical trace spaces + (8)

�
and subdomain interior pressure spaces , (8)

�
,

respectively. The elements of �(8)
�

are supported in the subdomain Ω8 and vanishes
on its interface Γ8 , while the elements of , (8)

�
are the restrictions of the pressure

variables to Ω8 which satisfy
∫
Ω8
?
(8)
�
= 0. �̂Γ is the subspace of edge/face functions

on Γ in �, and,0 is the subspace of, with constant values ? (8)0 in the subdomain
Ω8 that satisfy

∑#
8=1 ?

(8)
0 < (Ω8) = 0, where < (Ω8) is the measure of the subdomain

Ω8 .
We denote the space of interface velocity numerical trace variables of the sub-

domain Ω8 by �(8)
Γ
, and the associated product space by �Γ =

∏#
8=1 �

(8)
Γ
; generally

edge/face functions in �Γ are discontinuous across the interface. We define the re-
striction operators ' (8)

Γ
: �̂Γ → �(8)

Γ
to be an operator which maps functions in

the continuous global interface velocity numerical trace variable space �̂Γ to the
subdomain component space �(8)

Γ
. Also, 'Γ : �̂Γ → �Γ is the direct sum of ' (8)

Γ
.

The global interface problem is assembled from the subdomain interface prob-
lems, and can be written as: find (_Γ, ?0) ∈

(
�̂Γ,,0

)
such that

(̂

[
_Γ
?0

]
=

[
6Γ
0

]
, where (̂ =

[
(̂Γ �̂)0Γ
�̂0Γ 0

]
. (8)

Here (̂Γ, �̂0Γ, and 6Γ are assembled from the subdomain matrices.
In order to introduce the BDDC preconditioner, we first introduce a partially

assembled interface space �̃Γ = �̂Π ⊕ �Δ = �̂Π ⊕
#∏
8=1

�(8)
Δ
. Here, �̂Π is the coarse

level, primal interface velocity space and the space �4 is the direct sum of the �(8)4 ,
which are spanned by the remaining interface degrees of freedom. In the space �̃Γ,
we relax most continuity constraints across the interface but retain the continuity at
the primal unknowns, which makes all the linear systems nonsingular.

We need to introduce several restriction, extension, and scaling operators between
different spaces. ' (8)Γ : �̃Γ → �(8)

Γ
restricts functions in the space �̃Γ to the

components �(8)
Γ

of the subdomain Ω8 . 'Γ : �̃Γ → �Γ is the direct sum of
'
(8)
Γ . ' (8)

Δ
: �̂Γ → �(8)

Δ
maps the functions from �̂Γ to �(8)

Δ
, its dual subdomain

components. 'ΓΠ : �̂Γ → �̂Π is a restriction operator from �̂Γ to its subspace �̂Π.
'̃Γ : �̂Γ → �̃Γ is the direct sum of 'ΓΠ and ' (8)

Δ
. We define the positive scaling
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factor X†
8
(G) as follows:

X
†
8
(G) = 1

20A3 (IG) , G ∈ mΩ8,ℎ ∩ Γℎ ,

where IG is the set of indices of the subdomains that have G on their boundaries, and
20A3 (IG) counts the number of the subdomain boundaries to which G belongs. We
note that X†

8
(G) is constant on each edge/face. Multiplying each row of ' (8)

Δ
with the

scaling factor gives us ' (8)
�,Δ

. The scaled operators '̃�,Γ is the direct sum of 'ΓΠ and
'
(8)
�,Δ

.
We denote the direct sum of the local interface velocity Schur complement by

(Γ and the partially assembled interface velocity Schur complement is defined by
(̃Γ = '

)

Γ (Γ'Γ. Correspondingly, we define an operator �̃0Γ, whichmaps the partially
assembled interface velocity space �̃Γ into the space of right-hand sides correspond-
ing to ,0. �̃0Γ is obtained from the subdomain operators by assembling them with
respect to the primal interface velocity part. Using the following notation

'̃� =

[
'̃�,Γ

�

]
, (̃ =

[
(̃Γ �̃)0Γ
�̃0Γ 0

]
, (9)

and the preconditioned BDDC algorithm is then of the form: find (_Γ, ?0) ∈(
�̂Γ,,0

)
, such that

'̃)� (̃
−1 '̃� (̂

[
_Γ
?0

]
= '̃)� (̃

−1 '̃�

[
6Γ
0

]
. (10)

Note that '̃�,Γ is of full rank and that the preconditioner is nonsingular.
Definition 1 (Benign Subspaces) We will call

�̂Γ,� = {_Γ ∈ �̂Γ | �̂0Γ_Γ = 0}, �̃Γ,� = {_Γ ∈ �̃Γ | �̃0Γ_Γ = 0}

the benign subspaces of �̂Γ and �̃Γ, respectively.
It is easy to see that the operators (̂ and (̃, defined in (8) and (10), are symmetric

positive definite on
(
�̂Γ,�,,0

)
and

(
�̃Γ,�,,0

)
, respectively. A preconditioned con-

jugate gradient method can then be used to solve the global BDDC preconditioned
interface problem (10).

4 Condition number estimate for the BDDC preconditioner

In this section, we only consider the case that the stabilization parameter g^ = $ ( 1
ℎ^
),

where ℎ^ the diameter of the element ^. Other choices of g^ will be considered
elsewhere.
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Similar to the inf-sup condition of the weak Galerkin finite element methods [15,
Lemma 4.3], we have the following lemma:

Lemma 1 There exists a positive constant V independent of ℎ and �, such that

sup
D0 ∈(G,V,�)

D)0 �
)
0 ?(

D)0 �0D0
)1/2 ≥ V‖?‖!2 (Ω) , (11)

for all ? ∈ , . Here �0, �0 are defined in (7). The theorem is also hold when Ω is
replaced by a subdomain Ω8 .

Using Lemma 1 for each subdomain, we can prove a well-known relation between
the harmonic extension and Stokes extension when the subdomain boundary velocity
is given. Similar results for the standard finite element discretization can be found in
[1]. Then we can prove a bound of the averaging operator �� for the Stokes problem.

Lemma 2 There exists a positive constant C, which is independent of H and h, such
that

|��F |2
(̃
≤ � (1 + V)

2

V2

(
1 + log

�

ℎ

)2
|F |2

(̃
, ∀ F = (_Γ, ?0) ∈

(
�̃Γ, �,,0

)
,

where V is the inf-sup stability constant.

With the help of Lemma 2, we can obtain our main result

Theorem 1 The preconditioned operator "−1(̂ is symmetric, positive definite with
respect to the bilinear form 〈·, ·〉

(̂
on the space

(
�̂Γ,�,,0

)
.The condition number

of "−1(̂ is bounded by � (1+V)
2

V2

(
1 + log

(
�
ℎ

) )2, where C is a constant, which is
independent of � and ℎ, and V is the inf-sup stability constant, defined in Lemma 1.

5 Numerical Experiments

We have applied our BDDC algorithms to the model problem (1), whereΩ = [0, 1]2.
ZeroDirichlet boundary conditions are used. The right-hand side function f is chosen
such that the exact solution is

u =

[
sin3 (cG) sin2 (cH) cos(cH)
− sin2 (cG) sin3 (cH) cos(cG)

]
and ? = G − H.

We decompose the unit square into # ×# subdomains with the sidelength � = 1/# .
Equation (1) is discretized, in each subdomain, by the :Cℎ-order HDG method with
an element diameter ℎ. The preconditioned conjugate gradient iteration is stopped
when the relative ;2-norm of the residual has been reduced by a factor of 106.
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Table 1: Performance of solving (10) with HDG discretization (g^ = 1/ℎ^ )
: = 0 : = 1 : = 2

�/ℎ #sub Cond. Iter. Cond. Iter. Cond. Iter.

8 4 × 4 4.21 10 4.72 12 12.72 14
8 × 8 5.12 12 8.81 17 11.52 20

16 × 16 5.00 13 10.43 21 13.44 24
24 × 24 5.14 13 10.83 20 13.96 25
32 × 32 5.14 13 10.84 20 14.09 25

#sub �/ℎ Cond. Iter. Cond. Iter. Cond. Iter.

8 × 8 4 2.56 9 6.23 14 8.52 17
8 5.12 12 8.81 17 11.52 20
16 7.59 15 11.86 20 17.86 24
24 9.22 17 13.86 22 20.32 25
32 10.48 19 15.37 23 22.21 26

We consider the choice of the stabilization constant g^ = 1
ℎ^
. We have carried out

two sets of experiments to obtain iteration counts and condition number estimates.
In the first set of the experiments, we fixed �

ℎ
= 8, the subdomain local problem

size, and change the number of subdomains to test the scalability of the algorithms
(the condition number is independent of the number of subdomains). In the second
set of experiments, we fixed the number of subdomains to 64 and change �

ℎ
, the

subdomain local problem size. The performance of the algorithms for the Stokes
problem is similar to those for the elliptic problems. The experimental results are
fully consistent with our theory.
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