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1 Introduction

Consider the following weak formulation of a fourth order problem on a bounded
polygonal domain Ω in R2:
Find D ∈ �2

0 (Ω) such that∫
Ω

∇2D : ∇2E 3G =

∫
Ω

5 E 3G ∀ E ∈ �2
0 (Ω), (1)

where 5 ∈ !2 (Ω), and ∇2E : ∇2F =
∑2
8, 9=1 (m2E/mG8mG 9 ) (m2F/mG8mG 9 ) is the inner

product of the Hessian matrices of E and F.
For simplicity, letTℎ be a quasi-uniform triangulation ofΩ consisting of rectangles

and take +ℎ ⊂ �1
0 (Ω) to be the &2 Lagrange finite element space associated with

Tℎ . (Results also hold for quadrilateral meshes.) Then the model problem (1) can be
discretized by the following �0 interior penalty Galerkin method [7, 3]:
Find Dℎ ∈ +ℎ such that

0ℎ (Dℎ , E) =
∫
Ω

5 E 3G E ∈ +ℎ ,

where

Susanne C. Brenner and Li-Yeng Sung
Department of Mathematics and Center for Computation and Technology, Louisiana State Univer-
sity, Baton Rouge, LA 70803, USA, e-mail: brenner@math.lsu.edu, e-mail: sung@math.lsu.
edu

Eun-Hee Park
School of General Studies, Kangwon National University, Samcheok, Gangwon 25913, Republic
of Korea, e-mail: eh.park@kangwon.ac.kr

Kening Wang
Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224,
USA, e-mail: kening.wang@unf.edu

342



A BDDC Preconditioner for �0 Interior Penalty Methods 343

0ℎ (E, F) =
∑
�∈Tℎ

∫
)

∇2E : ∇2F 3G +
∑
4∈Eℎ

[

|4 |
∫
4

[[
mE

mn

]] [[
mF

mn

]]
3B

+
∑
4∈Eℎ

∫
4

({{
m2E

mn2

}} [[
mF

mn

]]
+

{{
m2F

mn2

}} [[
mE

mn

]] )
3B.

Here [ is a positive penalty parameter, Eℎ is the set of edges of Tℎ , and |4 | is the
length of the edge 4. The jump [[·]] and the average {{·}} are defined as follows.

Fig. 1: (a) A triangulation ofΩ. (b) A reference direction of normal vectors on the edges of) ∈ Tℎ .

Let n4 be the unit normal chosen according to a reference direction shown in Fig. 1.
If 4 is an interior edge of Tℎ shared by two elements �− and �+, we define on 4,[[

mE

mn

]]
=
mE+
mn4
− mE−
mn4

and
{{
m2E

mn2

}}
=

1
2

(
m2E+
mn2

4

+ m
2E−
mn2

4

)
,

where E± = E |�± . On an edge of Tℎ along mΩ, we define[[
mE

mn

]]
= ± mE

mn4
and

{{
m2E

mn2

}}
=
m2E

mn2
4

,

in which the negative sign is chosen if n4 points towards the outside of Ω, and the
positive sign otherwise.

It is noted that for [ > 0 sufficiently large (Lemma 6 in [3]), there exist positive
constants �1 and �2 independent of ℎ such that

�10ℎ (E, E) ≤ |E |2� 2 (Ω,Tℎ) ≤ �20ℎ (E, E) ∀E ∈ +ℎ ,

where

|E |2
� 2 (Ω,Tℎ) =

∑
�∈Tℎ

|E |2
� 2 (�) +

∑
4∈Eℎ

1
|4 |

[[ mEmn

]]2

!2 (4)
.

Compared with classical finite element methods for fourth order problems, �0

interior penalty methods have many advantages [3, 5, 7]. However, due to the nature
of fourth order problems, the condition number of the discrete problem resulting from
�0 interior penalty methods grows at the rate of ℎ−4 [8]. Thus a good preconditioner
is essential for solving the discrete problem efficiently and accurately. In this paper,
we develop a nonoverlapping domain decomposition preconditioner for �0 interior
penalty methods that is based on the balancing domain decomposition by constraints
(BDDC) approach [6, 4, 1].
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The rest of the paper is organized as follows. In Section 2 we introduce the
subspace decomposition. We then design a BDDC preconditioner for the reduced
problem in Section 3, followed by condition number estimates in Section 4. Fi-
nally, we report numerical results in Section 5 that illustrate the performance of the
proposed preconditioner and corroborate the theoretical estimates.

2 A Subspace Decomposition

We begin with a nonoverlapping domain decomposition ofΩ consisting of rectangu-
lar (open) subdomains Ω1,Ω2, · · · ,Ω� aligned with Tℎ such that mΩ 9

⋂
mΩℓ = ∅, a

vertex, or an edge, if 9 ≠ ℓ.
We assume the subdomains are shape regular and denote the typical diameter of

the subdomains by �. Let Γ =
(⋃�

9=1 mΩ 9

)
\mΩ be the interface of the subdomains,

and Eℎ,Γ be the subset of Eℎ containing the edges on Γ.
Since the condition that the normal derivative of E vanishes on Γ is implicit in

terms of the standard degrees of freedom (dofs) of the &2 finite element, it is more
convenient to use the modified &2 finite element space (Fig. 2) as +ℎ . Details of the
modified &2 finite element space can be found in [5].

Fig. 2: (a) A nonoverlapping decomposition of Ω into Ω1, · · · ,Ω� and a triangulation of the
subdomainΩ 9 . (b) Dofs of+ℎ |Ω 9 . (c) Reference directions for the first order and mixed derivatives.

First of all, we decompose +ℎ into two subspaces

+ℎ = +ℎ,� ⊕ +ℎ,� ,

where

+ℎ,� =

{
E ∈ +ℎ :

[[
mE

mn

]]
= 0 on the edges in Eℎ that are subsets of

�⋃
9=1
mΩ 9

}
and

+ℎ,� =

{
E ∈ +ℎ :

{{
mE

mn

}}
= 0 on edges in Eℎ,Γ, and

E vanishes at all interior nodes of each subdomain
}
.
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Let �ℎ : +ℎ → + ′
ℎ
be the symmetric positive definite (SPD) operator defined by

〈�ℎE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ ,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual.
Similarly, we define �ℎ,� : +ℎ,� → + ′

ℎ,�
and �ℎ,� : +ℎ,� → + ′

ℎ,�
by

〈�ℎ,�E, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� and 〈�ℎ,�E, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� .

Then we have the following lemma.

Lemma 1 For any E ∈ +ℎ , there is a unique decomposition E = E� + E�, where
E� ∈ +ℎ,� and E� ∈ +ℎ,� . In addition, it holds that

〈�ℎE, E〉 ≈ 〈�ℎ,�E� , E�〉 + 〈�ℎ,�E� , E�〉 ∀ E ∈ +ℎ .

Remark 1 Since the subspace +ℎ,� only contains dofs on the boundary of subdo-
mains, the size of the matrix �ℎ,� is of order �/ℎ. We can implement the solve �−1

ℎ,�

directly. Therefore, it is crucial to have an efficient preconditioner for �ℎ,� .

Because functions in +ℎ,� have continuous normal derivatives on the edges in
Eℎ,Γ and vanishing normal derivatives on mΩ, it is easy to observe that

0ℎ (E, F) =
�∑
9=1
0ℎ, 9 (E 9 , F 9 ) ∀ E, F ∈ +ℎ,� ,

where E 9 = E
��
Ω 9
, F 9 = F

��
Ω 9
, and 0ℎ, 9 (·, ·) is the analog of 0ℎ (·, ·) defined on

elements and interior edges of Ω 9 . Note that 0ℎ, 9 (·, ·) is a localized bilinear form.
Next we define

+ℎ,� (Ω\Γ) =
{
E ∈ +ℎ,� : E has vanishing derivatives up to order 1 on Γ

}
+ℎ,� (Γ) =

{
E ∈ +ℎ,� : 0ℎ (E, F) = 0, ∀F ∈ +ℎ,� (Ω\Γ)

}
.

Functions in +ℎ,� (Γ) are referred to as discrete biharmonic functions. They are
uniquely determined by the dofs associated with Γ.

For any E� ∈ +ℎ,� , there is a unique decomposition E� = E�,Ω\Γ + E�,Γ,
where E�,Ω\Γ ∈ +ℎ,� (Ω\Γ) and E�,Γ ∈ +ℎ,� (Γ). Furthermore, let �ℎ,�,Ω\Γ :
+ℎ,� (Ω\Γ) → +ℎ,� (Ω\Γ) ′ and (ℎ : +ℎ,� (Γ) → +ℎ,� (Γ) ′ be SPD operators defined
by

〈�ℎ,�,Ω\ΓE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� (Ω\Γ),
〈(ℎE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� (Γ),

then it holds that for all E� ∈ +ℎ,� with E� = E�,Ω\Γ + E�,Γ,

〈�ℎ,�E� , E�〉 = 〈�ℎ,�,Ω\ΓE�,Ω\Γ, E�,Ω\Γ〉 + 〈(ℎE�,Γ, E�,Γ〉.
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Remark 2 It is noted that �−1
ℎ,�,Ω\Γ can be implemented by solving the localized

biharmonic problems on each subdomain in parallel. Hence, a preconditioner for
(−1
ℎ

needs to be constructed.

3 A BDDC Preconditioner

In this section a preconditioner for the Schur complement (ℎ is constructed by the
BDDC methodology.

Let +ℎ,�, 9 , 1 ≤ 9 ≤ � be the restriction of +ℎ,� on the subdomain Ω 9 . We define
H 9 , the space of local discrete biharmonic functions, by

H 9 =
{
E ∈ +ℎ,�, 9 : 0ℎ, 9 (E, F) = 0 ∀F ∈ +ℎ,� (Ω 9 )

}
,

where +ℎ,� (Ω 9 ) is the subspace of +ℎ,�, 9 whose members vanish up to order 1 on
mΩ 9 . The space HC is then defined by gluing the spaces H 9 together at the cross
points such that

HC =
{
E ∈ !2 (Ω) : E

��
Ω 9
∈ H 9 and E has continuous dofs at subdomain corners

}
.

We equipHC with the bilinear form:

0�ℎ (E, F) =
∑

1≤ 9≤�
0ℎ, 9 (E 9 , F 9 ) ∀ E, F ∈ HC ,

where E 9 = E
��
Ω 9

and F 9 = F
��
Ω 9
.

Next we introduce a decomposition ofHC ,

HC = H̊ ⊕ H0

where

H̊ = {E ∈ HC : the dofs of E vanish at the corners of the subdomains Ω1, . . . ,Ω� } ,
H0 =

{
E ∈ HC : 0�ℎ (E, F) = 0 ∀F ∈ H̊

}
.

Let H̊ 9 be the restriction of H̊ onΩ 9 . We then define SPD operators (0 : H0 −→
H ′0 and ( 9 : H̊ 9 −→ H̊ ′9 by

〈(0E, F〉 = 0�ℎ (E, F) ∀ E, F ∈ H0 and 〈( 9E, F〉 = 0ℎ, 9 (E, F) ∀ E, F ∈ H̊ 9 .

Now the BDDC preconditioner ����� for (ℎ is given by
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����� = (%Γ�0) (−1
0 (%Γ�0)C +

�∑
9=1

(
%ΓE 9

)
(−1
9

(
%ΓE 9

) C
,

where �0 : H0 → HC is the natural injection, E 9 : H̊ 9 → HC is the trivial
extension, and %Γ : HC −→ +ℎ,� is a projection defined by averaging such that for
all E ∈ HC , %ΓE is continuous on Γ up to order 1.

Remark 3 A preconditioner � : +ℎ ′ −→ +ℎ for �ℎ can then be constructed as
follows:

� = ���
−1
ℎ,� �

C
� + �ℎ,�,Ω\Γ�−1

ℎ,�,Ω\Γ�
C
ℎ,�,Ω\Γ + �Γ����� � CΓ,

where �� : +ℎ,� → +ℎ , �ℎ,�,Ω\Γ : +ℎ,� (Ω\Γ) → +ℎ , and �Γ : +ℎ,� (Γ) → +ℎ are
natural injections.

4 Condition Number Estimates

In this section we present the condition number estimates of �����(ℎ . Let us begin
by noting that

+ℎ,� (Γ) = %Γ�0H0 +
�∑
9=1

%ΓE 9H̊ 9 .

Then it follows from the theory of additive Schwarz preconditioners (see for exam-
ple [10, 11, 9, 2]) that the eigenvalues of �����(ℎ are positive, and the extreme
eigenvalues of �����(ℎ are characteristic by the following formulas

_min (�����(ℎ) = min
E∈+ℎ,� (Γ)

E≠0

〈(ℎE, E〉

min
E=%Γ�0E0+

∑�
9=1 %ΓE 9 E̊9

E0∈H0 , E̊9 ∈H̊ 9

(
〈(0E0, E0〉 +

�∑
9=1
〈( 9 E̊ 9 , E̊ 9〉

) ,

_max (�����(ℎ) = max
E∈+ℎ,� (Γ)

E≠0

〈(ℎE, E〉

min
E=%Γ�0E0+

∑�
9=1 %ΓE 9 E̊9

E0∈H0 , E̊9 ∈H̊ 9

(
〈(0E0, E0〉 +

�∑
9=1
〈( 9 E̊ 9 , E̊ 9〉

) ,

fromwhich we can establish a lower bound for the minimum eigenvalue of �����(ℎ ,
an upper bound for the maximum eigenvalue of �����(ℎ , and then an estimate on
the condition number of �����(ℎ .

Theorem 1 It holds that _min (�����(ℎ) ≥ 1 and _max (�����(ℎ) ≤ (1 +
ln(�/ℎ))2/�, which imply
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^(�����(ℎ) = _max (�����(ℎ)
_min (�����(ℎ) ≤ � (1 + ln(�/ℎ))2,

where the positive constant � is independent of ℎ, �, and �.

5 Numerical Results

In this section we present some numerical results to illustrate the performance of the
preconditioners ����� and �. We consider our model problem (1) on the unit square
(0, 1) × (0, 1). By taking the penalty parameter [ in 0ℎ (·, ·) and 0ℎ, 9 (·, ·) to be 5,
we compute the maximum eigenvalue, the minimum eigenvalue, and the condition
number of the systems �����(ℎ and ��ℎ for different values of � and ℎ.

The eigenvalues and condition numbers of �����(ℎ and ��ℎ for 16 subdomains
are presented in Tables 1 and 2, respectively. They confirm our theoretical estimates.
In addition, the corresponding condition numbers of �ℎ are provided in Table 2.

Moreover, to illustrate the practical performance of the preconditioner, we present
in Table 3 the number of iterations required to reduce the relative residual error by
a factor of 10−6 for the preconditioned system and the un-preconditioned system,
from which we can observe the dramatic improvement in efficiency due to the
preconditioner, especially as ℎ gets smaller.
Table 1: Eigenvalues and condition numbers of �����(ℎ for � = 1/4 ( J = 16 subdomains )

_max (�����(ℎ) _min (�����(ℎ) ^(�����(ℎ)
ℎ=1/8 3.6073 1.0000 3.6073
ℎ=1/12 2.9197 1.0000 2.9197
ℎ=1/16 3.0908 1.0000 3.0908
ℎ=1/20 3.2756 1.0000 3.2756
ℎ=1/24 3.4535 1.0000 3.4535

Table 2: Eigenvalues and condition numbers of ��ℎ , and condition numbers of �ℎ for � = 1/4
( J = 16 subdomains )

_max (��ℎ) _min (��ℎ) ^(��ℎ) ^(�ℎ)
ℎ=1/8 4.0705 0.2148 18.9490 1.1064e+03
ℎ=1/12 3.4107 0.2507 13.6054 1.3426e+04
ℎ=1/16 3.4866 0.2578 13.5244 6.1689e+04
ℎ=1/20 3.5947 0.2590 13.8787 1.8215e+05
ℎ=1/24 3.7123 0.2593 14.3181 4.2288e+05

Acknowledgements The work of the first and third authors was supported in part by the National
Science Foundation under Grant No. DMS-16-20273.
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Table 3:Number of iterations for reducing the relative residual error by a factor of 10−6 for� = 1/4
( J = 16 subdomains )

#8C4A (�ℎG = 1) #8C4A (��ℎG = �1)
ℎ=1/8 95 27
ℎ=1/12 235 23
ℎ=1/16 434 23
ℎ=1/20 704 23
ℎ=1/24 1026 23
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