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1 Introduction

Continuous space-time finite element methods for parabolic problems have been
recently studied, e.g., in [1, 9, 10, 13]. The main common features of these methods
are very different from those of time-stepping methods. Time is considered to be just
another spatial coordinate. The variational formulations are studied in the full space-
time cylinder that is then decomposed into arbitrary admissible simplex elements. In
this work, we follow the space-time finite element discretization scheme proposed
in [10] for a model initial-boundary value problem, using continuous and piecewise
linear finite elements in space and time simultaneously.

It is a challenging task to efficiently solve the large-scale linear system of alge-
braic equations arising from the space-time finite element discretization of parabolic
problems. In this work, as a preliminary study, we use the balancing domain de-
composition by constraints (BDDC [2, 11, 12]) preconditioned GMRES method to
solve this system efficiently. We mention that robust preconditioning for space-time
isogeometric analysis schemes for parabolic evolution problems has been reported
in [3, 4].

The remainder of the paper is organized as follows: Sect. 2 deals with the space-
time finite element discretization for a parabolic model problem. In Sect. 3, we
discuss BDDC preconditioners that are used to solve the linear system of algebraic
equations. Numerical results are shown and discussed in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.
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2 The space-time finite element discretization

The following parabolic initial-boundary value problem is considered as our model
problem: Find D : & → R such that

mCD − ΔGD = 5 in &, D = 0 on Σ, D = D0 on Σ0, (1)

where & := Ω × (0, )), Ω ⊂ R2 is a sufficiently smooth and bounded spatial
computational domain, Σ := mΩ × (0, )), Σ0 := Ω × {0}, Σ) := Ω × {)}.

Let us now introduce the following Sobolev spaces:

�
1,0
0 (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, D = 0 on Σ},

�
1,1
0,0̄ (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, mCD ∈ !2 (&) and D |Σ∪Σ) = 0},

�
1,1
0,0 (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, mCD ∈ !2 (&) and D |Σ∪Σ0 = 0}.

Using the classical approach [7, 8], the variational formulation for the parabolic
model problem (1) reads as follows: Find D ∈ �1,0

0 (&) such that

0(D, E) = ; (E), ∀E ∈ �1,1
0,0̄ (&), (2)

where

0(D, E) = −
∫
&

D(G, C)mCE(G, C)3 (G, C) +
∫
&

∇GD(G, C) · ∇GD(G, C)3 (G, C),

; (E) =
∫
&

5 (G, C)E(G, C)3 (G, C) +
∫
Ω

D0 (G)E(G, 0)3G.

Remark 1 (Parabolic solvability and regularity [7, 8]) If 5 ∈ !2,1 (&) := {E :∫ )
0 ‖E(·, C)‖!2 (Ω)3C < ∞} and D0 ∈ !2 (Ω), then there exists a unique general-
ized solution D ∈ �1,0

0 (&) ∩ +1,0
2 (&) of (2), where +1,0

2 (&) := {D ∈ �1,0 (&) :
|D |& < ∞ and lim

ΔC→0
‖D(·, C + ΔC) − D(·, C)‖!2 (Ω) = 0, uniformly on [0, )]}, and

|D |& := max
0≤g≤)

‖D(·, g)‖!2 (Ω)+‖∇GD‖!2 (Ω×(0,) )) . If 5 ∈ !2 (&) and D0 ∈ �1
0 (Ω), then

the generalized solution D belongs to �Δ,10 (&) := {E ∈ �1,1
0 (&) : ΔGD ∈ !2 (&)}

and continuously depends on C in the norm of the space �1
0 (Ω).

To derive the space-time finite element scheme, we mainly follow the approach
proposed in [10]. Let +ℎ = span{i8} be the span of continuous and piecewise linear
basis functions i8 on shape regular finite elements of an admissible triangulation Tℎ .
Then we define +0ℎ = +ℎ ∩ �1,1

0,0 (&) = {Eℎ ∈ +ℎ : Eℎ |Σ∪Σ0 = 0}. For convenience,
we consider homogeneous initial conditions, i.e., D0 = 0 on Ω. Multiplying the
PDE mCD − ΔGD = 5 on  ∈ Tℎ by an element-wise time-upwind test function
Eℎ + \ ℎ mCEℎ , Eℎ ∈ +0ℎ , we get
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(mCDEℎ + \ ℎ mCDmCEℎ − ΔGD(Eℎ + \ ℎ mCEℎ))3 (G, C) =∫
 

5 (Eℎ + \ ℎ mEℎ)3 (G, C),

where ℎ refers to the diameter of an element  in the space-time triangulation Tℎ
of&. Further, \ denotes a stabilization parameter [10]; see Remark 3. In the space-
time finite element scheme [10], the time is considered as another spatial coordinate,
and the partial derivative w.r.t. time is viewed as a convection term in the time
direction. Therefore, as in the classical SUPG (streamline upwind Petrov-Galerkin)
scheme, we use time-upwind test functions elementwise.

Integration by parts (the first part) with respect to the space and summation yields∑
 ∈Tℎ

∫
 

(mCDEℎ + \ ℎ mCDmCEℎ + ∇GD · ∇GEℎ − \ ℎ ΔGDmCEℎ)3 (G, C)

−
∑
 ∈Tℎ

∫
m 

=G · ∇GDEℎ3B =
∑
 ∈Tℎ

∫
 

5 (Eℎ + \ ℎ mCEℎ)3 (G, C).

Since =G · ∇GD is continuous across the inner boundary m of  , =G = 0 on Σ0 ∪Σ) ,
and Eℎ = 0 on Σ, the term −∑

 ∈Tℎ
∫
m 
=G · ∇GDEℎ3B vanishes.

If the solution D of (2) belongs to �
Δ,1
0,0 (Tℎ) := {E ∈ �

1,1
0,0 (&) : ΔGE | ∈

!2 ( ),∀ ∈ Tℎ}, cf. Remark 1, then the consistency identity

0ℎ (D, Eℎ) = ;ℎ (Eℎ), Eℎ ∈ +0ℎ , (3)

holds, where

0ℎ (D, Eℎ) :=
∑
 ∈Tℎ

∫
 

(mCDEℎ + \ ℎ mCDmCEℎ + ∇GD · ∇GEℎ − \ ℎ ΔGDmCEℎ)3 (G, C),

;ℎ (Eℎ) :=
∑
 ∈Tℎ

∫
 

5 (Eℎ + \ ℎ mCEℎ)3 (G, C).

With the restriction of the solution to the finite-dimensional subspace+0ℎ , the space-
time finite element scheme reads as follows: Find Dℎ ∈ +0ℎ such that

0ℎ (Dℎ , Eℎ) = ;ℎ (Eℎ), Eℎ ∈ +0ℎ . (4)

Thus, we have the Galerkin orthogonality: 0ℎ (D − Dℎ , Eℎ) = 0, ∀Eℎ ∈ +0ℎ .

Remark 2 Since we use continuous and piecewise linear trial functions, the integrand
−\ ℎ ΔGDℎmCEℎ vanishes element-wise, which simplifies the implementation.

Remark 3 On fully unstructured meshes, \: = $ (ℎ: ) [10]; on uniform meshes,
\: = \ = $ (1) [9]. In this work, we have used \ = 0.5 and \ = 2.5 on uniform
meshes for testing robustness of the BDDC preconditioners. The detailed results for
\ = 2.5 are presented in Table 1.
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It was shown in [10] that the bilinear form 0ℎ (·, ·) is +0ℎ-coercive: 0ℎ (Eℎ , Eℎ) ≥
`2 ‖Eℎ ‖2ℎ , ∀Eℎ ∈ +0ℎ with respect to the norm ‖Eℎ ‖2ℎ =

∑
 ∈Tℎ (‖∇GEℎ ‖2!2 ( ) +

\ ℎ ‖mCEℎ ‖2!2 ( ) ) +
1
2 ‖Eℎ ‖2!2 (Σ) ) . Furthermore, the bilinear form is bounded on

+0ℎ,∗ × +0ℎ: |0ℎ (D, Eℎ) | ≤ `1 ‖D‖0ℎ,∗‖Eℎ ‖ℎ , ∀D ∈ +0ℎ,∗, ∀Eℎ ∈ +0ℎ , where +0ℎ,∗ =
�
Δ,1
0,0 (Tℎ) ++0ℎ equipped with the norm ‖E‖20ℎ,∗ = ‖E‖2ℎ +

∑
 ∈Tℎ (\ ℎ )−1‖E‖2

!2 ( )
+∑ ∈Tℎ \:ℎ: ‖ΔGE‖2!2 ( ) . Let ; and : be positive reals such that ; ≥ : > 3/2. We
now define the broken Sobolev space �B (Tℎ) := {E ∈ !2 (&) : E | ∈ �B ( ) ∀ ∈
Tℎ} equipped with the broken Sobolev semi-norm |E |2

� B (Tℎ) :=
∑
 ∈Tℎ |E |2� B ( ) .

Using the Lagrangian interpolation operator Πℎ mapping �1,1
0,0 (&) ∩ �: (&) to +0ℎ ,

we obtain ‖D − Dℎ ‖ℎ ≤ ‖D − ΠℎD‖ℎ + ‖ΠℎD − Dℎ ‖ℎ . The term ‖D − ΠℎD‖ℎ can be
bounded by means of the interpolation error estimate, and the term ‖ΠℎD − Dℎ ‖ℎ
by using ellipticity, Galerkin orthogonality and boundedness of the bilinear form.
The discretization error estimate ‖D − Dℎ ‖ℎ ≤ � (

∑
 ∈Tℎ ℎ

2(;−1)
 

|D |2
� ; ( ) )1/2 holds

for the solution D provided that D belongs to �1,1
0,0 (&) ∩ �: (&) ∩ �; (Tℎ), and the

finite element solution Dℎ ∈ +0ℎ , where � > 0, independent of mesh size; see [10].

3 Two-level BDDC preconditioners

After the space-time finite element discretization of the model problem (1), the linear
system of algebraic equations reads as follows:

 G = 5 , (5)

with  :=
[
 � �  �Γ
 Γ�  ΓΓ

]
, G :=

[
G�
GΓ

]
, 5 :=

[
5�
5Γ

]
,  � � = diag

[
 1
� �
, ...,  #

� �

]
, where #

denotes the number of polyhedral subdomains &8 from a non-overlapping domain
decomposition of &. In system (5), we have decomposed the degrees of freedom
into the ones associated with the internal (�) and interface (Γ) nodes, respectively.
We aim to solve the Schur-complement system living on the interface:

(GΓ = 6Γ, (6)

with ( :=  ΓΓ −  Γ� −1
� �
 �Γ and 6 := 5Γ −  Γ� −1

� �
5� .

The bilinear form 0ℎ (·, ·) is coercive on the space-time finite element space +0ℎ
like in the corresponding elliptic case. There are efficient domain decomposition
preconditioners for such elliptic problems [14]. This motivated us to use such pre-
conditioners for solving positive definite space-time finite element equations too.
Following [12] (see also details in [5]), Dohrmann’s (two-level) BDDC precondi-
tioners %���� for the interface Schur complement equation (6), originally proposed
for symmetric and positive definite systems in [2, 11], can be written in the form

%−1
���� = '

)
�,Γ ()BD1 + )0)'�,Γ, (7)
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where the scaled operator '�,Γ is the direct sum of restriction operators '8
�,Γ

mapping the global interface vector to its component on local interfaceΓ8 := m&8∩Γ,
with a proper scaling factor.

Here the coarse level correction operator )0 is constructed as

)0 = Φ(Φ) (Φ)−1Φ) (8)

with the coarse level basis function matrix Φ =
[(Φ1)) , · · · , (Φ# )) ]) , where the

basis function matrix Φ8 on each subdomain interface is obtained by solving the
following augmented system:[

(8
(
�8

))
�8 0

] [
Φ8

Λ8

]
=

[
0

'8
Π
GΓ

]
. (9)

with the given primal constraints�8 of the subdomain&8 and the vector of Lagrange
multipliers on each column of Λ8 . The number of columns of each Φ8 equals to the
number of global coarse level degrees of freedom, typically living on the subdomain
corners, and/or interface edges, and/or faces. Here the restriction operator '8

Π
maps

the global interface vector in the continuous primal variable space on the coarse level
to its component on Γ8 .

The subdomain correction operator )BD1 is defined as

)BD1 =

#∑
8=1

[('8Γ)) 0
] [

(8
(
�8

))
�8 0

]−1 [
'8
Γ

0

]
, (10)

with vanishing primal variables on all the coarse levels. Here the restriction operator
'8
Γ
maps global interface vectors to their components on Γ8 .

4 Numerical experiments

Weuse D(G, H, C) = sin(cG) sin(cH) sin(cC) as exact solution of (1) in& = (0, 1)3; see
the left plot in Fig. 1. We perform uniform mesh refinements of & using tetrahedral
elements. By usingMetis [6], the domain is decomposed into # = 2: , : = 3, 4, ..., 9,
non-overlapping subdomains &8 with their own tetrahedral elements; see the right
plot in Fig. 1. The total number of degrees of freedom is (2: + 1)3, : = 4, 5, 6, 7.
We run BDDC preconditioned GMRES iterations until the relative residual error
reaches 10−9. The experiments are performed on 64 nodes each with 8-core In-
tel Haswell processors (Xeon E5-2630v3, 2.4Ghz) and 128 GB of memory. Three
variants of BDDC preconditioners are used with corner (�), corner/edge (��), and
corner/edge/face (���) constraints, respectively. The number of BDDC precondi-
tioned GMRES iterations and the computational time measured in seconds [s] with
respect to the number of subdomains (row-wise) and number of degrees of freedom
(column-wise) are given in Table 1 for \ = 2.5. Since the system is unsymmetric but
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Fig. 1 Solution (left), space-
time domain decomposition
(right) with 1293 degrees of
freedom and 512 subdomains.

positive definite, the BDDC preconditioners do not show the same typical robustness
and efficiency behavior when applied to the symmetric and positive definite system
[14]. Nevertheless, we still observe certain scalability with respect to the number
subdomains (up to 128), in particular, with corner/edge and corner/edge/face con-
straints. Increasing \ will improve the preformance of the BDDC preconditioners
with respect to the number of GMRES iterations, computational time, and scala-
bility with respect to the number of subdomains as well as number of degrees of
freedom, whereas decreasing \ leads to a worse performance. For instance, in the
case of \ = 0.5, the last row of Table 1 reads as follows: 1293 OoM/(−) OoM/(−)
173/(126.93B) 171/(109.94B) 185/(45.05B) > 500/(−) 206/(33.13B) . This
behaviour is expected since larger \ makes the problem more elliptic. However, we
note that \ also affects the norm ‖ · ‖ℎ in which we measure the discretization error.

5 Conclusions

In this work, we have applied two-level BDDC preconditioned GMRES methods
to the solution of finite element equations arising from the space-time discretiza-
tion of a parabolic model problem. We have compared the performance of BDDC
preconditioners with different coarse level constraints for such an unsymmetric, but
positive definite system. The preconditioners show certain scalability provided that
\ is sufficiently large. Future work will concentrate on improvement of coarse-level
corrections in order to achieve robustness with respect to different choices of \.
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