Non-overlapping Spectral Additive Schwarz
Methods

Yi Yu, Maksymilian Dryja, and Marcus Sarkis

1 Discrete Problem

For a given domain Q c R?, we impose homogeneous Dirichlet data on 4Q. Let us
introduce the Sobolev space Hy(Q) := {v € H'(Q) : v = 0 on 4Q}.
The continuous variational formulation is given by: Find u € Hé () such that

a(u,v)=f(v)  forall veH)(Q), (1)

where

a(u,v) = /Qp(x)Vu - Vvdx fv) = /vadx,

where we assume p(x) > pmin > 0 almost everywhere in Q.

2 Discretization

We begin by discretizing Problem (1) in an algebraic framework. Let us consider a
conforming triangulation 75, of Q where Q = U~req;, T and basis functions {¢ }1 <k <n
for the finite element space Vj,(€2). We use the convention that an element 7 € 7y,
the domain €2, and the subdomains €; are treated as open sets.

The finite element space V() is defined as:
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Vi(Q) :={v € Hy(Q);v|; € P1(7) V7 € T} = Span{¢y : |1 < k < n}.
The FEM matrix form associated with (1) can be written as
Au=b, )
where

(At == a(¢r, ¢1) = Z ar(¢ile dil) forall 1 <k,l<n,

TeT

and

(D) = () = D fe(erlo) forall 1<k <n.

TeTy

2.1 Finite Element Spaces
We decompose € into N non-overlapping polygonal subdomains €; which satisfy

Q=| |]Q and NQ;=0, i#;.

~
1l

-

We require that each subdomain be a union of shape-regular triangular elements with
nodes on the boundaries of neighboring subdomains matching across the interface.
We define the interface of each subdomain I'; and the interior of each subdomain I;,
global interface I' € Q and global interior I as:

N N
I :=0Q;\0Q and T := UFi and I=Q/T = U I;.
i=1 i=1

For any finite element subset D C Q let the set of degrees of freedom in D be the
hat functions
dof(D) := {1 < k < n;¢x|D # 0|D},

where 0|D : D — R is identically zero. The finite element space on D is defined as

Vi(D) :={u|D;u € V;,(Q)} = span{¢y|D; k € dof(D)}.

2.2 Decomposition of V, (Q)

Let us consider a family of local spaces {V;, 1 <i < N}, where

Vi = V(@) N HY (),
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and we define the extrapolation operators Rl.T : Vi = Vi, (Q) where RiT is the
extension by zero outside of ;.
The coarse space Vj is defined as the space of piecewise linear and continuous
functions on I':

Vo =Vi(I) :={v|r; Vv € V() }.

In Section 3, we will present different choices of the extension operator Rg Vo —
Vi (€2). The space V},(€2) admits the following direct sum decomposition:

Vi(Q) =R Vo® R Vi®-- &Ry VN

2.3 Additive Schwarz Methods

Local solvers: For 1 < i < N, let us introduce the exact local bilinear form
a;(u,v) = a(Rl-Tu,RiTv) u,v €V;,
and let us define T; : Vj,(Q) — V; by
ai(ﬁu,v):a(u,RiTv) veV; 1<i<N, 3)

and let T; : Vj,(Q) — Vj,(Q) be given by T; := RT'T;.
Global solver: For i = 0 first we consider the exact global solver

ao(u,v) = a(Rgu,Rgv) u,v eV
and let us define Ty : V;,(Q) — Vj by
ao(Tou,v) = a(u, ROT V) veW 4)

andlet T : V4 (Q) — V4 (Q) be given by Ty := R Ty. Note that we also will consider
inexact solvers d(-, -) later in this paper. We replace (2) by the linear system

N
Tau=g, where Tp:=To+T1+---+Tn, gh=Zg,~
i=0

where g; are obtained from (3) and (4); see [8].

3 Schur complement system

The linear system (2) can be written as



378 Yi Yu, Maksymilian Dryja, and Marcus Sarkis

Arr Ary | |ur 0T R 7T i
R R
[AIF An] [uz] Z Z b(l)

In this equation the extrapolation operators R " : Vi(Q;) — V5, (Q) is the extension
by zero at nodes outside of Q;. Thus we have,

R® and [ ] ZR(‘)T

where A is the matrix corresponding to the bilinear form of

A<>A<

N

N
- ZR“’TA(”R(” - ZRU)T
i=1

) AQ)

{'3 Al

(1)

a' (uz,v) = Z ar(uilz,vilz) ui,vi € Vp(Q;).

‘re’],‘,mi

Moreover, if we label the interface nodes ﬁrst and then label the interior nodes, we
can decompose the Boolean matrices R‘)" as:
R(l)
uz

where R{r :Vip(T;) = Vi(Q) and RZ ; Vi = V(1) are zero extension operators.
We now rewrite (2) in terms of Schur complement system (see [8])

_br

= |

> Al _ZRW ty” —iRW‘
Amr Aqr | | P u;i) -

i=1
where

(@)

ur
and
[

T
T _ Rrir
R =[5 ,

L1

si o

(i) (i) A (D)7 (D)
brl _Al"’IAILI bll
A(t A(l) (i)

b,

() 2 A0 _ 4D 407 40
S8 = AL —ADANT AW,

N
br, = > REL(0D-ADA b)Y and 5= ZRT SYRr,r  and  Sur = br.

‘We note that the best extension ROT is the a-discrete harmonic extension from I" to /
due to the orthogonality of the coarse and local problems. In this case

a(Rgvr, Rgur) = vlz Sur.

The motivation is to replace S by a good preconditioner Sy of S; see [1],[3],[2],[6].

4 New Method: Spectral Schwarz methods with exact solver

In our spectral method, we define a new ROT extension operator. To do that, the
first goal is to represent the best k;-dimensional subspace of V; to approximate the
a-discrete harmonic extension operator inside the subdomains. We fix a threshold
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0 < 1, and choose the smallest k; eigenvalues in each subdomain smaller than ¢.
First solve the following generalized eigenproblem in each subdomain separately:

i) (1) — 4 (D) (1) AN 4 (D) (D) _ (D) 4 () (D)
S(l)fj :(AIT_AFI(AII) Alr)fj _/lj Arrfj ®)

These eigenvalue problems are based on Neumann matrix associated to nonoverlap-
ping subdomains, therefore, differ from those in GenEO [7] and AGDSW [4].
We choose the smallest k; eigenvalues and corresponding eigenvectors:

FOI'j =1: kl’ let Q(l) _ é\;](l) ;l) (A(l))_lA(l)f(l)

And Q(l) — [Q(l) (l) . Q(l>] and P(l) — [P(l) P(l) . P(l)]
Thus we have three 1dent1t1es Where the left-hand s1des involve operators on [; only:

L —ARQWDW = Al PO
) _D(i)Q(i)TAl(jll - p(i)TA;lF)
3. D(i)Q(i)TAl(_?Q(i) - Q(i>TAI(,?Q(i)D(i) - p(i)TA;?p(i), where
DD = diagonal(1 = 41,1 - A3,---, 1 =A,) =1 - A?
Also the Q) consist of the generalized eigenvectors from (5), and we can nor-
malize the eigenvectors so that Q(")TA?F)Q(") = I and QW s QD = AD
however in the implementation we do not assume normalized eigenvectors, so we
keep Q)" A;?Q(i). Define the global extension R} : Vo — Vj,(Q) as:

ur

N
R{ ur = SRE, PO (POT AL D) PO A
- LI ( 11 )" P A Rr,rur
L i=l

ur

N

T ) e T (i .
DR PO AL 0D 0" AL Ry rur
Li=1

And for u, v € Vj, we define the exact coarse solver as:

ao(u,v) = a(RYu, RYv) = v7 ZR (AL — AL p®O (PO AW piny =1 pO" AR
i=1
N

i i i N i )T 4G
Z A(l) A( )Q( )p )(Q() A()Q()) Q() A())Rnru.

On each subdomain, we have the following lemmas and theorem:
Lemma 1 (/5]) Let H;i)u be the projection of u € Vj,(I';) onto Span of Q9. that
is, Hg)u 2 Q(i)(Q(i)A?Q<i))_lQ(i)zﬁpu. Define the local bilinear form a(()i)(u,v) =
: . . . T (7 . ST, (i
viAW-AW0Op QWA D) 1 WAy where u, v € Vi, (Ty). Then:
a\” (u,v) = (MO SO @Pu) + (v -1 0T AD (u -1 w).

Lemma 2 ([5]) Let u € Vy then
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N N
D U ity
ao(u,u) = Z a(()l)(Ré')u, Rﬁ')u) < Z SMTRF)TS(’)RFZ)u = SuTSu
i=1 i=1

From Lemma 1 and Lemma 2 and the classical Schwarz Theory [8] we have:

Theorem 1 ([5]) For any u € V,(Q) the following holds:

(2+ %)—la(u,u) < Cl(TAu,u) < 261(14,1,{) — k(TA) < 2(2+ %)

5 Complexity of Spectral Schwarz Method and with inexact
coarse solver

The solution ur = Tou of ag(ur, vo) = a(u, ROT Vo) = (ROT vo)T b is of the form:
DR {AP-A0 D V(@A) 0 W AD) R rur
i=1
= YR+ 400 QAL )P ().
i=1

N N
Denote Arr= R?iFAl("llerir’ U= ZRIZ,'FAI("?QU) R/li ,
i=1 i=1

N N N

D=Y RE DR, =R} (V" ARQD) 'R, and P = Y R} PUR,,.
i=1 i=1 i=1

where R, is arestriction chosen [u;1," - -,uiki]T froma=[u;y - Uig, - UNK, -,uNkN]T.

Here k; is the number of eigenfunctions chosen from the i-th subdomain, and i has

dimension k equals to the number of all eigenvectors chosen from all N subdomains.

Then we can rewrite the coarse mesh problem as:

(Arr - UDCUT Yur = by + UCPT by,
and we use Woodbury identity for implementation:
(Arr - UDCUT) ™' = Al + AqfU(C'D™! - UT AfLU) ' UT AL

Then the complexity of the method is associated with Alill_, C~" and the k x k matrix
(C'D™' —=UT A;LU)™!, where k = the number of all eigenfunctions.

We can make Arr and C block diagonal or diagonal matrices if we replace the
exacE A;lr) on the right-hand side of the generalized eigenproblems by A;IF), where
the Al(_'ll are block diagonal or diagonal versions of the Al(_'ll Note that for the block
diagonal case we eliminate the connections across different faces, edges and corners

of the subdomains. These inexact cases can be analyzed and given in Theorem 2.
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We introduce the local generalized eigenproblems:
) 2@ _ 4 () () A D=1 4 Dy () _ 3() 2 2@0)
S(l)fi = (AFF — Ay (AII) AIF)EJ' _/lj Arrfj :
And for u, v € Vy(Q), we define the inexact coarse solver as:

N
R N, ~(7 A A 2D ANDTAG) AV -1 AT~ (i P
o) =47 Y RO (A0 -ADO0 DY QRGO OVTAY) R
i=1

Where O9) are the generalized eigenvectors and D) = diagonal(1-A;, --- ,1-A1 k)-
Then, a condition number estimate for the inexact case is given by the following
theorem:

Theorem 2 (/5])
For any u € V,(Q) the following holds:

(2+7 max{1, (ls})_la(u,u) < a(Tau,u) < 4a(u,u) = k(Ty) < 4(2+7 max{1, é})

6 Numerical Experiments

We present results for problem (1) for f = 1 of our Adaptive Spectral Schwarz
method with highly heterogeneous coeflicients in the format of stripes crossing the
interface of the subdomains (see Figure 1). We divide the square domain into H X H
congruent square subdomains and in each subdomain we have two horizontal stripes
and two vertical stripes. The coefficient on the stripe (in grey) is p(x) = 107°
and p(x) = 1 elsewhere. Experiments show (not presented here) that the Additive
Average Schwarz method can lead to a large condition number that depends on
Pmax/Pmin- In contrast, when we use Adaptive Spectral Schwarz method with a
threshold 6§ = %%, we have a well conditioned problem with a low number of
iterations; in Table 1 we see the robustness of the adaptive spectral Schwarz method
with exact solver and Table 2 with inexact solver using diagonal of A<F'F)

Length of subdomain|Iterations |Condition number|Number of eigenvectors|Complexity of problem
H=1/4 11 6.4719 84 84 x 84
H=1/8 12 6.4719 420 420 x 420
H=1/16 12 6.4719 1860 1860 x 1860

Table 2: Adaptive Spectral Schwarz method with diagonal inexact solver and the number of
eigenvectors. We fix H /h = 8 and the number of iterations required to reduce the residual by 107.
The condition number is estimated by the Arnoldi matrix in the CG method.



: : :: Lzr(ligth O.f ICG IterationsiCondition number] Number of
8 1 subdomain| elgenvectors
| B [ 1] H=1/4 10 4.77684 84
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Table 1: Adaptive Spectral Schwarz method with exact
solver and the number of eigenvectors. We fix H/h =
8 and the number of iterations required to reduce the
Fig. 1: In the stripe mesh, coeffi- residual by 107, The condition number is estimated by
cient p(x) = 107% in each stripe, the Arnoldi matrix in the CG method.

and p(x) = 1 in other area.

7 Conclusion

We introduced new two-dimensional and three-dimensional adaptive Schwarz meth-
ods derived from the additive average Schwarz method which are robust with respect
to the jumps of coefficients with O (H/h) condition number estimates. A unique fea-
ture of our methods is that our coarse space is based on generalized eigenvectors
obtained in each nonoverlapping subdomain separately. One of the new methods has
good parallelization properties since the global coarse matrix is sparse.
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