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1 Discrete Problem

For a given domain Ω ⊂ R3 , we impose homogeneous Dirichlet data on mΩ. Let us
introduce the Sobolev space �1

0 (Ω) := {E ∈ �1 (Ω) : E = 0 on mΩ}.
The continuous variational formulation is given by: Find D ∈ �1

0 (Ω) such that

0(D, E) = 5 (E) for all E ∈ �1
0 (Ω), (1)

where
0(D, E) :=

∫
Ω

d(G)∇D · ∇E3G 5 (E) :=
∫
Ω

5 E3G,

where we assume d(G) ≥ dmin > 0 almost everywhere in Ω.

2 Discretization

We begin by discretizing Problem (1) in an algebraic framework. Let us consider a
conforming triangulationTℎ ofΩwhereΩ =

⋃
g∈Tℎ ḡ and basis functions {q: }1≤:≤=

for the finite element space +ℎ (Ω). We use the convention that an element g ∈ Tℎ ,
the domain Ω, and the subdomains Ω8 are treated as open sets.

The finite element space +ℎ (Ω) is defined as:
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+ℎ (Ω) := {E ∈ �1
0 (Ω); E |g ∈ %1 (g) ∀g ∈ Tℎ} = Span{q: : 1 ≤ : ≤ =}.

The FEM matrix form associated with (1) can be written as

�D = 1, (2)

where

(�):; := 0(q: , q;) =
∑
g∈Tℎ

0g (q: |g , q; |g) for all 1 ≤ :, ; ≤ =,

and
(1): := 5 (q: ) =

∑
g∈Tℎ

5g (q: |g) for all 1 ≤ : ≤ =.

2.1 Finite Element Spaces

We decompose Ω into N non-overlapping polygonal subdomains Ω8 which satisfy

Ω =

#⋃
8=1
Ω8 and Ω8 ∩Ω 9 = ∅, 8 ≠ 9 .

We require that each subdomain be a union of shape-regular triangular elements with
nodes on the boundaries of neighboring subdomains matching across the interface.
We define the interface of each subdomain Γ8 and the interior of each subdomain �8 ,
global interface Γ ⊂ Ω and global interior � as:

Γ8 := mΩ8\mΩ and Γ :=
#⋃
8=1
Γ8 and � = Ω/Γ =

#⋃
8=1

�8 .

For any finite element subset � ⊂ Ω let the set of degrees of freedom in D be the
hat functions

dof(�) := {1 ≤ : ≤ =; q: |� ≠ 0|�},
where 0|� : � → R is identically zero. The finite element space on D is defined as

+ℎ (�) := {D |�; D ∈ +ℎ (Ω)} = span{q: |�; : ∈ dof(�)}.

2.2 Decomposition of \h (
)

Let us consider a family of local spaces {+8 , 1 ≤ 8 ≤ #}, where

+8 = +ℎ (Ω8) ∩ �1
0 (Ω8),



Non-overlapping Spectral Additive Schwarz Methods 377

and we define the extrapolation operators ')
8

: +8 → +ℎ (Ω) where ')8 is the
extension by zero outside of Ω8 .
The coarse space +0 is defined as the space of piecewise linear and continuous
functions on Γ:

+0 = +ℎ (Γ) := {E |Γ;∀E ∈ +ℎ (Ω)}.
In Section 3, we will present different choices of the extension operator ')0 : +0 →
+ℎ (Ω). The space +ℎ (Ω) admits the following direct sum decomposition:

+ℎ (Ω) = ')0 +0 ⊕ ')1 +1 ⊕ · · · ⊕ ')#+#

2.3 Additive Schwarz Methods

Local solvers: For 1 ≤ 8 ≤ # , let us introduce the exact local bilinear form

08 (D, E) := 0(')8 D, ')8 E) D, E ∈ +8 ,

and let us define )̃8 : +ℎ (Ω) → +8 by

08 ()̃8D, E) = 0(D, ')8 E) E ∈ +8 1 ≤ 8 ≤ #, (3)

and let )8 : +ℎ (Ω) → +ℎ (Ω) be given by )8 := ')
8
)̃8 .

Global solver: For 8 = 0 first we consider the exact global solver

00 (D, E) := 0(')0 D, ')0 E) D, E ∈ +0

and let us define )̃0 : +ℎ (Ω) → +0 by

00 ()̃0D, E) = 0(D, ')0 E) E ∈ +0 (4)

and let)0 : +ℎ (Ω) → +ℎ (Ω) be given by)0 := ')0 )̃0. Note that we also will consider
inexact solvers 0̂0 (·, ·) later in this paper. We replace (2) by the linear system

)�D = 6ℎ where )� := )0 + )1 + · · · + )# , 6ℎ =

#∑
8=0

68

where 68 are obtained from (3) and (4); see [8].

3 Schur complement system

The linear system (2) can be written as
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�ΓΓ �Γ�
��Γ �� �

] [
DΓ
D�

]
=

#∑
8=1

' (8)
)

[
�
(8)
ΓΓ

�
(8)
Γ�

�
(8)
�Γ
�
(8)
� �

]
' (8)

[
DΓ
D�

]
=

#∑
8=1

' (8)
)

[
1
(8)
Γ

1
(8)
�

]
.

In this equation the extrapolation operators ' (8)) : +ℎ (Ω8) → +ℎ (Ω) is the extension
by zero at nodes outside of Ω̄8 . Thus we have,

� =

#∑
8=1
' (8)

)

�(8)' (8) =
#∑
8=1
' (8)

)

[
�
(8)
ΓΓ
�
(8)
Γ�

�
(8)
�Γ
�
(8)
� �

]
' (8) and 1 =

[
1Γ
1�

]
=

#∑
8=1
' (8)

)

[
1
(8)
Γ

1
(8)
�

]
,

where �(8) is the matrix corresponding to the bilinear form of

0 (8) (D8 , E8) =
∑

g∈Tℎ |Ω8
0g (D8 |g , E8 |g) D8 , E8 ∈ +ℎ (Ω8).

Moreover, if we label the interface nodes first and then label the interior nodes, we
can decompose the Boolean matrices ' (8)) as:

' (8)
)

=

[
')
Γ8Γ

0
0 ')

�8 �

]
and

[
D
(8)
Γ

D
(8)
�

]
= ' (8)

[
DΓ
D�

]
,

where ')
Γ8Γ

: +ℎ (Γ8) → +ℎ (Ω) and ')�8 � : +8 → +ℎ (�) are zero extension operators.
We now rewrite (2) in terms of Schur complement system (see [8])[

( 0
��Γ �� �

] [
DΓ
D�

]
=

#∑
8=1
' (8)

)

[
(
(8)
ΓΓ

0
�
(8)
�Γ
�
(8)
� �

] [
D
(8)
Γ

D
(8)
�

]
=

#∑
8=1
' (8)

)

[
1
(8)
Γ
− �(8)

Γ�
�
(8)−1

� �
1
(8)
�

1
(8)
�

]
=

[
1̃Γ
1�

]
,

where
(
(8)
ΓΓ
= �

(8)
ΓΓ
− �(8)

Γ�
�
(8)−1

� �
�
(8)
�Γ
,

1̃Γ8 =

#∑
8=1

')Γ8Γ (1
(8)
Γ
−�(8)

Γ�
�
(8)−1

� �
1
(8)
�
) and ( =

#∑
8=1

')Γ8Γ(
(8)
ΓΓ
'Γ8Γ and (DΓ = 1̃Γ.

We note that the best extension ')0 is the 0-discrete harmonic extension from Γ to �
due to the orthogonality of the coarse and local problems. In this case

0(')0 EΓ, ')0 DΓ) = E)Γ (DΓ.

The motivation is to replace ( by a good preconditioner (0 of S; see [1],[3],[2],[6].

4 New Method: Spectral Schwarz methods with exact solver

In our spectral method, we define a new ')0 extension operator. To do that, the
first goal is to represent the best :8-dimensional subspace of +8 to approximate the
0-discrete harmonic extension operator inside the subdomains. We fix a threshold
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X < 1, and choose the smallest :8 eigenvalues in each subdomain smaller than X.
First solve the following generalized eigenproblem in each subdomain separately:

( (8)b (8)
9
≡ (�(8)

ΓΓ
− �(8)

Γ�
(�(8)
� �
)−1�

(8)
�Γ
)b (8)
9
= _
(8)
9
�
(8)
ΓΓ
b
(8)
9

(5)

These eigenvalue problems are based on Neumann matrix associated to nonoverlap-
ping subdomains, therefore, differ from those in GenEO [7] and AGDSW [4].

We choose the smallest :8 eigenvalues and corresponding eigenvectors:
For 9 = 1 : :8 , let & (8)9 = b

(8)
9

%
(8)
9
= −(�(8)

� �
)−1�

(8)
�Γ
b
(8)
9

And & (8) = [& (8)1 , &
(8)
2 , · · · , & (8)

:8
] and % (8) = [% (8)1 , %

(8)
2 , · · · , % (8)

:8
].

Thus we have three identities, where the left-hand sides involve operators on Γ8 only:

1. −�(8)
ΓΓ
& (8)� (8) = �(8)

Γ�
% (8)

2. −� (8)& (8)) �(8)
ΓΓ
= % (8)

)

�
(8)
�Γ

3. � (8)& (8)
)

�
(8)
ΓΓ
& (8) = & (8)

)

�
(8)
ΓΓ
& (8)� (8) = % (8)

)

�
(8)
� �
% (8) , where

� (8) = diagonal(1 − _1, 1 − _2, · · · , 1 − _:8 ) = � − Λ(8)

Also the & (8) consist of the generalized eigenvectors from (5), and we can nor-
malize the eigenvectors so that & (8)) �(8)

ΓΓ
& (8) = � (8) and & (8)) ( (8)& (8) = Λ(8)

however in the implementation we do not assume normalized eigenvectors, so we
keep & (8)) �(8)

ΓΓ
& (8) . Define the global extension ')0 : +0 → +ℎ (Ω) as:

')0 DΓ =


DΓ

−
#∑
8=1
')�8 � %

(8) (% (8)) �(8)
� �
% (8) )−1% (8)

)

�
(8)
�Γ
'Γ8ΓDΓ


=


DΓ

#∑
8=1
')�8 � %

(8) (& (8)) �(8)
ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ
'Γ8ΓDΓ

 .
And for D, E ∈ +0, we define the exact coarse solver as:

00 (D, E) = 0 (')0 D, ')0 E) = E)
#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
− �(8)

Γ�
% (8) (% (8)) �(8)

� �
% (8) )−1% (8)

)

�
(8)
�Γ

)
'Γ8ΓD

= E)
#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
− �(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ

)
'Γ8ΓD.

On each subdomain, we have the following lemmas and theorem:

Lemma 1 ([5]) Let Π(8)
(
D be the projection of D ∈ +ℎ (Γ8) onto Span of & (8), that

is, Π(8)
(
D
Δ
= & (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ
D. Define the local bilinear form 0 (8)0 (D,E) =

E)(�(8)
ΓΓ
−�(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ

)
D where D, E ∈ +ℎ (Γ8). Then:

0
(8)
0 (D, E) = (Π

(8)
(
E)) ( (8) (Π(8)

(
D) + (E − Π(8)

(
E)) �(8)

ΓΓ
(D − Π(8)

(
D).

Lemma 2 ([5]) Let D ∈ +0 then
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00 (D, D) =
#∑
8=1

0
(8)
0 ('

(8)
Γ
D, '

(8)
Γ
D) ≤

#∑
8=1

1
X
D) '

(8))
Γ
( (8)' (8)

Γ
D =

1
X
D) (D

From Lemma 1 and Lemma 2 and the classical Schwarz Theory [8] we have:

Theorem 1 ([5]) For any D ∈ +ℎ (Ω) the following holds:

(2 + 3
X
)−10(D, D) ≤ 0()�D, D) ≤ 20(D, D) =⇒ : ()�) ≤ 2(2 + 3

X
)

5 Complexity of Spectral Schwarz Method and with inexact
coarse solver

The solution DΓ = )̃0D of 00 (DΓ, E0) = 0(D, ')0 E0) = (')0 E0)) 1 is of the form:

#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
−�(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8))−1& (8)

)

�
(8)
ΓΓ

)
'Γ8ΓDΓ

=

#∑
8=1
')Γ8Γ

(
1
(8)
Γ
+�(8)

ΓΓ
& (8)(& (8))�(8)

ΓΓ
& (8) )−1% (8)

)

1
(8)
�

)
.

Denote �ΓΓ=
#∑
8=1
')Γ8Γ�

(8)
ΓΓ
'Γ8Γ,*=

#∑
8=1
')Γ8Γ�

(8)
ΓΓ
& (8)'_8 ,

�=

#∑
8=1
')_8�

(8)'_8 , �=
#∑
8=1
')_8 (& (8)

)

�
(8)
ΓΓ
& (8) )−1'_8 and % =

#∑
8=1
')�8 �%

(8)'_8 .

where '_8 is a restriction chosen [D81,· · ·,D8:8]) from D̄=[D11,· · ·,D1:1,· · ·,D# :1,· · ·,D# :#]).
Here :8 is the number of eigenfunctions chosen from the i-th subdomain, and D̄ has
dimension : equals to the number of all eigenvectors chosen from all N subdomains.
Then we can rewrite the coarse mesh problem as:

(�ΓΓ −*��*) )DΓ = 1Γ +*�%) 1� ,

and we use Woodbury identity for implementation:

(�ΓΓ −*��*) )−1 = �−1
ΓΓ + �−1

ΓΓ* (�−1�−1 −*) �−1
ΓΓ*)−1*) �−1

ΓΓ.

Then the complexity of the method is associated with �−1
ΓΓ
, �−1 and the : × : matrix

(�−1�−1 −*) �−1
ΓΓ
*)−1, where : = the number of all eigenfunctions.

We can make �ΓΓ and � block diagonal or diagonal matrices if we replace the
exact �(8)

ΓΓ
on the right-hand side of the generalized eigenproblems by �̂(8)

ΓΓ
, where

the �̂(8)
ΓΓ

are block diagonal or diagonal versions of the �(8)
ΓΓ
. Note that for the block

diagonal case we eliminate the connections across different faces, edges and corners
of the subdomains. These inexact cases can be analyzed and given in Theorem 2.
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We introduce the local generalized eigenproblems:

( (8) b̂ (8)
8
≡ (�(8)

ΓΓ
− �(8)

Γ�
(�(8)
� �
)−1�

(8)
�Γ
)b̂ (8)
9
= _̂
(8)
9
�̂
(8)
ΓΓ
b̂
(8)
9
.

And for D, E ∈ +0 (Ω), we define the inexact coarse solver as:

0̂0 (D, E) = E)
#∑
8=1

'
(8))
Γ

(
�̂
(8)
ΓΓ
− �̂(8)

ΓΓ
&̂ (8) �̂ (8) (&̂ (8))�̂(8)

ΓΓ
&̂ (8) )−1&̂ (8)

)

�̂
(8)
ΓΓ

)
'
(8)
Γ
D.

Where &̂ (8) are the generalized eigenvectors and �̂ (8) = diagonal(1−_̂1, · · · , 1−_̂:8 ).
Then, a condition number estimate for the inexact case is given by the following
theorem:

Theorem 2 ([5])
For any D ∈ +ℎ (Ω) the following holds:

(2+7 max{1, 1
X
})−10(D, D) ≤ 0()̂�D, D) ≤ 40(D, D) =⇒ : ()̂�) ≤ 4(2+7 max{1, 1

X
})

6 Numerical Experiments

We present results for problem (1) for 5 ≡ 1 of our Adaptive Spectral Schwarz
method with highly heterogeneous coefficients in the format of stripes crossing the
interface of the subdomains (see Figure 1). We divide the square domain into � ×�
congruent square subdomains and in each subdomain we have two horizontal stripes
and two vertical stripes. The coefficient on the stripe (in grey) is d(G) = 10−6

and d(G) = 1 elsewhere. Experiments show (not presented here) that the Additive
Average Schwarz method can lead to a large condition number that depends on
d<0G/d<8=. In contrast, when we use Adaptive Spectral Schwarz method with a
threshold X = 1

4
ℎ
�
, we have a well conditioned problem with a low number of

iterations; in Table 1 we see the robustness of the adaptive spectral Schwarz method
with exact solver and Table 2 with inexact solver using diagonal of �(8)

ΓΓ
.

Length of subdomain Iterations Condition number Number of eigenvectors Complexity of problem
H=1/4 11 6.4719 84 84 × 84
H=1/8 12 6.4719 420 420 × 420
H=1/16 12 6.4719 1860 1860 × 1860

Table 2: Adaptive Spectral Schwarz method with diagonal inexact solver and the number of
eigenvectors. We fix �/ℎ = 8 and the number of iterations required to reduce the residual by 10−6.
The condition number is estimated by the Arnoldi matrix in the CG method.



Fig. 1: In the stripe mesh, coeffi-
cient d(G) = 10−6 in each stripe,
and d(G) = 1 in other area.

Length of
subdomainCG IterationsCondition number Number of

eigenvectors
� = 1/4 10 4.7684 84
� = 1/8 11 4.7684 420
� = 1/16 11 4.7684 1860

Table 1: Adaptive Spectral Schwarz method with exact
solver and the number of eigenvectors. We fix �/ℎ =
8 and the number of iterations required to reduce the
residual by 10−6. The condition number is estimated by
the Arnoldi matrix in the CG method.

7 Conclusion

We introduced new two-dimensional and three-dimensional adaptive Schwarz meth-
ods derived from the additive average Schwarz method which are robust with respect
to the jumps of coefficients with$ (�/ℎ) condition number estimates. A unique fea-
ture of our methods is that our coarse space is based on generalized eigenvectors
obtained in each nonoverlapping subdomain separately. One of the new methods has
good parallelization properties since the global coarse matrix is sparse.
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