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1 Introduction

In this paper, we present the auxiliary space preconditioning techniques for solving
the linear system arising from linear virtual element method (VEM) discretizations
on polytopal meshes of second order elliptic problems in both 2D and 3D domains.
The VEMs are generalizations of the classical finite element methods (FEMs),
which permit the use of general polygonal and polyhedral meshes. Using polytopal
meshes allows for more flexibility in dealing with complex computational domains
or interfaces (cf. [12]). It also provides a unified treatment of different types of
elements on the same mesh. In recent years, a lot of work has been devoted to
the design and analysis of the discretization methods. Less attention has been paid
to developing efficient solvers for the resulting linear systems. Only recently, have
the balancing domain decomposition by constraint (BDDC) and the finite element
tearing and interconnecting dual primal (FETI-DP) methods been studied in [6] for
VEM methods. Some two-level overlapping domain decomposition preconditioners
were developed and analyzed in [8, 9] for VEM in two dimensions. A ?-version
multigrid algorithm was proposed and analyzed in [1].

The auxiliary space preconditioners we consider here can be understood as two-
level methods, with a standard smoother on the fine level and a “coarse space”
correction. The fine level problem is the VEM discretization on polytopal mesh, and
the coarse level problem is a standard conforming P1 finite element space defined on
an auxiliary simplicial mesh. It is natural to choose the standard P1 finite element
space as the coarse space for a couple of reasons: (1) the degrees of freedom of the
coarse space are included in the VEM space – so asymptotically, the “coarse” space
should provide a good approximation for the solution on the “fine” space; (2) there are
a lot of works on developing efficient (and robust) solvers for the standard conforming
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P1 finite element discretization, so we can use any existing solvers/preconditioners as
a coarse solver. One of the main benefits of these preconditioners is that they are easy
to implement in practice. The procedure is the same as for the standard multigrid
algorithms with the grid-transfer operators between the virtual element space and
the conforming P1 finite element space. Since the same degrees of freedom are used,
we can simply use the identity operator as the intergrid transfer operator between the
coarse and fine spaces.

Due to page limitation, we only state the main result and provide some numerical
experiments to support it. We refer to [20] for more detailed analysis and further
discussion of the preconditioners. The rest of this paper is organized as follows. In
Section 2, we give basic notation and the virtual element discretization. Then in
Section 3, we present the auxiliary space preconditioners and discuss its convergence.
Finally, in Section 4, we present several numerical experiments in both 2D and 3D
to verify the theoretical result.

2 Virtual Element Methods

Let Ω ⊂ R3 (3 = 2, 3) be a bounded open polygonal domain. Given 5 ∈ !2 (Ω), we
consider the following model problem: Find D ∈ + := �1

0 (Ω) such that

0(D, E) := (^∇D,∇E) = ( 5 , E), ∀E ∈ +, (1)

where (·, ·) denotes the !2 (Ω) inner product, ^ = ^(G) ∈ !∞ (Ω) is assumed to be
piecewise positive constant with respect to the polytopal partition Tℎ of Ω but may
have large jumps across the interface of the partition.

LetTℎ be a partition ofΩ into non-overlapping simple polytopal elements . Here
we use ℎ for the diameter of the element  ∈ Tℎ (the greatest distance between
any two vertices of  ), and define ℎ = max ∈Tℎ ℎ , the maximum of the diameters.
Following [11], we make the following assumption on the polytopal mesh:

(A) Each polytopal element  ∈ Tℎ has a triangulation T of  such that T is
uniformly shape regular and quasi-uniform. Each edge of  is an edge of certain
elements in T .

On each polytopal element  ∈ Tℎ , we define the local virtual finite element space:

+ ℎ := {E ∈ �1 ( ) : E |m ∈ B1 (m ), ΔE = 0},

where B1 (m ) := {E ∈ �0 (m ) : E |4 ∈ P1 (4), ∀4 ⊂ m }. Note that + ℎ ⊃ P1 ( ),
and may contain implicitly some other non-polynomial functions. The global virtual
element space +ℎ is then defined as:

+ℎ := {E ∈ + : E | ∈ + ℎ , ∀ ∈ Tℎ}.
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The VEM discretization of (1) is given by a symmetric bilinear form 0ℎ : +ℎ ×+ℎ →
R such that

0ℎ (Dℎ , Eℎ) =
∑
 ∈Tℎ

0 ℎ (Dℎ , Eℎ), ∀Dℎ , Eℎ ∈ +ℎ ,

where 0 
ℎ
(·, ·) is a computable bilinear form defined on + 

ℎ
× + 

ℎ
. So the VEM

discretization of (1) reads: Find Dℎ ∈ +ℎ such that

0ℎ (Dℎ , Eℎ) = ( 5 , Eℎ), ∀Eℎ ∈ +ℎ . (2)

Further details on how to construct the computable bilinear form 0ℎ , as well as a
study of the convergence and stability properties of the VEM can be found in [2, 4, 5].
We refer to [3, 15] for detailed discussion on the implementation of the methods,
and refer to [7, 11] for the error estimates of the methods.

Let � be the operator induced by the bilinear form 0ℎ (·, ·), that is,

(�E, F) = (E, F)� := 0ℎ (E, F), ∀E, F ∈ +ℎ .

Then solving (2) is equivalent to solving the linear system

�Dℎ = 5 . (3)

It is clear that the operator � is symmetric and positive definite, and we can
show that the condition number satisfies K(�) . J (^)ℎ−2, where J (^) =
maxG ^(G)/minG ^(G) is the variation of the discontinuous coefficient (see for exam-
ple [20, Lemma 2.2]). Thus the resulting linear system of the VEM discretization
(2) can be very ill-conditioned with the condition number depending on both the
mesh size and the variation in the discontinuous coefficient. It is difficult to solve us-
ing the classic iterative methods such as Jacobi, Gauss-Seidel or conjugate gradient
method, without effective preconditioners. In the next section, we describe efficient
auxiliary space preconditioners for (3) that are robust with respect to the variation
in the discontinuous coefficient and the mesh size.

3 Auxiliary Space Preconditioners

To solve the discrete system (3) efficiently, we use the auxiliary space precondition-
ing technique (cf. [17]). For this purpose, we need an “auxiliary space”. For each
polytopal element  ∈ Tℎ , we introduce an auxiliary triangulation T of it such that
each edge of  is an edge of some element in this triangulation. By Assumption (A),
this is possible and can be done using a Delaunay triangulation. With this triangu-
lation, we obtain a conforming quasi-uniform triangulation T 2

ℎ
:=

⋃
 ∈Tℎ T of the

whole domain Ω. Let +2
ℎ
⊂ + be the standard conforming P1 finite element space

defined on this auxiliary triangulation T 2
ℎ
. We introduce the auxiliary problem: find

D2
ℎ
∈ +2

ℎ
such that

0(D2ℎ , Eℎ) = ( 5 , Eℎ), ∀Eℎ ∈ +2ℎ . (4)
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Similarly, let �2 be the operator induced by the bilinear form 0(·, ·), that is,

(�2E, F) = (E, F)�2 := 0(E, F), ∀E, F ∈ +2ℎ .

The auxiliary space preconditioners can be understood as a two-level algorithm
involving a “fine level” and a “coarse level”. In this setting, the fine level problem is
the VEM discretization (2) on polytopal mesh Tℎ , and the coarse level problem is the
standard conforming P1 finite element space defined on the auxiliary simplicial mesh
(4). Since �2 is the standard conforming piecewise linear finite element discretization
of (1) on the auxiliary quasi-uniform triangulation T 2

ℎ
, the “coarse” problem in +2

ℎ

can be solved by many existing efficient solvers such as the standard multigrid
methods or domain decomposition methods (see, for example [18, 19] and the
references cited therein). It can be either an exact solver or an approximate solver.
We denote �2 : +2

ℎ
→ +2

ℎ
to be such a “coarse” solver, that is �2 ≈ �−1

2 . Next, on the
fine space +ℎ , we define a “smoother” ' : +ℎ → +ℎ , which is symmetric positive
definite. For example, ' could be a Jacobi or symmetric Gauss-Seidel smoother.
Finally, to connect the “coarse” space +2

ℎ
with the “fine” space +ℎ , we need a

“prolongation” operator Π : +2
ℎ
→ +ℎ . The restriction operator ΠC : +ℎ → +2

ℎ
is

then defined as

(ΠCE, F) = (E,ΠF), for E ∈ +ℎ and F ∈ +2ℎ .

Note that the auxiliary space defined in this way has a natural intergrid transfer
operator because the degrees of freedom for the space +2

ℎ
are included among

the degrees of freedom for the space +ℎ . Thus for each E ∈ +ℎ , we can define
ΠCE = E2 ∈ +2

ℎ
such that E2 (I8) = E(I8) for each vertex I8 in the element  ∈ Tℎ .

We can view this as a linear interpolation of E onto +2
ℎ
. Then, the auxiliary space

preconditioner � : +ℎ → +ℎ can be chosen as

Additive �add = ' + Π�2ΠC , (5)
Multiplicative � − �mul� = (� − '�) (� − Π�2ΠC ) (� − '�). (6)

For these preconditioners, we have the following theorem.

Theorem 1 The auxiliary space preconditioner � = �add defined by (5) or � = �mul
defined by (6) satisfies:

K(��) ≤ �,
where the constant � > 0 depends only on the shape-regularity of the auxiliary
triangulation, and is independent of the mesh size ℎ and the coefficients ^.

The analysis is based on the auxiliary space framework [17], with some technical
error estimates from [11]. Due to the page limitation, we refer to [20] for more
detailed analysis and discussion.

Remark 1 In the auxiliary space preconditioners defined in (5) and (6), if we ignore
the smoother ', the resulting preconditioner is usually called the fictitious space
preconditioner ((cf. [14]). In this case, we denote �fict := Π�2Π

C . In fact, the
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auxiliary space preconditioners can be viewed as a generalization of the fictitious
space preconditioner by a special choice of the “fictitious space”. In particular, the
fictitious space is defined as the product space+ℎ ×+2ℎ . Including+ℎ as a component
of the fictitious space makes it easier to construct the map from the fictitious space
to the original space, which is required to be surjective. For example, there is no
surjective mapping from the linear FEM space+2

ℎ
to higher order VEM space. In this

case the smoother 'will play an important role in the auxiliary space preconditioners.
On the other hand, note that the operator Π defined above is surjective for linear

VEM discretization. If the mesh satisfies Assumption (A), one can show that the
fictitious space preconditioner is also robust with respect to the problem size and the
discontinuous coefficients. We refer to [20] for more detailed discussion. However,
our numerical experiments indicate that �fict is more sensitive to the shape-regularity
of the auxiliary triangulation, while �add and �mul are more stable with respect to
the mesh quality.

4 Numerical Experiments

In this section, we present some numerical experiments in both 2D and 3D to verify
the result in Theorem 1. In all these tests, we use 2-sweeps symmetric Gauss-Seidel
smoother. The stopping criteria is ‖A: ‖/‖A0‖ < 10−12 for the PCG algorithm, where
A: = 5 − �D: is the residual. For the coarse solver, we use the AMG algorithm
implemented in 8FEM [10].

In the first example, we consider the model problem (1) in the unit square Ω =

[0, 1]2 with constant coefficient ^ = 1. Figure 1 is an example of the polytopal mesh
of the unit square domain (with 100 elements) generated using PolyMesher [16], and
Figure 2 is the corresponding Delaunay triangular mesh. The VEM discretization is
defined on the polytopal mesh (cf. Figure 1), while the auxiliary space is the standard
conforming P1 finite element discretization defined on the corresponding triangular
mesh (cf. Figure 2).

Tables 1 shows the estimated condition number and the number of PCG iteration
in parenthesis for the un-preconditioned and preconditioned systems with various
preconditioners. Here and in the sequel, �sgs is the (2-sweep) symmetric Gauss-
Seidel preconditioner; �fict is the fictitious space preconditioner defined in Remark 1;
�add is the additive auxiliary space preconditioner defined in (5); and �mul is the
multiplicative auxiliary space preconditioner defined in (6). As we can observe from
Table 1: Estimated condition number (number of PCG iteration) in 2D with constant coefficients.

# Polytopal Elements 10 102 103 104 105

K(�) 3.45 (9) 3.86e01 (41) 3.80e02 (117) 3.88e03 (351) 4.07e04 (1100)
K(�sgs�) 1.07(6) 3.78 (15) 3.20e01 (37) 3.17e02 (104) 3.17e03 (318)
K(�fict�) 2.92 (8) 5.75 (26) 7.53 (29) 8.73 (32) 9.67(36)
K(�add�) 1.53 (9) 1.71 (14) 1.94 (14) 1.99 (14) 2.00 (13)
K(�mul�) 1.06 (8) 1.21 (10) 1.04 (7) 1.02 (6) 1.02 (6)
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Fig. 1:PolygonalMesh Tℎ of theUnit Square
Domain (100 Elements)

Fig. 2: The Corresponding Delaunay Trian-
gle Mesh T2

ℎ

this table, while the condition numbers K(�) and K(�sgs�) increase as the mesh
refined, the condition numbers K(�fict�), K(�add�) and K(�mul�) are uniformly
bounded.

In the second test, we consider the problem with discontinuous coefficients.
The coefficient ^ is generated randomly on each polygon element (see Figure 3
for an example of the coefficient distribution with 100 elements). Note that the
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Fig. 3: Random Discontinuous Coefficients
10: (100 Elements)
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Fig. 4: Polyhedral mesh generated by CVT
(93 Elements)

coefficient settings are different in different polytopal mesh. Tables 2 shows the
estimated condition number and the number of PCG iteration in parenthesis. Here
- denotes that the PCG algorithm fail to converge after 1200 iterations. As we can
see from this table, while K(�) and K(�sgs�) increase dramatically, the condition
numbersK(�fict�),K(�add�) andK(�mul�) are nearly uniformly bounded. These
observations verify the conclusions given in Theorem 1 and Remark 1.

Finally, we consider the model problem on a 3D cubic domain Ω = [0, 1]3. We
create a polyhedral mesh using Centroidal Voronoi tessellations (CVT, cf.[13]), see
Fig 4 for an example. The VEM discretization is defined on the polyhedral mesh.
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Table 2: Estimated condition number (number of PCG iteration) in 2D with discontinuous coeffi-
cients.

# Polytopal Elements 10 102 103 104 105

K(�) 2.44 (11) 2.73e06 (578) - - -
K(�sgs�) 1.18(5) 3.90e02 (26) 3.93e03 (409) - -
K(�fict�) 3.27 (8) 6.94 (33) 6.42 (36) 11.6 (44) 13.6 (53)
K(�add�) 1.54 (9) 3.51 (20) 3.60 (25) 3.67 (25) 3.80 (26)
K(�mul�) 1.06 (6) 1.74 (15) 1.82 (16) 1.84 (16) 1.88 (17)

Then we subdivide each polyhedron into tetrahedrons using Delaunay triangulation
to define the P1 conforming finite element discretization on this auxiliary mesh.

Table 3: Estimated condition number (number of PCG iteration) in 3D with ^ ≡ 1.

PolyElem 33 93 153 213 273

TetQuality 7.08e-06 4.09e-08 1.11e-09 2.98e-11 1.28e-11
K(�) 7.91 (25) 5.94e+01 (60) 1.35e+02 (77) 3.20e+02 (104) 6.66e+02 (139)
K(�add�) 2.36 (16) 4.29 (21) 3.38 (21) 4.35 (24) 5.36 (27)
K(�mul�) 1.00 (5) 1.10 (8) 1.13 (8) 1.14 (8) 1.18 (9)

Table 3 shows the performance of the �add and �mul. We do not present �fict here
because the PCG algorithm does not converge within 200 iterations. To understand
the reason, we have calculated the mesh quality of the auxiliary triangulation. Here
the TetQuality is the minimum value: min) A8

A2
for all tetrahedral elements ) , where

A8 and A2 are the radii of the inscribed and circumscribed spheres of ) , respectively.
From this table, we notice that both �add and �mul are still robust, even in the case
of poor TetQuality (which violates Assumption (A)). On the other hand, �fict is
sensitive to the shape-regularity of the auxiliary tetrahedral mesh.
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