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1 Introduction

In the field of nuclear energy, computations of complex two-phase flows are required
for the design and safety studies of nuclear reactors. System codes are dedicated
to the thermal-hydraulic analysis of nuclear reactors at system scale by simulating
the whole reactor. We are here interested in the Cathare code developed by CEA,
[5]. Typical cases involve up to a million of numerical time iterations, computing
the approximate solution during long physical simulation times. A space domain
decompositionmethod has already been implemented. To improve the response time,
we will consider a strategy of time domain decomposition, based on the parareal
method [11]. The Cathare time discretization is based on a multi-step time scheme
(see [8]). In this paper, we derive a strategy to adapt the parareal algorithm to multi-
step schemes that is not implemented in the code. The paper is organized as follows.
In Section 2, we recall the classical version of the parareal algorithm, and then detail
the variant that allows us to use multi-step time schemes for the fine solvers. A
couple of remarks on the algorithm will be discussed. The numerical convergence
for a simplified test case is shown in Section 3 on a Dahlquist test equation followed
by numerical results on an advection-diffusion equation and on an industrial test case
with an application on the Cathare code.
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2 Parareal algorithm and the multi-step variant

After the discretization of a PDE in space, we obtain an ODE system of the form:

mD

mC
+ �(C, D) = 0, C ∈ [0, )], D(C = 0) = D0 (1)

mat where � : R × RN → RN , and N denotes the number of degrees of freedom.
We here recall the classical parareal algorithm as initially proposed in [11], [2], [4].
Let � and � be two propagators such that, for any given C ∈ [0, )], B ∈ [0, ) − C]
and any function F in a Banach space, � (C, B, F) (respectively � (C, B, F)) takes F
as an initial value at time C and propagates it at time C + B. The full time interval is
divided into #2 sub-intervals [)=, )=+1] of size Δ) that will each be assigned to a
processor. The algorithm is defined using two propagation operators:

• � ()=,Δ), D=) computes a coarse approximation of D()=+1) with initial condition
D()=) ' D= (low computational cost)

• � ()=,Δ), D=) computes a more accurate approximation of D()=+1) with initial
condition D()=) ' D= (high computational cost)

Starting from a coarse approximation D=0 at times )0, )1, · · · , )# 2 , obtained using
�, the parareal algorithm performs for : = 0, 1, · · · the following iteration:

D=+1:+1 = � ()=,Δ), D=:+1) + � ()=,Δ), D=: ) − � ()=,Δ), D=: )

In the parareal algorithm, the value D()=) is approximated by D=
:
at each iteration :

with an accuracy that tends rapidly to the one achieved by the fine solver, when :
increases. The coarse approximation � can be chosen much less expensive than the
fine solver � by the use of a scheme with a much larger time step (even X) = Δ))
X) � XC (time step of the fine solver) or by using a reduced model. All the fine
propagations are made in parallel over the time windows and the coarse propagations
are computed in a sequential way but have a low computational cost. We refer to [12]
about the parallel efficiency of parareal and a recent work offering a new formulation
of the algorithm to improve the parallel efficiency of the original one. The main
convergence properties were studied in [7] and stability analysis was made in [14],
[3].
In the sequel, we will consider the case that the coarse solver is based on a one-step
time scheme and the fine solver on a two-step time scheme. Hence we will use the
following notation for the fine solver that takes two initial values: � (C, B, G, H), for
C ∈ [0, )], B ∈ [0, ) − C [ and G, H in a Banach space.

Example 1. If one solves (1) with a multi-step time scheme as fine propagator �
like the second-order BDF method:

3
2
D 9+1 − 2D 9 + 1

2
D 9−1 = −XC�(D 9+1, C 9+1), 9 = 1, · · · , # 5 , C 9+1 − C 9 = XC
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Here the fine solver reads as: D 9+1 = � (C 9 , XC, D 9−1, D 9 ). Now, we apply the parareal
algorithm with a coarse grid: )0, · · · , )# 2 where:
)=+1 − )= = Δ) = # 5 XC.
Then we can write: D()= + 9XC) ' D=, 9 , 9 = 1, · · · , # 5 , = = 1, · · · , #2 .
In order to perform the fine propagation, in a given time window [)=, )=+1], we only
need the local initial condition D=

:
and a consistent approximation of D()= − XC).

In [1], the authors propose a consistent approximation in the context of the sim-
ulation of molecular dynamics. The proposed method was linked to the nature of
the model and the symplectic character of their algorithm is shown, which is an
important property to verify for molecular dynamics.
In the context of our application to the thermalhydraulic code Cathare, we want
to derive a multi-step variant of parareal that will not be intrusive in the software.
We seek a consistent approximation of D()= − XC). The only fine trajectory at our
disposal is � ()=−1,Δ), D=−2,# 5 −1

:
, D=−1
:
). Its final value at )= is:

� ()=−1,Δ), D=−2,# 5 −1
:

, D=−1
:
) ()=) from which we compute D=

:+1 by the parareal
correction. Hence, we translate the solution:
� ()=−1,Δ) − XC, D=−2,# 5 −1

:
, D=−1
:
) ()= − XC) by the same correction:

D=
:+1 − � ()=−1,Δ), D=−2,# 5 −1

:
, D=−1
:
) and obtain the so called consistent approxima-

tion D=−1,# 5 −1
:+1 to initialize the fine propagation in [)=, )=+1]. We now detail our

algorithm:

D=+10 = � ()=,Δ), D=0 ), 0 ≤ = ≤ # − 1

D=+1
:+1 = � ()=,Δ), D=

:+1) + � ()=,Δ), D=−1,# 5 −1
:

, D=
:
)

−� ()=,Δ), D=
:
), 0 ≤ = ≤ # − 1, : ≥ 0

D
=,# 5 −1
:+1 = � ()=,Δ) − XC, D=−1,# 5 −1

:
, D=
:
) + D=+1

:+1
−� ()=,Δ), D=−1,# 5 −1

:
, D=
:
), 0 ≤ = ≤ # − 1, : ≥ 0

(2)

Another option to treat this issue is to use a one-step time scheme to initialize the
fine computation or to make one iteration with a second-order Runge Kutta method.
We will see from the numerical results that these choices modify the fine scheme
and prevent the parareal algorithm to converge to the fine solution: even after #2
iterations (where #2 is the number of time windows), the parareal algorithm does
not converge to the fine solution with the machine precision but the parareal error
stagnates around 10−6.
This method adds consistencywith the fine scheme. Also, this strategy can be applied
to multi-step time schemes involving several fine time steps preceding the time )=

by applying the same correction to terms taking the form: D=,#
5 −8

:+1 , 8 = 1, · · · , �.
The convergence analysis will be shown in a forthcoming work.
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3 Numerical results

Wenow show some numerical experiments, first for an ordinary differential equation,
the test equation of Dahlquist, then for a partial differential equation, namely the
advection-diffusion equation and finally on an industrial application with the Cathare
code.

3.1 Dahlquist equation

We first use the Dahlquist test equation :

D′(C) = _D(C), C ∈ (0, )), with D(0) = 1,

discretized by a second-order BDF method. With _ = −1, ) = 5, Δ) = )/50, which
correspond to 50 processors, and XC = )/5000, we obtain the convergence curves
shown in Fig. 1. Here, the fine solver is based on a two-step time scheme where
the computation of the solution D=, 9+1 at time )= + ( 9 + 1)XC needs the knowledge
of the solutions D=, 9 and D=, 9−1 at times )= + 9XC and )= + ( 9 − 1)XC, respectively.
We use the multi-step variant of parareal (2) to initialize the fine solver in each time
window, starting from the parareal iteration : ≥ 2. At the parareal iteration : = 1,
we use a Backward Euler method to initialize the fine solver since we don’t have
the fine solution yet. The coarse solver is based on a one-step time scheme, namely
the Backward Euler method. We plot the relative error in !∞ (0, )) between the
fine solution computed in a sequential way and the parareal solution as a function
of iteration number for the classical parareal algorithm where the Backward Euler
method is used at each iteration for the initialization of the fine solver (circles), and
for the multi-step variant of the parareal algorithm that we introduced in the previous
section (squares). We see in the Fig. 1 (without multi-step) that starting from the
fourth parareal iteration the error stagnates around 10−6 without recovering the fine
solution at the machine precision, even after 50 iterations. On the other hand, we
see in Fig. 1 (with multi-step) that the error continues to decrease after the fourth
parareal iteration until reaching the machine precision at the eleventh iteration. In
this case, if we don’t use the multi-step variant of parareal, we loose one of the well
known property of parareal: to recover the fine solution at the machine precision
after #2 iterations.

3.2 Advection-diffusion equation

We now study the behavior of the multi-step parareal (2) applied to the advection-
diffusion equation:
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Fig. 1: Convergence of the multi-step parareal for the Dahlquist test equation


mD
mC
− m2D
mG2 + mDmG = 0, (G, C) ∈ (0, 2c) × (0, ))

D(G, 0) = D0 (G), G ∈ (0, 2c)
D(G, C) = D(G + 2c, C), C ∈ (0, ))

(3)

We have chosen a spectral Fourier approximation in space (truncated series with
# = 16) and a second-order BDF method in time for a propagation over [0, 2]. The
parareal in time algorithm is implemented with Δ) = 0.1 and XC = 10−3. We have
chosen the following initial condition:

D0 (G) =
;=# /2∑

;=−# /2+1
D̂;4

8;G , with D̂; =
B6=(;)
|; |? .

We choose ? = 4, hence the initial condition is sufficiently regular.

The coarse and fine solvers are the same as in the previous numerical ex-
ample and we use the same initialization of the fine solver at the first parareal
iteration. We plot the following error as a function of iteration number: �=

:
=

<0G= | |*B4@ () =)−*=: | |!2 ( (0,2c) )
<0G= | |*B4@ () =) | |!2 ( (0,2c) )

, where *B4@ is the fine solution computed in a sequen-
tial way. In Fig. 2 (circles), we observe a similar behavior as in the previous case,
the error stagnates around 10−6 after the fifth parareal iteration without reaching the
machine precision when the number of iterations is equal to the number of time
windows (20 in this case). In Fig. 2 (squares), using the multi-step variant, the error
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continues to decrease after the fifth iteration until reaching the machine precision
around 10−16 at iteration number 20.
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Fig. 2: Convergence of the multi-step parareal for the advection-diffusion equation

3.3 Application to the Cathare code

The Cathare code simulates two-phase flows at a macroscopic scale and the model
used is the six-equation two-fluidmodel ([6],[10],[13]) that considers a set of balance
laws (mass, momentum and energy) for each phase liquid and vapor. The unknowns
are the volume fraction U: ∈ [0, 1], the enthalpies �: , the velocity D: of each phase
and the pressure ?. The density d: ≥ 0 is computed with equations of state (: = ;, 6).
The Cathare scheme is based on a finite volume method on a staggered grid (MAC
scheme) and on a two-step time scheme. Here, we write the time discretization of
the Cathare scheme:

(U:d: )=+1−(U:d: )=
ΔC

+ mG (U: d:D: )=+1 = 0

(U: d: )=+1 D
=+1
:
−D=
:

ΔC
+ (U: d:D: )=+1mGD=+1:

+ U=+1
:
mG ?

=+1 = (U: d: )=+16
+�=,=+1

:

1
ΔC

[
(U: d: )=+1

(
�: + D

2
:

2

)=,=+1
− (U: d: )=

(
�: + D

2
:

2

)=−1,=]
+mG

[
U: d:D:

(
�: + D

2
:

2

)]=+1
= U=+1

:

?=+1−?=
ΔC

+ (U: d:D: )=+16

(4)
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This choice of time discretization was made for stability purpose.
Here we apply the parareal algorithm to the solution of an oscillating manometer.
This test case is proposed in [9] for system codes to test the ability of each numerical
scheme to preserve system mass and to retain the gas-liquid interface.
We have used coarse and fine solvers such that XC = 10−5 for � and Δ) = 10XC for G.
All calculations have been evaluated with a stopping criterion where the tolerance is
fixed to the precision of the numerical scheme, n = 5 · 10−2.
In order to perform the fine propagation, in a given time window [)=, )=+1], at
the first parareal iteration we need to choose a different consistent approximation
of D()= − XC), since we have not used the fine solver yet. In the context of the
application to the Cathare code, we choose a non intrusive initialization by imposing
D
=−1,# 5 −1
0 = D=0 , 1 ≤ = ≤ # − 1 .

In Fig. 3, we plot the evolution of the relative error in !2 norm between the parareal
solution and the fine one accross the time. This result illustrates that the multi-
step variant (2) of the parareal algorithm effectively converges when applied to the
problem of the oscillating manometer.
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Fig. 3: Multi-step parareal for an industrial application with Cathare code

4 Conclusion

We have built a new variant of parareal algorithm allowing to overcome the issue
of initializing the fine solver when the time scheme involve the numerical solution
at times preceding the local initial condition in a given time window. The results of
this study show that this variant converges numerically on different examples: the
two simple test equations allow to see clearly the advantage of our strategy. The
application on an industrial code shows its efficiency on a more realistic test case
without being intrusive in the software.



The convergence analysis of this algorithm will be the subject of a forthcoming
paper. The extension of this method to the use of a multi-step scheme in the coarse
solver will be also investigated. This point was treated in [1] and a similar strategy
will be studied.
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