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1 Introduction

The computational cost is a key issue in crack identification or propagation problems.
One of the solutions is to avoid re-meshing the domain when the crack moves by
using a fictitious domain method [2]. We consider a geological crack in which the
sides do not pull apart. To avoid re-meshing, we propose an approach combining the
finite element method, the fictitious domain method, and a domain decomposition
approach. We first extend artificially the crack to split the domain into two sub-
domains with a nonpenetration condition (negative relative normal displacement)
on the crack, a prescribed homogeneous displacement jump condition (continuous
displacement) on the fictitious crack. We obtain a convex linearly constrained min-
imization problem with a quadratic cost function. We use a (primal-dual) interior
points method, see e.g.[7, sect 16.6],[5], for the numerical realization.

The paper is organized as follows. In Section 2 we present the model problem,
followed by the domain decomposition in Section 3. In Section 4, we describe the
finite element discretization and the algebraic problem. Results are presented in
Section 5.
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2 Model description

Let Ω be an open and bounded domain in R2 with smooth boundary Γ = Γ� ∪ Γ# ,
where Γ� and Γ# are Dirichlet and Neumann parts (Γ� ∩ Γ# = ∅). We denote by
u the displacement fields and by f the density of the external forces. The Cauchy
stress tensor f(u) and the strain tensor Y(u) are given by

f(u) = 2`Y(u) + _(Y(D))IR2 and Y(u) = (∇u + ∇u>)/2,

where _ and ` are the Lamé constants. The top boundary (Γ# ground surface) is
subject to homogeneous Neumann boundary condition and, on Γ� homogeneous
Dirichlet boundary conditions are assumed.

Fig. 1: Domain Ω with the crack (� and fictitious crack (0

We assume that Ω contains a crack (� represented by a curve (cf. Figure 1),
parametrized by an injective map. A nonpenetration condition is prescribed on (� .
Denoting by (+

�
, (−

�
the right and left sides of (� we can set u+ = u |(+

�
and

u− = u |(−
�
, the displacement fields on the right and left sides of (� . Then the

nonpenetration condition is given by the negative relative normal displacement, i.e.,
[u=] := (u+−u−) ·n ≤ 0, assuming no normal gap in the undeformed configuration.

The linear elastostatic model with crack is governed by the following system of
equations

−divf(u) = f inΩ, (1)
u = 0 onΓ� , f(u) · = = 0 onΓ# , (2)

[u=] ≤ 0, on (� . (3)

In the next section we extend the crack to split the domain into two subdomains.

3 Domain Decomposition

We extend artificially the crack to split the domain into two subdmoainsΩ± as shown
in Figure 1. Let (0 be the fictitious crack. On (0 we prescribed the (displacement)
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continuity condition [u] := (u+ − u−) = 0 and the normal derivative continuity
condition [f(u)=] := (f(u+) − f(u−)) · = = 0.

Let us introduce the functions space + = {E ∈ �1 (Ω); E = 0 on Γ�}, and the
forms

0(u, v) =
∫
Ω

f(u) : Y(v) 3G and f (v) =
∫
Ω

f v 3G.

Then the total potential energy is

� (v) = 1
2
0(v, v) − f (v). (4)

The elastostatic problemwith extended crack can now be formulated as the following
constrained minimization problem

min � (u), (5)
[u=] ≤ 0 on (� , (6)
[u] = 0 on (0 (7)

Since the functional (4) is strongly convex on V and constraints (6)-(7) are linear,
the constrained minimization problem (5)-(7) has a unique solution.

Remark 1 The stress continuity condition is no longer taken into acount in the for-
mulation (5)-(7). It will be ensure by the Lagrange multiplier associated with the
displacement continuity condition (7).

With (5)-(7) we associate the Lagrangian functional L defined on V × L2 ((� ) ×
L2 ((0)2 by:

L(v, `� , `0) = � (v) + (`� , [u=])(� + (`0, [u])(0 , (8)

where `� ∈ L2 ((� ), `0 ∈ L2 ((0)2 are the Lagrange multipliers associated with (6)
and (7), respectively . Note that the the multiplier associated with (7) must be non
negative, i.e. `� ≥ 0 on (. Since (5)-(7) is linear a constrained convex minimization
problem, a saddle point of L exists and (5)-(7) is equivalent to the saddle point
problem

Find (u, _� , _0) such that

L(u, `� , `0) ≤ L(u, _� , _0) ≤ L(v, _� , _0), ∀(v, `� , `0) (9)

Since L is Gateaux differentiable on V×L2 ((� ) ×L2 ((0)2, the solution of (9) is
characterized by the saddle-point (Euler-Lagrange) equations of the primal and dual
problems as follows

Find (u, _� , _0) such that
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0(u, v) + (_� , [v=])(� + (_0, [v])(0 = f (v), ∀v ∈ V, (10)
_� [u=] = 0, on (� , (11)

(`0, [u])(0 = 0, ∀`0 ∈ L2 ((0)2, (12)

where (., .)(2 and (., .)(0 are !2-scalar product on (2 and (0, respectively.
The equality (11) ( i.e. the complementarity condition) is true almost everywhere,
and if _� > 0 then [u=] = 0, and if [u=] < 0 (non contact), then _� = 0.

4 Finite element discretization and the algebraic problem

4.1 Finite element discretization

The saddle-point equations are suitable for a fictitious domain approach, i.e. the
crack mesh is defined independently of the domain mesh, see e.g.,[2]. We use a
fictitious domain method inspired by the extended finite element method (XFEM)
in which basis functions are cut across the crack, e.g. [1].

We assume that the domain Ω has a polygonal shape such that it can be entirely
triangulated. Let Tℎ be a triangulation of Ω.We define the finite elements space

+ℎ = {vℎ ∈ C0 (Ω̄); vℎ |) ∈ %: ()) ∀) ∈ Tℎ; vℎ = 0 on Γ} ⊂ +,

Here, %: ()) is the space of the polynomials of degree ≤ : on the mesh ) . We define
on ( = (� ∪ (0 a finite elements space

Λℎ = {_ℎ ∈ C0 ((); _ℎ |� ∈ %: (�) ∀� ∈ Iℎ} ⊂ !2 ((),

This approach is similar to XFEM [6], except that the standard basis functions near
the crack are not enriched by singular functions but only multiplied by Heaviside
functions :

� (G) =
{

1 if G ∈ Ω± (computational domain)
0 otherwise.

For element  containing the crack, the stiffness term
∫
 
f(q8) : Y(q 9 ) is replaced

by
∫
 
f(� (q8)) : Y(� (q 9 )).

4.2 Algebraic problem and algorithm

Assuming that u = [u+ u−]> ∈ R2= is the unknown vector of nodal values of the
displacement fields on Ωℎ . Let us define the following matrices and vectors:
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• A the stiffness matrix (2= × 2= symmetric positive definite), A = 3806(A+,A−).
• f, the external forces (vector of R2=), f = [f+ f−]>
• B� , the relative normal displacement matrix at the contact nodes B�u := (u+ −

u−) · n.
• B0, the displacement jump matrix across (0, B0u := (u+ − u−).
We define the scalar products

(,, -)"� = ,>"�- and (,, -)"0 = ,>"0-,

where "� and "0 are the mass matrices on (� and(0, respectively.
With the above notations, the algebraic Lagrangian of the problem is

L(u, ,� , ,0) = 1
2

v>Av − v>f + (,� ,B�v)"� + (,0,B0v)"0 ,

for which the saddle point (KKT) equation are

Find (u, ,I , ,0) such that:

∇uL(u, ,� , ,0) = 0 (13)
∇,�L(u, ,� , ,0) ≤ 0, ,� ≥ 0, ,� · ∇,�L(u, ,� , ,0) = 0 (14)

∇,0L(u, ,� , -0) = 0, (15)

where (·) stands for element-wise (or Hadamard) multiplication. Note that in (13),
the primal problem, the unknowns u± are uncoupled if the Lagrange multipliers
,� , ,0) are known. Then a primal-dual algorithm is suitable for solving (13)-(15).
To apply an primal-dual interior point method, we set z = −∇,�L(u, ,� , ,0), such
that (13)-(15) becomes

Find (u, z, ,� , ,0), with z ≥ 0 and ,� ≥ 0, such that

∇uL(u, ,� , ,0) = 0 (16)
∇,�L(u, ,� , ,0) + z = 0, (17)
∇,0L(u, ,� , ,0) = 0. (18)

,� · z = 0 (19)

Since A is positive definite, (16)-(19) are necessary and sufficient conditions. Then
we have to solve a nonlinear system of the form

� (u, z, ,� , ,0) = 0, z ≥ 0, ,� ≥ 0. (20)

Let us introduce the vector e = (1, . . . , 1)> and define the complementarity measure
` = ,>�z/<, where < is the dimension of z. We then replace (20) by the following
perturbed KKT conditions

� (u, z, ,� , ,0) = (0>, 0>, 0>, g`e>)>, (21)
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that is

Au = f − �>�,� − �>0 ,0, (22)
B�u + z = 0, (23)

B0u = 0, (24)
,� · z = g`e, (25)

where (g, `) > 0. Solutions of (22)-(25) for all positive values of g and ` define
a curve C(g, `), called the central path, which is the trajectory that leads to the
solution of the quadratic problem as g` tends to zero. The primal-dual interior point
algorithm for solving the saddle point system (13)-(15) consists of applying the
damped Newton method to (22)-(25). The damped parameter, g and ` are adjusted
iteratively to ensure fast convergence (see e.g., [7, sect 16.6],[5]). Solving (21) with
primal-dual interior point method consists of solving a primal-dual linear system
equivalent to the optimality conditions for an equality-constrained convex quadratic
program. Applying a Uzawa conjugate gradient method to the (linearized) optimality
conditions leads to solving primal linear systems of the form (22) which breaks down
naturally into ± sub-systems.

5 Numerical results

We have implemented the method described in the previous section in MATLAB
(R2016b) on a Linux workstation equipped with a quad-core Intel Xeon E5 with
3.00GHz clock frequency and 32GB RAM. We use the mesh generation package
KMG2D [3], and the fast FEM assembling functions package KPDE [4]. The test
problem used is designed to illustrate the numerical behavior of the algorithm more
than to model an actual geological crack.

We consider Ω = (0, 10) × (0, 5) with the boundary partition

Γ� = (0, 10) × {0} ∪ {1} × (0, 5) ∪ {0} × (0, 5) (26)
Γ# = (0, 10) × {1}. (27)

The crack is given by

(� = {(G, 1.25(G − 3) | G ∈ (3, 5.4)}, (0 = {(G, 1.25(G − 3) | G ∈ (5.4, 7)}.

The mesh sample is shown in Figure 2. The material constants are � = 9 × 106

(Young’s modulus) and a = 0.3 (Poisson’s ratio).The applied force to the domain is
the gravity with a value density of 1500.

We use the couple %2/%1 for the discretization: continuous %2 triangular element
for Ωℎ , continuous %1 segment for the crack. The choice of the finite element
pair %2/%1 is made to ensure the inf-sup condition . We first consider a uniform
discretization of Ω consisting of 561 nodes and 256 triangles. The interior point
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Fig. 2:Mesh sample of Ω with real crack and fictitious crack

algorithm stops after 11 iterations. The deformed configuration is shown in Figure 3
and reveals the presence of a crack.

To study the behavior of our algorithm, the initial mesh is uniformly refined to
produce meshes with 2145, 8385, 33153 and 131841 nodes. The performances of
the algorithm is shown in Table 1. One can observe that the number of iterations
required for convergence is virtually independent of the mesh size.

Fig. 3:Mesh sample of Ω with real crack and fictitious crack (magnification=20)

Nodes/Triangles 561/256 2145/1024 8385/4096 33153/16384 131841/65536
Iterations 11 12 15 15 14

CPU Times (Sec.) 0.21 0.47 2.37 17.64 191.92
Table 1: Number of iterations and CPU times (in Sec.) for the interior point algorithm



Conclusion

We have studied a fictitious domain method for a geological crack based on fictitious
domain and XFEM. Numerical experiments show that the number of iterations is
virtually independent of the mesh size. Further work is under way to accelerate the
method using preconditioning techniques inspired by [5]. Stabilization techniques,
as in [1], are also under study.
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