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1 Introduction

Consider the problem of finding the weak solution D : Ω→ R of

− divA∇D = 5 in Ω,
D = 0 on mΩ.

(1)

Here Ω ⊂ R2 is an open bounded domain with polygonal boundary mΩ, the sym-
metric tensor A ∈ [!∞ (Ω)]2×2

sym is uniformly positive definite and bounded.
For almost all x ∈ Ω let the positive constants 21 and 22 be such that

21 |v |2 ≤ 0min (x) |v |2 ≤ A(x) v·v ≤ 0max (x) |v |2 ≤ 22 |v |2 for all v ∈ R2, a.e. x ∈ Ω.

The associated variational formulation is given by: Find D ∈ �1
0 (Ω) such that

0(D, E) :=
∫
Ω

A∇D · ∇E 3x =
∫
Ω

5 E 3x =: ( 5 , E) ∀E ∈ �1
0 (Ω).

Recently, methods that do not rely on the regularity of the solution were intro-
duced: generalized finite element methods [1], the rough polyharmonic splines [22],
the variational multiscale method (VMS) [13], and the Localized Orthogonal De-
composition (LOD) [16, 10]. These methods are based on splitting approximation
spaces into fine andmultiscale subspaces, and the numerical solution of (1) is sought
in the latter. We note that these works were designed for the low-contrast case, that
is, 22/21 not large. We note that for a class of coefficients A, that is, when local
Poincaré inequality constants are not large, the LOD methodology works [24].
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On the other side, there exist several domain decomposition solvers which are
optimal with respect to mesh and contrast. All of them are based on extracting coarse
basis functions from local generalized eigenvalue problems. For non-overlapping
domain decomposition based on the technique named adaptive choice of primal
constraints was introduced in [19], revisited in [23, 15]; see also [6, 21] and
references therein. We note that earlier ideas were also introduced in [3]. This
robustness also was developed for overlapping domain decomposition methods and
we refer the earlier works in [7, 20].

In this paper we consider Approximate Component Mode Synthesis–ACMSmeth-
ods [5, 4, 2, 9, 12, 11, 14]; these methods require extra solution regularity and do not
work for high contrast. The goal here is to develop a discretization that has optimal
energy a priori error approximation, assuming no regularity on the solution and on
A. To do that we combine adaptive BDDC and LOD techniques; see also [17] for a
similar combination however for mixed finite element discretizations.

The remainder of the this paper is organized as follows. Section 2 describes the
substructuring decomposition into interior and interface unknowns and in Section 3
we present the goal of the paper. In Section 4 the model reduction method via
adaptive BDDC is proposed and the results are discussed. In Section 5 we consider
how to deal with elementwise problems. In Section 6 numerical results are presented.

2 Discrete Substructuring Formulation

We start by defining a partition of Ω by a triangular finite element regular mesh T�
with elements of characteristic length � > 0. Let mTℎ be the mesh skeleton, and
N� the set of nodes on mTℎ\mΩ. Consider Tℎ , a refinement of T� , in the sense that
every (coarse) edge of the elements in T� can be written as a union of edges of Tℎ .
We assume that ℎ < �. Let Nℎ be the set of nodes of Tℎ on the skeleton mTℎ\mΩ;
thus all nodes in Nℎ belong to edges of elements in T� .

For E ∈ �1 (Ω) let

|E |2
� 1
A (Ω)

= ‖A1/2
∇E‖2

!2 (Ω) , |E |2
� 1
A (T)

=
∑
g∈T
‖A1/2

∇E‖2
!2 (g) ,

where T ⊂ T� denotes a given set of elements. Let +ℎ ⊂ �1
0 (Ω) be the space of

continuous piecewise linear functions related to Tℎ . Let Dℎ ∈ +ℎ such that

0(Dℎ , Eℎ) = ( 5 , Eℎ) for all Eℎ ∈ +ℎ .

We assume that Dℎ approximates D well, but we remark that Dℎ is never computed;
the goal here is to develop numerical schemes which yield good approximations for
Dℎ , therefore, the schemes proposed can be viewed as a model reduction method.

We can decompose Dℎ = DBℎ ⊕ DHℎ in its bubble (belonging to +B
ℎ
) and 0-discrete

harmonic components (belonging to +H
ℎ
), respectively, where
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+Bℎ = {Eℎ ∈ +ℎ : Eℎ = 0 on mg, g ∈ T� },
+Hℎ = {DHℎ ∈ +ℎ : 0(DHℎ , EBℎ ) = 0 for all EBℎ ∈ +Bℎ },

i.e., +H
ℎ
= (+B

ℎ
)⊥0 . It follows immediately from the definitions that

0(DHℎ , EHℎ ) = ( 5 , EHℎ ) for all EHℎ ∈ +Hℎ , 0(DBℎ , EBℎ ) = ( 5 , EBℎ ) for all EBℎ ∈ +Bℎ .

Although the problem related to DB
ℎ
is global, it can be decomposed in local uncoupled

problems, as discussed in Section 5.
Note that any function in +H

ℎ
is uniquely determined by its trace on the boundary

of elements in T� . Let us define

Λℎ = {Eℎ |mTℎ : Eℎ ∈ +Hℎ } ⊂ �1/2 (mTℎ),

and ) : Λℎ → +H
ℎ
be the local discrete-harmonic extension operator given by

()`ℎ) |mTℎ = `ℎ , and 0()`ℎ , EBℎ ) = 0 for all EBℎ ∈ +Bℎ .

For g ∈ T� , let Λgℎ = Λℎ |mg , that is, the restriction of functions on Λℎ to mg. Define
the bilinear forms B : Λℎ × Λℎ → R and Bg : Λg

ℎ
× Λg

ℎ
→ R such that, for `ℎ ,

aℎ ∈ Λℎ ,

B(`ℎ , aℎ) =
∑
g∈T�

Bg (`gℎ , agℎ ) where Bg (`gℎ , agℎ ) =
∫
g

A∇) g`gℎ · ∇) gagℎ 3x

where ) g is the restriction of ) to g. Let _ℎ = Dℎ |mTℎ . Then DHℎ = )_ℎ and

B(_ℎ , `ℎ) = ( 5 , ) `ℎ) for all `ℎ ∈ Λℎ . (2)

3 Main Goal of the Paper

Let us introduce d ∈ !∞ (Ω) such that d(x) ∈ [dmin, dmax] almost everywhere for
some positive constants dmin and dmax, and define 6 = 5 /d and the spaces for 6 or
5 such that

‖6‖!2
d (Ω) = ‖d1/26‖!2 (Ω) = ‖ 5 ‖!2

1/d (Ω) < ∞
The main goal of this paper is the following: Given a threshold X, construct a lower-
dimensional subspace Λ<B

ℎ
⊂ Λℎ , such that for any 6 ∈ !2

d (Ω) (or equivalently
5 ∈ !2

1/d (Ω)) the multiscale solution _<B
ℎ
(6) ∈ Λ<B

ℎ
of

B(_<Bℎ , `<Bℎ ) = (d6, )`<Bℎ ) for all `<Bℎ ∈ Λ<Bℎ
satisfies
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|DHℎ − )_<Bℎ |2� 1
A (Ω)

= B(_ℎ − _<Bℎ , _ℎ − _<Bℎ ) ≤ �X2‖6‖2
!d (Ω) . (3)

where the constant � does not depend on 6, A or d.
The reason for introducing the weight function d is to normalize the equation

(1). For example, assume that A(x) = 10−6. Then the solution of (1) satisfies
−ΔD = 5 /10−6. This means that if we want to obtain an approximation like (3) with
d = 1 and with � independently of A, it would require a large space Λ<B

ℎ
, maybe

as large as the fine space Λℎ . So, it is natural for this case to choose d = 10−6. And
vice-versa, ifA(x) = 106, an estimate like (3) with d = 1 would be too easy, it would
not give a good relative energy approximation. We think that a judicious choice is
d(x) = 0min (x) since the approximation also will capture the anisotropy of A(x).
Another reason is that similarly as discussed in [8], the dimension of the space Λ<B

ℎ

is related to the number of highly conductive fingerings crossing the edges of the
coarse triangulation T� .

4 Model Reduction via BDDC

We now propose a scheme to approximate _ℎ in (2) based on LOD and BDDC
techniques. Decompose Λ = Λ0 ⊕ Λ̃ℎ by

Λ̃ℎ = {_ ∈ Λℎ : _(x8) = 0 for all x8 ∈ N� },
Λ0 = {_ ∈ Λℎ : _(x8) = 0 for all x8 ∈ Nℎ\N� }.

Let 4 be an edge of mT� \mΩ shared by the elements g and g′ of T� , and denote
Λ̃4
ℎ
= Λ̃ℎ |4, that is, the restriction of functions on Λ̃ℎ to 4. Note that a function˜̀4

ℎ
∈ Λ̃4

ℎ
vanishes at the end-points of 4; it is thus possible to extend continuously

by zero to either mg or mg′. Let us denote this extension by ')4,g : Λ̃4
ℎ
→ Λg

ℎ
.

Let us define (g44 : Λ̃4
ℎ
→ (Λ̃4

ℎ
) ′, where (Λ̃4

ℎ
) ′ is the dual space of Λ̃4

ℎ
, by

(˜̀4ℎ , (g44 ã4ℎ)4 = (')4,g ˜̀4ℎ , (g')4,g ã4ℎ)mg for all ˜̀4ℎ , ã4ℎ ∈ Λ̃4ℎ ,
where (·, ·)4 is the !2 (4) inner product and

(`gℎ , (gagℎ )mg =
∫
g

A∇) g`gℎ · ∇) gagℎ 3x for all `gℎ , a
g
ℎ ∈ Λgℎ .

In a similar fashion, define (g424, (
g
442 and (

g
4242 , related to the degrees of freedom

on 42 = mg\4. We remind that 4 is an open edge, not containing its endpoints.
Let us introduce " g

44 by

( ˜̀4ℎ , "
g
44 ã

4
ℎ)4 =

∫
g

d () g')4,g ˜̀4ℎ) () g')4,g ã4ℎ) 3x
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and define (̂g44 = X−2 " g
44 + (g44, where X is the target precision of the method, that

can be set by the user.
Define also

(̃g44 = (
g
44 − (g442 ((g4242 )−1(g424,

and it is easy to show that

(ã4ℎ , (̃g44 ã4ℎ) ≤ (aℎ , (gaℎ) for all aℎ ∈ Λgℎ so that '4,gaℎ = ã4ℎ , (4)

where the restriction operator '4,g : Λℎ → Λ̃4
ℎ
is so that '4,gaℎ (x8) = ã4ℎ (x8) for

all nodes x8 ∈ N4 := (Nℎ\N� ) ∩ 4.
In what follows, to take into account high contrast coefficients, we consider the

following generalized eigenvalue problem: Find eigenpairs (U4
8
, ˜̀4
ℎ,8
) ∈ (R, Λ̃4

ℎ
),

where U41 ≥ U42 ≥ U43 ≥ · · · ≥ U4N4 > 1, such that if the edge 4 of mT� \mΩ is shared
by elements g and g′ of T� , we solve

((̂g44 + (̂g
′
44) ˜̀4ℎ,8 = U

4
8 ((̃g44 + (̃g

′
44) ˜̀4ℎ,8 . (5)

The eigenfunctions ˜̀4
ℎ,8

are chosen to be orthonormal with respect to the norm
(·, ((̂g44 + (̂g

′
44)·)4.

Now we decompose Λ̃4
ℎ

:= Λ̃4,4
ℎ
⊕ Λ̃4,Π

ℎ
where for a given Ustab > 1,

Λ̃
4,4
ℎ

:= span{ ˜̀4ℎ,8 : U48 < Ustab}, Λ̃
4,Π

ℎ
:= span{ ˜̀4ℎ,8 : U48 ≥ Ustab}.

The value of Ustab is tuned with A(x) = d(x) = 1 so that the dimension of Λ̃4,Π
ℎ

is small. Hence, for general A(x) and d(x), the space Λ̃4,Π
ℎ

will consist mostly of
eigenvectors associated to the heterogeneities of A(x) with respect to d(x).

For adaptive BDDC preconditioners, in general the generalized eigenvalue prob-
lem is defined by

((g44 + (g
′
44) ˜̀4ℎ,8 = U

4
8 ((̃g44 + (̃g

′
44) ˜̀4ℎ,8 (6)

We note that this generalized eigenvalue problem would be enough for establishing
exponential decay for the multiscale basis functions. In (5), the term X−2" g

44 was
added to (g44. This is needed when dealing with approximation results such as
Theorem 4 since in the proof it is required that ‖E‖!2

d (Ω) ≤ X |E |� 1
A (Ω) for E ∈ )Λ̃

4
ℎ

defined below.
To define our ACMS–NLSD (Approximate Component Mode Synthesis Non-

Localized Spectral Decomposition ) method for high-contrast coefficients, let

Λ̃Πℎ = { ˜̀ℎ ∈ Λ̃ℎ : ˜̀ℎ |4 ∈ Λ̃4,Πℎ for all 4 ∈ mT� },
Λ̃4ℎ = { ˜̀ℎ ∈ Λ̃ℎ : ˜̀ℎ |4 ∈ Λ̃4,4ℎ for all 4 ∈ mT� }.

Note that Λℎ = ΛΠℎ ⊕ Λ̃4ℎ , where

ΛΠℎ = Λ
0
ℎ ⊕ Λ̃Πℎ
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and Λ0
ℎ
is the set of functions on Λℎ which vanish on all nodes of Nℎ\N� . Denote

(aℎ , (`ℎ)mTℎ =
∑
g∈T�
(agℎ , (g`gℎ)mg .

We now introduce the ACMS–NLSD multiscale functions. For g ∈ T� , consider
the operator %g,4 : Λℎ → Λ̃4

ℎ
as follows: Given `ℎ ∈ Λℎ , find %g,4`ℎ ∈ Λ̃4ℎ solving

(ã4ℎ , (%g,4`ℎ)mTℎ = (ã4ℎ , (g`ℎ)mg for all ã4ℎ ∈ Λ̃4ℎ (7)

and define %4 : Λℎ → Λ̃4
ℎ
given by %4 =

∑
g∈T� %

g,4. It is easy to see that %4 is
an orthogonal projection on Λ̃4

ℎ
with respect to (.

ConsiderΛms
ℎ
= (�−%4)ΛΠ

ℎ
. We note that (�−%4)ΛΠ

ℎ
≠ ΛΠ

ℎ
sinceΛΠ

ℎ
and Λ̃4

ℎ
are

not orthogonal with respect to (. What we have is that Λ̃4,4
ℎ

and Λ̃4,Π
ℎ

are orthogonal
with respect to (̃g44 + (̃g

′
44. If `Πℎ ∈ ΛΠℎ is a local function, (� − %4)`Π

ℎ
will not be

necessarily local. However, we can show its exponential decay.
The ACMS–NLSD method is defined by: Find _ms

ℎ
∈ Λms

ℎ
such that

(ams
ℎ , (_

ms
ℎ )mTℎ = (d6, )ams

ℎ ) for all ams
ℎ ∈ Λms

ℎ . (8)

Note that

(ams
ℎ , (_

ms
ℎ )mTℎ =

∫
Ω

A∇)ams
ℎ · ∇)_ms

ℎ 3x =

∫
Ω

d6)ams
ℎ 3x.

Remark 1 In [12, 11], different but still local eigenvalue problems are introduced,
aiming to build approximation spaces. Their analysis however requires extra regu-
larity of the coefficients, and the error estimate is not robust with respect to contrast.

Below we present several results where proofs will be published in [18].
Using local arguments, the next lemma states that a weighted Poincaré inequality

can be obtained on the space Λ̃4
ℎ
.

Lemma [18] Let ˜̀4
ℎ
∈ Λ̃4

ℎ
. Then

‖) ˜̀4ℎ ‖!2
d (Ω) ≤ (!2Ustab)1/2X |) ˜̀4ℎ |� 1

A (Ω) , (9)

where ! is the maximum number of edges that an element of T� can have. �

The next lemma states that the energy stability of the interpolation onto the primal
space ΛΠ.

Lemma [18] Let `ℎ ∈ Λℎ and let `ℎ = `Πℎ + ˜̀4
ℎ
. Then

|)`Πℎ |� 1
A (Ω) ≤ (2 + 2!2Ustab)1/2 |)`ℎ |� 1

A (Ω) .

The next lemma follows directly from the definition of the generalized eigenvalue
problem and properties of Λ̃4,4

ℎ
and (4).
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Lemma [18] Let 4 be a common edge of g, g′ ∈ T� , and ˜̀4
ℎ
∈ Λ̃4

ℎ
. Then, defining˜̀4,4

ℎ
= ˜̀4

ℎ
|4 and ˜̀g,4

ℎ
= ˜̀4

ℎ
|mg it follows that

|) g')4,g ˜̀4,4ℎ |2� 1
A (g)
+ |) g')4,g′ ˜̀4,4ℎ |2� 1

A (g′)
≤ Ustab

( |) g ˜̀g,4
ℎ
|2
� 1
A (g)
+ |) g ˜̀g′,4

ℎ
|2
� 1
A (g′)

)
Our main theorem follows.

Theorem [18] Let _ℎ = Dℎ |mTℎ , and _<Bℎ solution of (8). Then _ℎ − _<Bℎ ∈ Λ̃4ℎ and

|DHℎ − )_<Bℎ |2� 1
A (Ω)

≤ !2UstabX
2‖6‖2

!2
d (Ω) .

4.1 Decaying for the High-Contrast Case

In the next two lemmas, we show first that we can control the energy on the exterior
region outside the patch of j-neighbor elements T9+1 (g) by the energy on the strip
T9+2 (g)\T9 (g). Next, we state the exponential decay of %g,4aℎ .

Lemma [18] Let `ℎ ∈ Λℎ and let q̃4
ℎ
= %g,4`ℎ for some fixed element g ∈ T� .

Then, for any integer 9 ≥ 1,

|)q̃4ℎ |2� 1
A (T� \T9+1 (g))

≤ !2Ustab |)q̃4ℎ |2� 1
A (T9+2 (g)\T9 (g))

.

The next lemma states the exponential decay of %g,4aℎ .

Corollary [18] Assume that g ∈ T� and aℎ ∈ Λℎ and let q̃4
ℎ
= %g,4aℎ ∈ Λ̃4ℎ . For

any integer 9 ≥ 1,

|)q̃4ℎ |2� 1
A (T� \T9+1 (g))

≤ 4−
[ ( 9+1)/2]

1+!2Ustab |)q̃4ℎ |2� 1
A (T� )

.

where [B] is the integer part of B. �

Inspired by the exponential decay stated in Corollary 6, we define the operator %4, 9
as follows. First, for a fixed g ∈ T� , let

Λ̃
4,g, 9
ℎ

= {˜̀ℎ ∈ Λ̃4ℎ : ) ˜̀ℎ = 0 on T� \T9 (g)},

i.e., the support of Λ̃4,g, 9
ℎ

is just a patch of size 9 elements around the element g.
For `ℎ ∈ Λℎ , define %4,g, 9`ℎ ∈ Λ̃g, 9ℎ such that

B(%4,g, 9`ℎ , ˜̀ℎ) = Bg (`ℎ , ˜̀ℎ) for all ˜̀ℎ ∈ Λ̃4,g, 9ℎ
,

and let
%4, 9`ℎ =

∑
g∈T�

%4,g, 9`ℎ . (10)



48 Alexandre Madureira and Marcus Sarkis

Finally, define the approximation _Π, 9
�
∈ ΛΠ

�
such that

B
((� − %4, 9 )_Π, 9

�
, (� − %4, 9 )`Π�

)
= (d6, ) (� − %4, 9 )`Π� ) for all `Π� ∈ ΛΠ� , (11)

and then let _<B, 9
ℎ

= (� − %4, 9 )_Π, 9
�

. We name as ACMS–LSD (Approximate Com-
ponent Mode Synthesis Localized Spectral Decomposition) method.

We now state the approximation error of the method, starting by a technical result
essential to obtain the final estimate.

Lemma [18] Consider aℎ ∈ Λℎ and the operators %4 defined by (7) and %4, 9
by (10) for 9 > 1. Then

|) (%4 − %4, 9 )aℎ |2� 1
A (T� )

≤ (2W 9)2 (!2Ustab)24
− [ ( 9−1)/2]

1+!2Ustab |)aℎ |2� 1
A (T� )

,

where 2W is a constant depending only on the shape of T� such that∑
g∈T�

|E |2
� 1 (T9 (g)) ≤ (2W 9)

2 |E |2
� 1 (T� ) ∀E ∈ �

1 (T� ). (12)

Theorem [18] Define DH
ℎ
by (2) and let _<B, 9

ℎ
= (� − %4, 9 )_Π, 9

�
, where _Π, 9

�
is as

in (11). Then

|DHℎ −)_<B, 9 |� 1
A (T� ) ≤ X! (2Ustab)1/2‖6‖!2

d (Ω) + 2W 9 !2Ustab4
− [ ( 9−1)/2]

2(1+!2Ustab ) |DHℎ |� 1
A (T� ) .

5 Spectral Multiscale Problems inside Substructures

To approximate DB
ℎ
on an element g ∈ T� , we introduce a multiscale method by

first building the approximation space +B,ms (g) := Span{kg
ℎ,1, k

g
ℎ,2, · · · , kgℎ,#g }

generated by the following generalized eigenvalue problem: Find the eigenpairs
(Ug
8
, kg
ℎ,8
) ∈ (R, +B

ℎ
(g)) such that

0g (Eℎ , kgℎ,8) = Ug8 (dEℎ , kgℎ,8) for all Eℎ ∈ +Bℎ (g)

where

0g (Eℎ , kgℎ,8) =
∫
g

A∇Eℎ · ∇kgℎ,8 3x and (dEℎ , kgℎ,8)g =
∫
g

dEℎk
g
ℎ,8 3x,

and 0 < Ug1 ≤ Ug2 ≤ · · · ≤ Ug#g < 1/X2 and Ug
#g+1 ≥ 1/X2. The local multiscale

problem is defined by: Find DB,ms
ℎ
∈ +B,ms

ℎ
such that

0(DB,ms
ℎ

, Eℎ) = (d6, Eℎ) for all Eℎ ∈ +B,ms
ℎ

.
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We obtain

|DBℎ − DB,ms
ℎ
|2
� 1
A (Ω)

= (d6, DBℎ − DB,ms
ℎ
) ≤ X |DBℎ − DB,ms

ℎ
|� 1
A (Ω) ‖6‖!2

d (Ω) ,

and therefore,
|DBℎ − DB,ms |� 1

A (Ω) ≤ X‖6‖!2
d (Ω) .

6 Numerical Experiments

Let Ω = (0, 1) × (0, 1). We consider a Cartesian coarse mesh made of 2" × 2"
squares subdomains. We next subdivide each square subdomain into 2#−" × 2#−"
equal fine squares and then subdivide further into two 45-45-90 triangular elements.
Denote � = 2−" and ℎ = 2−# as the sizes of the subdomains and the fine elements,
respectively.

The first numerical test is to examine the exponential decay of the multiscale basis
functions.We assume thatA(x) is scalar and d(x) = A(x). The distribution of d(x)
is shown in the left Figure 1. The coefficient d = 100 inside the H-shape region and
d = 1 outside.We assume that # = 6 and" = 3, that is, 8×8 subdomain distribution
and 8 × 8 local mesh inside each subdomain. This distribution of the coefficients
A(x) and subdomains has the property that A(x) = 100 at the subdomain corner
node at x = (1/2, 1/2) and A = 1 at the remaining subdomains corners nodes.
Figure 1 on the right shows the decay of the multiscale basis function associated
to the coarse node x = (1/2, 1/2) when ΛΠ

ℎ
= Λ0

ℎ
(equivalently Λ̃4

ℎ
= Λ̃ℎ), that

is, with UBC01 = ∞ (without edges eigenfunctions). We can see that this multiscale
basis function does not decay exponentially away from x = (1/2, 1/2). The white
holes you see in the picture occurs because the value of the function is closed to
zero. The reason for the non-decay is because this basis function wants to have small
energy, that is, this basis function wants to have value near one on the H-shape region
since A is large there. We now consider the adaptive case with UBC01 = 1.5. On the
left and right of Figure 2 we show the exponential decay (in the log-normal scale)
when X = ∞ and X = �, respectively. As expected from the theory, the eigenvalue
problem (6) is enough to obtain the exponential decay, however, it is not enough for
approximation.

In the second numerical test we keep the same distribution of coefficients in
Figure 1 again choose # = 6 and " = 3. To make the problem a little more
complicated, we multiply A and d in each element by independently uniformly
random distributions between zero and one. Similarly, we let 5 to be constant in each
element given by another independently uniformly random distributions between
zero and one. In Table 1 we show the energy errors for different values of X. We also
include the total number of edges functions required by the ACMS–NLSD method
(without localization) for a X tolerance. We take UBC01 = 1.5. Just as a reference,
there are 112 interior subdomain edges; see that we can obtain a 0.22% relative
energy error using an average of one eigenvector per subdomain edge.
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Fig. 1: On left, the distribution of the coefficient for a 8 × 8 subdomain decomposition. On the
right, the plot of a multiscale basis functions without adaptivity. Note that there is no exponential
decay whatsoever.

Fig. 2: Log-normal plot showing the decay of a multiscale basis functions with adaptivity, for
X = ∞ (left figure) and X = � (right figure)

X |D − D<B |� 1
0

|D−D<B |
�1
0

|D |
�1
0

|D−D<B |
�1
0

‖ 5 ‖
!2
d

Neigs

1/8 0.0095 0.0083 0.0079 78
1/16 0.0064 0.0056 0.0053 92
1/32 0.0025 0.0022 0.0021 112
1/64 0.0014 0.0012 0.0011 226

Table 1: The energy errors for different target accuracies X. The last column shows Neigs (the total
number of multiscale edges functions).

The last numerical test we investigate the dependence of the energy error |D −
D<B, 9 |� 1

0
with respect to the localization 9 , that is, the ACMS–LSD method with

localization 9 . We can see in Table 2 that the localization works really well.
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X\ 9 -1 0 1 2
1/8 0.43870 0.0095 0.0095 0.0095
1/16 0.0977 0.0064 0.0064 0.0064
1/32 0.1702 0.0025 0.0025 0.0025
1/64 0.0795 0.0014 0.0014 0.0014

Table 2: The energy errors for different target accuracies X and localization 9.
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