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1 Introduction

Maxwell’s equations can be used tomodel the propagation of electro-magnetic waves
in the subsurface of the Earth. The interaction of such waves with the material in
the subsurface produces response waves, which carry information about the physical
properties of the Earth’s subsurface, and their measurement allows geophysicists to
detect the presence of mineral or oil deposits. Since such deposits are often found to
be invariant with respect to one direction parallel to the Earth’s surface, themodel can
be reduced to a two dimensional complex partial differential equation. Following
[20], the magnetotelluric approximation is derived from the full 3D Maxwell’s
equations,

m�

mC
+ ∇ × � = 0, −m�

mC
+ ∇ × � = �, (1)

in the quasi-static (i.e. long wavelength, low frequency) regime, which implies that
m�
mC

in (1) is neglected. Assuming a time dependence of the form 48lC , where l
is the pulsation of the wave, using Ohm’s law, � = f� + �4, where �4 denotes
some exterior current source, and the constitutive relation � = `� where ` is the
permeability of free space, we obtain

∇ × � = −8l`�, ∇ × � = f� + �4 . (2)

Assuming the plane-wave source of magnetotellurics, and a two-dimensional Earth
structure such that f = f(G, I), the electric and magnetic fields can be decomposed
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into two independent modes. For the TM-, or H-polarization, mode, we have � =

(�G , 0, �I) and� = (0, �H , 0). Hence the first vector valued equation in (2) becomes
a scalar equation,

m�G

mI
− m�I
mG

= −8l`�H , (3)

and the second vector valued equation in (2) gives two scalar equations,

−m�H
mI

= f�G + �4G or �G = − 1
f

m�H

mI
− �

4
G

f
, (4)

and
m�H

mG
= f�I + �4I or �I =

1
f

m�H

mG
− �

4
I

f
. (5)

Substituting (4) and (5) into (3) thus leads to a scalar equation for �H ,

− m
mI

{
1
f

m�H

mI

}
− m

mG

{
1
f

m�H

mG

}
+ 8l`�H = m

mI

{
�4G

f

}
− m

mG

{
�4I

f

}
. (6)

In geophysical applications the coefficient of conductivity f is in general a non-
constant, piece-wise continuous function. We will assume, however, for simplicity
that f ≡ 1. If we then set D := �H , assume homogeneous Dirichlet boundary condi-
tions and let 5 := − m

mI

{
�4G
f

}
+ m
mG

{
�4I
f

}
, we obtain the magnetotelluric approximation

of the Maxwell equations (cf. equation (2.86) in [20])

ΔD − 8lD = 5 in Ω , D = 0 on mΩ . (7)

We further assume for simplicity that Ω is a domain with smooth boundary and that
5 ∈ �∞ (Ω) ∩ � (Ω). The pulsation l is assumed to be real and non-zero. Note that
the solution D of equation (7) could also represent a component of the electric field
if the model had been derived in an analogous fashion from the TE mode.

We are interested in solving the magnetotelluric approximation (7) using Schwarz
methods. The alternating Schwarz method, introduced by H.A. Schwarz in 1869 [18]
to prove existence and uniqueness of solutions to Laplace’s equation on irregular
domains, is the foundational idea of the field of domain decomposition, and has
inspired work in both theoretical aspects and applications to all fields of science
and engineering, see [9, 4] and references therein for more information about the
historical context. Lions [16, 17] reconsidered the problem of the convergence of
the method for the Poisson equation on more general configurations of overlapping
subdomains. In his second paper [17], he followed the idea of Schwarz and proved
convergence of the alternating Schwarzmethod using themaximumprinciple for har-
monic functions. He also introduced a parallel variant of the Schwarz method, where
all subdomain problems are solved simultaneously. Schwarz methods have also been
introduced and studied for the original Maxwell equations (1), see [2, 1, 6, 5, 7, 8],
in regimes where the maximum principle can not be used to prove convergence. We
show here that for the magnetotelluric approximation of Maxwell equations in (7),
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Fig. 1: Strongly overlapping subdomain decomposition obtained by enlarging a non-overlapping
decomposition, indicated by the dashed lines, by a layer of strictly positive width

which also has complex solutions like the original Maxwell equations, the conver-
gence of the parallel Schwarz method can be proved using a maximum modulus
principle satisfied by complex solutions of (7).

2 Well-Posedness, Schwarz Method and Convergence

We start by establishing the well-posedness of the magnetotelluric approximation of
the Maxwell equations in (7).

Theorem 1 Let Ω ⊂ R2 be a bounded domain with smooth boundary. Assume that
5 ∈ !2 (Ω) and l is a non-zero constant. Then the boundary value problem (7) has
a unique solution D ∈ �1

0 (Ω), depending continuously on 5 .

Proof This result follows from a standard application of the Riesz Representation
Theorem and the Lax-Milgram Lemma. �

We now decompose the domain Ω ⊂ R2 first into non-overlapping subdomains,
and then enlarge each subdomain by a layer of positivewidth to obtain the overlapping
subdomains Ω 9 , for 9 = 1, . . . , �, leading to a strongly overlapping subdomain
decomposition of Ω. An example is shown in Figure 1, where the non-overlapping
decomposition is indicated by the dashed lines, see also [10]. For such strongly
overlapping decompositions, one can define a smooth partition of unity {j 9 }�9=1
subordinated to the open covering {Ω 9 }�9=1, such that the support of j 9 is a set  9
contained in the open subdomain Ω 9 for each 9 = 1, 2, . . . , �, see [19, Theorem 15,
Chapter 2]. The assumption of a strongly overlapping decomposition is not strictly
necessary to use maximum principle arguments, see for example [11, 12], which
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contain even accurate convergence estimates, but we make it here since it simplifies
the application of the maximum modulus principle (via Corollary 1) for studying
Schwarz methods for equations with complex valued solutions. For each Ω 9 , we
denote by Γ 9 the portion of mΩ 9 in the interior of Ω.

The parallel Schwarz method for such a multi-subdomain decomposition starts
with a global initial guess for the solution of (7), D0

glob ∈ �2 (Ω) ∩ �0 (Ω) (less
regularity would also be possible, because of the regularization provided by the
equation). If at step = of the parallel Schwarz method the global approximation D=glob
has been constructed, and D=glob ∈ �2 (Ω) ∩ �0 (Ω), then the iteration produces the
next global approximation by solving, for 9 = 1, . . . , �, the Dirichlet problems

ΔD=+1
9
− 8lD=+1

9
= 5 in Ω 9 ,

D=+1
9

= 0 on Ω 9 ∩ mΩ,
D=+1
9

= D=glob on Γ 9 ,
(8)

and then defining the (= + 1)Cℎ global iterate by using the partition of unity,

D=+1glob =

�∑
9=1

j 9D
=+1
9 . (9)

Since the initial guess D0
glob is smooth, by induction it follows that D=+1glob ∈ �2 (Ω) ∩

�0 (Ω). This fact allows us to use the classical (i.e. non-variational ) formulation of
the maximum modulus principle.

Definition 1 A real valued function E of class �2 (Ω) is said to be subharmonic if
ΔE(G) ≥ 0, ∀G ∈ Ω, and strictly subharmonic if ΔE(G) > 0, ∀G ∈ Ω.
Note that the above definition is not the most general one, but it is suitable for the
purposes of our paper. The property that we will use to prove the convergence of
the parallel Schwarz method is the well-known maximum principle, which is the
content of the next theorem (see [13], Theorem J-7).

Theorem 2 Let E ∈ �2 (Ω) ∩ � (Ω) be a non-constant subharmonic function. Let
$ ⊂ Ω be a proper open subset. Then E satisfies the strong maximum principle,
namely max$ E < maxmΩ E.

The following corollary contains the key estimate for proving the convergence of the
parallel Schwarz method.

Corollary 1 Let  be a closed subset of Ω. Then there exists a constant W ∈ [0, 1)
such that max D < WmaxmΩ D, for all non-constant subharmonic functions D ∈
�2 (Ω) ∩ �0 (Ω).
Proof The result follows as an application of a Lemma originally stated by Schwarz
(see [15], pp. 632-635). �

Since the solution of the magnetotelluric approximation (7) of Maxwell’s equation
has complex valued solutions, it is not directly possible to use themaximum principle
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result in Corollary 1 for proving convergence of the associated Schwarz method (8)-
(9). The key additional ingredient is to prove the following property on the modulus
of solutions of the magnetotelluric approximation:

Theorem 3 Let D ∈ �2 (Ω) ∩� (Ω) be a non-zero solution of the homogeneous form
of equation (7). Then |D |2 is a non-constant subharmonic function.
Proof Taking the complex conjugate of the partial differential equation (7) with
5 = 0, gives a pair of equations, ΔD − 8lD = 0 and ΔD + 8lD = 0. Hence we can
compute

Δ|D |2 = Δ(DD) = ∇(D∇D + D∇D) = ∇D∇D + DΔD + ∇D∇D + DΔD =
= 2|∇D |2 + 8l|D |2 − 8l|D |2 = 2|∇D |2 ≥ 0 .

Therefore, |D |2 is subharmonic. If |D |2 is constant, the same calculations show that
∇D ≡ 0, which implies that D is a constant solution, hence it must be identically
equal to zero, since the equation ΔD − 8lD = 0 has no constant non-zero solutions.�

Wenowprove the convergence of the parallel Schwarzmethod for themagnetotelluric
approximation of Maxwell’s equation in the infinity norm, which we denote by | | · | |(
for any function on a subdomain (.

Theorem 4 The parallel Schwarz method (8)-(9) for the magnetotelluric approxi-
mation (7) of Maxwell’s equations is convergent and satisfies the error estimate

max
9=1,...,�

| |D − D=9 | |Ω 9 ≤ W= max
9=1,...,�

| |D − D0
9 | |Ω 9 , (10)

where D denotes the global solution of problem (7) and D=
9
the approximations from

the parallel Schwarz method (8)-(9), and the constant W < 1 comes from Corollary 1.

Proof For 9 = 1, . . . , �, let  9 ⊂ Ω 9 be the support of the partition of unity function
j 9 , and let 4=9 := D−D=

9
be the error. Then 4=

9
is solution of the homogeneous equation

Δ4=
9
− 8l4=

9
= 0, and hence by Theorem 3 its modulus is a subharmonic function,

and thus by Theorem 2, the modulus of the error |4=
9
| satisfies the strong maximum

principle. We can then estimate on each subdomain Ω 9

| |4=+19 | |Ω 9 = | |4=+19 | |Γ 9 = | |
�∑
9′=1

j 9′4
=
9′ | |Γ 9

≤ max
9′=1,...,�

| |4=9′ | | 9′ ≤ W max
9′=1,...,�

| |4=9′ | |Γ 9′ = W max
9′=1,...,�

| |4=9′ | |Ω 9′ ,

where W ∈ [0, 1) is the maximum of the factor introduced in Corollary 1 over all Ω 9
and corresponding  9 . Since this holds for all 9 , we can take the maximum on the
left and obtain

max
9=1,...,�

| |4=+19 | |Ω 9 ≤ W max
9′=1,...,�

| |4=9′ | |Ω 9′ ,

which proves by induction (10). �
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Remark 1 The convergence factor W < 1 is not quantified in Theorem 4, since Corol-
lary 1 does not provide a method to estimate the constant W in the generality of the
decomposition we used, but such an estimate is possible for specific decompositions,
see for example [11, 12].

Remark 2 In [17], Lions proved the convergence of the classical Schwarz method for
the Poisson equation with Dirichlet boundary conditions using a method that does
not use the maximum principle. His remarkable proof is based on the method of
orthogonal projections, and relies on the fact that the bilinear form associated with
the weak formulation of the Poisson equation is an inner product in the solution
space �1

0 (Ω). We do not see how this method can be extended to prove convergence
of the classical Schwarz method applied to the magnetotelluric approximation of the
Maxwell equations. In our case, the bilinear form associated to the weak formulation
of (7) of the global problem is not an inner product, as it fails to be symmetric and
positive-definite.

3 Numerical examples

We now present two numerical experiments. The simulations are computed on a
domain Ω that consists of two squares Ω1 and Ω2, each of unit size 1 × 1. The
discretization for each square consists of a uniform grid of 30 × 30 points. The
overlap is along a vertical strip whose width is specified by the number of grid
points, denoted by 3.

We first compute the error 4=
9

:= D − D=
9
, as used in the proof of Theorem 4. In

Figure 2 we show, from left to right, the modulus of the error on the left subdomain
for iteration = = 1, = = 5 and = = 15, for an overlap of 3 = 6 horizontal grid
points. We chose l = 1, and the initial error was produced by generating random
values uniformly distributed on the range [0, 1]. Note how the modulus of the error
clearly satisfies the maximum principle. In Figure 3, we plot the dependence of the
interface residual (in the 2-norm) on the iteration number, for three different overlap
sizes 3 = 2, 4, 6. As expected, the performance of the algorithm improves as we
increase the size of the overlap, since increasing the overlap improves the constant
W in Corollary 1 which is the key quantity governing the convergence of the parallel
Schwarz method.

4 Conclusion

We showed in this paper that even though the solutions of the magnetotelluric
approximation of Maxwell’s equations are complex valued, maximum principle
arguments can be used to prove convergence of a parallel Schwarz method. The main
new ingredient is a maximum modulus principle which is satisfied by the solutions
of the magnetotelluric approximation. In a forthcoming paper, we will analyze the
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Fig. 2: Modulus of the error 4=1 := D − D=1 for = = 1, 5, 15 on the left subdomain when using the
parallel Schwarz method for solving ΔD − 8lD = 0. Note how the modulus satisfies the maximum
principle.
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Fig. 3: Decay of the interface residual (in the 2-norm) as a function of the iteration number when
using the parallel Schwarz method for solving ΔD − 8lD = 0 using different overlap sizes (3
denotes the number of grid points in the overlap).

convergence rate of the parallel Schwarz method via Fourier analysis, and we will
also introduce more efficient transmission conditions of Robin (or higher-order)
type at the interfaces between the subdomains, which leads to optimized Schwarz
methods, see [14, 3] and references therein.
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