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1 Mathematical model

The propagation of waves in elastic media is a problem of undeniable practical
importance in geophysics. In several important applications - e.g. seismic exploration
or earthquake prediction - one seeks to infer unknown material properties of the
earth’s subsurface by sending seismic waves down and measuring the scattered field
which comes back, implying the solution of inverse problems. In the process of
solving the inverse problem (the so-called "full-waveform inversion") one needs to
iteratively solve the forward scattering problem. In practice, each step is done by
solving the appropriate wave equation using explicit time stepping. However in many
applications the relevant signals are band-limited and it would be more efficient to
solve in the frequency domain. For this reason we are interested here in the time-
harmonic counterpart of the Navier or Navier-Cauchy equation (see [6, Chapter 5.1]
or [9, Chapter 9]1), which is a linear mathematical model for elastic waves

−
(
Δ4 + l2d

)
u = f in Ω, Δ4u = `Δu + (_ + `)∇(∇ · u), (1)

where u is the displacement field, f is the source term, d is the density that we
assume real, `, _ ∈ [R∗+]2 are the Lamé coefficients, and l is the time-harmonic
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1 For the fascinating history on how Navier discovered the equation and then rapidly turned his
attention to fluid dynamics, see [3].
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frequency for which we are interested in the solution. An example of a discretization
of this equation was presented in [10]. In our case, we assumed small deformations
which lead to linear equations and consider isotropic and homogeneous materials
which implies that the physical coefficients are independent of the position and
the direction. Due to their indefinite nature, the Navier equations in the frequency
domain (1) are notoriously difficult to solve by iterative methods, especially if the
frequency l becomes large, similar to the Helmholtz equation [7], and there are
further complications as we will see. We study here if the classical Schwarz method
could be a candidate for solving the time harmonic Navier equations (1) iteratively.

2 Classical Schwarz Algorithm

To understand the convergence of the classical Schwarz algorithm applied to the
time harmonic Navier equations (1), we study the equations on the domain Ω := R2,
and decompose it into two overlapping subdomains Ω1 := (−∞, X) × R and Ω2 :=
(0,∞) × R, with overlap parameter X ≥ 0. The classical parallel Schwarz algorithm
computes for iteration index = = 1, 2, . . .

− (
Δ4 + l2d

)
u=1 = f in Ω1,
u=1 = u=−1

2 on G = X,
− (
Δ4 + l2d

)
u=2 = f in Ω2,
u=2 = u=−1

1 on G = 0.

(2)

We now study the convergence of the classical parallel Schwarz method (2) using a
Fourier transform in the H direction. We denote by : ∈ R the Fourier variable and
û(G, :) the Fourier transformed solution,

û(G, :) =
∫ ∞

−∞
e−i:H u(G, H) dH, u(G, H) = 1

2c

∫ ∞

−∞
ei:H û(G, :) d:. (3)

Theorem 1 (Convergence factor of the classical Schwarz algorithm) For a given
initial guess (u0

1 ∈ (!2 (Ω1)2), (u0
2 ∈ (!2 (Ω2)2), eachFouriermode : in the classical

Schwarz algorithm (2) converges with the corresponding convergence factor

d2;0
(
:, l, �? , �B , X

)
= max{|A+ |, |A− |},

where

A± =
-2

2
+4−X (_1+_2)± 1

2

√
-2 (

-2 + 44−X (_1+_2) ) , - = :2 + _1_2

:2 − _1_2

(
4−_1 X − 4−_2 X

)
.

(4)
Here, _1,2 ∈ C are the roots of the characteristic equation of the Fourier transformed
Navier equations,
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_1 =
√
:2 − l2

�2
B
, _2 =

√
:2 − l2

�2
?
, �? =

√
_+2`
d
, �B =

√
`

d
. (5)

Proof By linearity it suffices to consider only the case f = 0 and analyze convergence
to the zero solution, see for example [8]. After a Fourier transform in the H direction,
(1) becomes 

[
(_ + 2`) m2

G +
(
dl2 − `:2

)]
D̂G + 8: (` + _)mG D̂I = 0,[

`m2
G +

(
dl2 − (_ + 2`) :2

)]
D̂I + 8: (` + _) mG D̂G = 0.

(6)

This is a system of ordinary differential equations, whose solution is obtained by
computing the roots A of its characteristic equation,[ (_ + 2`)A2 + dl2 − `:2 8: (` + _)A

8: (` + _)A `A2 + dl2 − (_ + 2`):2

] [
D̂G
D̂I

]
= 0. (7)

A direct computation shows that these roots are ±_1 and ±_2 where _1,2 are given
by (5). Therefore the general form of the solution is

û(G, :) = U1v+4_1G + V1v−4−_1G + U2w+4_2G + V2w−4−_2G , (8)

where v± and w± are obtained by successively inserting these roots into (7) and
computing a non-trivial solution,

v+ =
(

1
i_1
:

)
, v− =

(
1
− i_1
:

)
, w+ =

(
− i_2
:

1

)
, w− =

( i_2
:

1

)
. (9)

Because the local solutions must remain bounded and outgoing at infinity, the sub-
domain solutions in the Fourier transformed domain are

û1 (G, :) = U1v+4_1G + U2w+4_2G , û2 (G, :) = V1v−4−_1G + V2w−4−_2G . (10)

The coefficients U1,2 and V1,2 are then uniquely determined by the transmission con-
ditions. Before using the iteration to determine them, we rewrite the local solutions
at iteration = in the form

û=1 = U
=
1 v+4_1G + U=2 w+4_2G =

[
e_1G − 8_2

:
e_2G

8_1
:

e_1G e_2G

] (
U=1
U=2

)
=: "G"

=,

û=2 = V
=
1 v−4−_1G + V=2 w−4−_2G =

[
e−_1G 8_2

:
e−_2G

− 8_1
:

e−_1G e−_2G

] (
V=1
V=2

)
=: #G#=.

(11)

We then insert (11) into the interface iteration of the classical Schwarz algorithm
(2),

"X"
==#X#

=−1 ⇔ "=="−1
X #X#

=−1, #0#
=="0"

=−1 ⇔ #==#−1
0 "0"

=−1.
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This leads over a double iteration to

"=+1= ("−1
X #X#

−1
0 "0)"=−1=:'1

X"
=−1, #=+1= (#−1

0 "0"
−1
X #X)#=−1=:'2

X#
=−1,

where '1,2
X

are the iteration matrices which are spectrally equivalent. The iteration
matrix '1

X
is given by

'1
X =

[
e−X (_1+_2) -2

2
_1
_2
+ e−2_1 X -2

1 -1-2
(
e−2_1 X − e−X (_1+_2) )

-1-2
_1
_2

(
e−X (_1+_2) − e−2_2 X

)
e−X (_1+_2) -2

2
_1
_2
+ e−2_2 X -2

1

]
, (12)

where -1 =
:2+_1_2
:2−_1_2

and -2 = −i 2:_2
:2−_1_2

. A direct computation then leads to the
eigenvalues (A+, A−) of '1

X
,

A± =
-2

2
+e−X (_1+_2) ±1

2

√
-2 (

-2 + 44−X (_1+_2) ) , - =
:2 + _1_2

:2 − _1_2

(
e−_1 X − e−_2 X

)
.

(13)
The convergence factor is given by the spectral radius of the matrix '1,2

X
,

d2;0
(
:, l, �? , �B , X

)
= max{|A+ |, |A− |}, (14)

which concludes the proof. �

Corollary 1 (Classical Schwarz without Overlap) In the case without overlap,
X = 0, we obtain from (4) that A± = 1, since

(
'1
X
= Id

)
. Therefore, the classical

Schwarz algorithm is not convergent without overlap, it just stagnates.

The result in Corollary 1 is consistent with the general experience that Schwarz
methods without overlap do not converge, but there are important exceptions, for
example for hyperbolic problems [4], and also optimized Schwarz methods can
converge without overlap [8]. Unfortunately also with overlap, the Schwarz method
has difficulties with the time harmonic Navier equations (1):

Corollary 2 (Classical Schwarz with Overlap)
The convergence factor of the overlapping classical Schwarz method (2) with

overlap X applied to the Navier equations (1) verifies for X small enough

d2;0
(
:, l, �? , �B , X

) 
= 1, : ∈ [0, l

�?
] ∪ { l

�B
},

> 1, : ∈ ( l
�?
, l
�B
),

< 1, : ∈ ( l
�B
,∞).

It thus converges only for high frequencies, diverges for medium frequencies, and
stagnates for low frequencies.

Proof We only give here the outline of the proof, the details will appear in [2],
see also [1]: for the first interval : ∈ [0, l

�?
), the proof is obtained by a direct, but

long and technical calculation. For the second and third interval, : ∈ ( l
�?
, l
�B
) and
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Fig. 1: Modulus of the eigenvalues of the iteration matrix as a function of Fourier frequency for
the classical Schwarz method with �? = 1, �B = 0.5, d = 1, X = 0.1. Left: for l = 1. Right: for
l = 5.

: ∈ ( l
�B
,∞), we compute the modulus of the eigenvalues and expand them for X

small to obtain the result. At the boundary between those intervals for : ∈ { l
�?
, l
�B
},

the natural simplifications _2 = 0 or _1 = 0 lead directly to the result2. We illustrate
the three zones of different convergence behavior for two examples in Figure 1.

We see from Corollary 2 that the classical Schwarz method with overlap can not be
used as an iterative solver to solve the time harmonic Navier equations, since it is in
general divergent on the whole interval of intermediate frequencies ( l

�?
, l
�B
). This

is even worse than for the Helmholtz or Maxwell’s equations where the overlapping
classical Schwarz algorithm is also convergent for high frequencies, and only stag-
nates for low frequencies, but is never divergent. A precise estimate of how fast the
classical Schwarz method applied to the time harmonic Navier equations diverges
depending on the overlap is given by the following theorem:

Theorem 2 (Asymptotic convergence factor) The maximum of the convergence
factor of the classical Schwarz method (2) applied to the Navier equations (1)
behaves for small overlap X asymptotically as

max
:
(max |A± |) ∼ 1 +

√
2�Bl

(
3�2

?−
√
�4
?+8�4

B

)√
�2
?

√
�4
?+8�4

B−�4
?−2�4

B

�? (�2
?+�2

B )
3
2
(√
�4
?+8�4

B−�2
?

) X.

Proof According to Corollary 2, the maximum of the convergence factor is attained
in the interval where the algorithm is divergent, : ∈ ( l

�?
, l
�B
), and this quantity

is larger than one. For a fixed : and a small overlap X, the convergence factor

2 The two values : = l
�?

and : = l
�B

correspond to points in the spectrum where the underlying
Navier equations are singular, and are similar to the one resonance frequency in the Helmholtz case.
They are avoided in practice either by using radiation boundary conditions on parts of the boundary
of the computational domain, or by choosing domain geometries such that these frequencies are
not part of the discrete spectrum of the Navier operator on the bounded domain.
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Fig. 2: Error in modulus at iteration 25 of the classical Schwarz method with 2 subdomains, where
one can clearly identify the dominant mode in the error: Left: l = 1. Right: l = 5.

d2;0 (:, l, �? , �B , X) for : ∈ ( l�? ,
l
�B
) is given by

d2;0 (:, l, �? , �B , X) = 1 + 2l2_2_̄
2
1

�2
? (:4+_̄2

1_
2
2) X + O

(
X2) ∈ R∗+. (15)

We denote by � (:) the coefficient in front of X. In order to compute the maximum
of (15) we solve the equation 3� (:)

3:
= 0. We denote by :B the only positive critical

point for which 32� (:)
3:2 (:B) < 0. By replacing :B into the expression of � (:) we get

the desired result, see [1] for more details. �

3 Numerical experiments

We illustrate now the divergence of the classical Schwarz algorithmwith a numerical
experiment. We choose the same parameters �? = 1, �B = 0.5, d = 1 and overlap
X = 0.1 as in Figure 1. We discretize the time-harmonic Navier equations using %1
finite elements on the domain Ω = (−1, 1) × (0, 1) and impose absorbing boundary
conditions on mΩ. We decompose the domain into two overlapping subdomains
Ω1 = (−1, 2ℎ) × (0, 1) and Ω2 = (−2ℎ, 1) × (0, 1) with ℎ = 1

40 , such that the overlap
X = 0.1 = 4ℎ. Our computations are performed with the open source software
Freefem++. We show in Figure 2 the error in modulus at iteration 25 of the classical
Schwarz method, on the left for l = 1 and on the right for l = 5. In the first case,
l = 1, we observe very slow convergence, the error decreases from 7.894 − 1 to
54 − 2 after 25 iterations. This can be understood as follows: the lowest frequency
along the interface on our domain Ω is : = c, which lies outside the interval
[ l
�?
, l
�B
] = [1, 2] of frequencies on which the method is divergent. The method thus

converges, all frequencies lie in the convergent zone in the plot in Figure 1 on the left
where d2;0 < 1. The most slowly convergent mode is | sin(:H) | with : = c, which
is clearly visible in Figure 2 on the left. This is different for l = 5, where we see
in Figure 2 on the right the dominant growing mode. The interval of frequencies on
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Fig. 3: Spectrum of the iteration operator for the same example as in Figure 1, together with a unit
circle centered around the point (1, 0) . Left: l = 1. Right: l = 5

which the method is divergent is given by [ l
�?
, l
�B
] = [5, 10], and we clearly can

identify in Figure 2 on the right a mode with two bumps along the interface, which
corresponds to the mode | sin(:H) | along the interface for : = 2c ≈ 6, which is the
fastest diverging mode according to the analytical result shown in Figure 1 on the
right.

One might wonder if the classical Schwarz method is nevertheless a good pre-
conditioner for a Krylov method, which can happen also for divergent stationary
methods, like for example the Additive Schwarz Method applied to the Laplace
problem, which is also not convergent as an iterative method [5], but useful as a
preconditioner. To investigate this, it suffices to plot the spectrum of the identity
matrix minus the iteration operator in the complex plane, which corresponds to the
preconditioned systems one would like to solve. We see in Figure 3 that the part of
the spectrum that leads to a contraction factor d2;0 with modulus bigger than one
lies unfortunately close to zero in the complex plane, and that is where the residual
polynomial of the Krylov method must equal one. Therefore we can infer that the
classical Schwarz method will also not work well as a preconditioner. This is also
confirmed by the numerical results shown in Figure 4, where we used first the classi-
cal Schwarz method as a solver and then as preconditioner for GMRES. We see that
GMRES now makes the method converge, but convergence depends strongly on l
and slows down when l grows.

4 Conclusion

We proved that the classical Schwarz method with overlap applied to the time har-
monicNavier equations cannot be used as an iterative solver, since it is not convergent
in general. This is even worse than for the Helmholtz or time harmonic Maxwell’s
equations, for which the classical Schwarz algorithm also stagnates for all propaga-
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Fig. 4: Convergence history for RAS and GMRES preconditioned by RAS for different values of
l

tive modes, but at least is not divergent. We then showed that our analysis clearly
identifies the problematic error modes in a numerical experiment. Using the classical
Schwarz method as a preconditioner for GMRES then leads to a convergent method,
which however is strongly dependent on the time-harmonic frequency parameter l.
We are currently studying better transmission conditions between subdomains, which
will lead to optimized Schwarz methods for the time harmonic Navier equation.
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