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1 Introduction

We study the behavior of solutions of PDE models on domains containing a het-
erogeneous layer of aperture tending to zero. We consider general second order
differential operators on the outer domains and elliptic operators inside the layer.
Our study is motivated by the modeling of flow through fractured porous media,
when one represents the fractures as entities of co-dimension one with respect to the
surrounding rock matrix. These models are called Discrete Fracture Matrix (DFM)
models [2, 4, 1]. A recent study on DFM models and their discretization can be
found in [3]. Our focus lies on the derivation of coupling conditions, which have to
be satisfied by the traces of the solutions for the matrix domain on each side of the
matrix-fracture interfaces. We emphasize that we are not only concerned with the
derivation of coupling conditions that have to be fulfilled in the limit of vanishing
aperture, but in particular with the derivation of coupling conditions that have to
be fulfilled up to a certain order of the aperture, which in turn occurs as a model
parameter. In our work flow, we first derive exact coupling conditions by means of
Fourier analysis. Reduced order coupling conditions are then obtained by truncation
of the exact conditions at the desired order. Our approach is very systematic and
allowed us to reproduce various coupling conditions from the literature as well as
assess the error of the reduced models.
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Fig. 1 Illustration of the do-
main under consideration. In
our study, we restrict our-
selves to a simple geometry,
where Ω1 = (0, −X) × R,
Ω2 = (X, 1) × R and
Ω 5 = (−X, X) × R, with
0, 1 ∈ R. n denotes the unit
normal in G-direction.
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2 Model problem

We consider the following problem on a threefold domain as illustrated in Figure 1:

L 9 (D 9 , q 9 ) = ℎ 9 in Ω 9 , 9 = 1, 2, 5 , (1)
q 9 = G 9D 9 in Ω 9 , 9 = 1, 2, 5 , (2)
D 9 = D 5 on mΩ 9 ∩ mΩ 5 , 9 = 1, 2, (3)

q 9 · n = q 5 · n on mΩ 9 ∩ mΩ 5 , 9 = 1, 2, (4)

where L 9 ,G 9 are differential operators, together with some suitable boundary con-
ditions. Only inside the fracture domain Ω 5 , we will restrict our study to the class
of general elliptic models, i.e. we assume that

L 5 (D 5 , q 5 ) = −divq 5 + b
2
· ∇D 5 + ([ − div

b
2
)D 5 and G 5 D 5 = (A∇ − b

2
)D 5
(5)

with [ ∈ R≥0, b ∈ R2 and coercive A ∈ R2×2. For simplicity, we also assume a
trivial source term inside the fracture, i.e. ℎ 5 = 0.

3 Derivation of the reduced models by Fourier analysis

From (1),(2),(5) the Fourier coefficients D̂ 5 (G, :) of D 5 (G, H) have to fulfill for all
: ∈ R

−011mGG D̂ 5 +
(
11 − (012 + 021)8:

)
mG D̂ 5 + (022:

2 + 128: + [)D̂ 5 = 0 in Ω 5 .

(6)

The roots of the characteristic polynomial associated with (6) are _1,2 = A ± B, where

A = − 1
2011
((012 + 021)8: − 11) and B =

(
A2 + 1

011
(022:

2 + 128: + [)
) 1

2
.
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The ansatz for the solution of (6),

D̂ 5 (G, :) = � 5 (:)4_1G + � 5 (:)4_2G ,

together with (3) and (4) immediately yields for the Fourier coefficients D̂ 9 (G, :) of
D 9 (G, H) and q̂ 9 (G, :) of q 9 (G, H), 9 = 1, 2, on the interfaces,

D̂1 (−X, :) = � 5 (:)4−X_1 + � 5 (:)4−X_2 , (7)
D̂2 (X, :) = � 5 (:)4X_1 + � 5 (:)4X_2 , (8)

q̂1 (−X, :) · n = 011_1� 5 (:)4−X_1 + 011_2� 5 (:)4−X_2 + (0128: − 11
2
)D̂1 (−X, :),

(9)

q̂2 (X, :) · n = 011_1� 5 (:)4X_1 + 011_2� 5 (:)4X_2 + (0128: − 11
2
)D̂2 (X, :).

(10)

Equations (7) and (8) are now solved for � 5 and � 5 , which can then be substituted
into the remaining two equations (9) and (10). After some calculations, this leads to
the exact coupling conditions

sinh(2BX)q̂1 (−X) · n + (011B cosh(2BX) + d sinh(2BX))D̂1 (−X)
= 011B4

−2XA D̂2 (X), (11)
− sinh(2BX)q̂2 (X) · n + (011B cosh(2BX) − d sinh(2BX))D̂2 (X)

= 011B4
2XA D̂1 (−X), (12)

where d = 021−012
2 8: . For the remaining part of the paper, we will drop the arguments

indicating the evaluation at G = −X for the functions living in Ω1 and at G = X for
those living in Ω2. Taking the sum (11) + (12) yields an expression related to the
normal velocity jump across the fracture, whereas the difference (11) − (12) gives
an expression related to the pressure jump accross the fracture,

sinh(2BX) (q̂2 − q̂1) · n
= 011B

(
cosh(2BX) (D̂1 + D̂2) − (42XA D̂1 + 4−2XA D̂2)

)
+ d sinh(2BX) (D̂1 − D̂2), (13)

011B
(
cosh(2BX) (D̂2 − D̂1) + (4−2XA D̂2 − 42XA D̂1)

)
= sinh(2BX) (q̂1 + q̂2) · n + d sinh(2BX) (D̂1 + D̂2). (14)

We now expand (13), (14) into a series in X and truncate at a given order. We then
obtain the following reduced order coupling conditions at G = ±X:
1. Truncation after the leading-order term, which we call coupling conditions of

type zero (CC0 coupling conditions):

(q̂2 − q̂1) · n = 0 and D̂2 − D̂1 = 0.
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2. Truncation after the next-to-leading-order term, which we call CC1 coupling
conditions:

(q̂2 − q̂1) · n = X
(
022:

2 + 128: + [
)
(D̂1 + D̂2) +

(
−0218: + 11

2

)
(D̂2 − D̂1),

X(q̂2 + q̂1) · n = 011 (D̂2 − D̂1) + X
(
0128: − 11

2

)
(D̂1 + D̂2).

Of course, we could derive higher order coupling conditions by using higher order
expansions.

We now want to get back to the physical unknowns D 9 and q 9 , 9 = 1, 2. To do so,
we perform an inverse Fourier transform by formally applying the rules,

D̂ 9 ↦→ D 9 , q̂ 9 ↦→ q 9 , :2 ↦→ −mHH , 8: ↦→ mH .

We therefore obtain as reduced order approximations of the exact coupling conditions
between the subdomains Ω1 and Ω2

1. CC0 coupling conditions:

q2 · n − q1 · n = 0 and D2 − D1 = 0. (15)

2. CC1 coupling conditions:

(q2 − q1) · n = X
(
−022mHH + 12mH + [

)
(D1 + D2) +

(
−021mH + 11

2

)
(D2 − D1),

(16)

X(q1 + q2) · n = 011 (D2 − D1) + X
(
012mH − 11

2

)
(D1 + D2). (17)

4 Comparison to the literature

DFM models are a tool for the simulation of flow through fractured porous media,
where the governing equations are mass conservation and Darcy’s law. The approach
illustrated above covers more general problems, and in order to compare our coupling
conditions to existing ones from the literature, we now let

b := 0, [ := 0, and A :=
(
011 0
0 022

)
.

As outlined in [4], one typically derives the reduced order coupling conditions by
integrating the equations over the fracture width,
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0 =
∫ X

−X
divq 5 dG = q 5 · n(X) − q 5 · n(−X) + mH

∫ X

−X
q 5 dG

= q2 · n − q1 · n + 2X022m
2
H* 5 , (18)∫ X

−X
q 5 · ndG = 011 (D 5 (X) − D 5 (−X)) = 011 (D2 − D1), (19)

and then uses some ad-hoc approximations∫ X

−X
q 5 · ndG ≈ 2X

q 5 · n(X) + q 5 · n(−X)
2

= X(q1 · n + q2 · n), (20)

D2 + D1 ≈ 2* 5 , (21)

where * 5 := 1
2X

∫ X

−X D 5 dG. Combining these equations leads to the coupling condi-
tions

X022m
2
H (D1 + D2) + q2 · n − q1 · n = 0, (22)

X(q2 · n + q1 · n) = 011 (D2 − D1). (23)

Note that, by means of (21), condition (22) is equivalent to the tangential mass
conservation inside the fracture together with mass exchange between the fracture
and rock matrix.

Theorem 1 The coupling conditions (22), (23) coincide with the coupling conditions
(16),(17) for the diffusion equation with diagonal matrix �. Furthermore, the exact
solution obeys formally (22), (23) with an error of order three, for X→ 0.

Proof For the diffusion equation with diagonal matrix �, the terms in the coupling
conditions (16), (17), which are related to the advection and reaction constants and
the terms related to the off-diagonal entries in the diffusion matrix vanish. By direct
comparison, we observe that the resulting equations coincide with the coupling
conditions (22), (23), which shows the first statement of the theorem. Furthermore,
for the diffusion equation with diagonal matrix �, the coupling conditions (13), after
dividing by sinh(2BX), and (14), after dividing by cosh(2BX), yield

q1 · n − q2 · n =
(
X022mHH + 1

3
X302

22
011

m2
HH +

2
15
X503

22

02
11

m3
HH + · · ·

)
(D1 + D2), (24)

D2 − D1 =
( X
011
+ 1

3
X3022

02
11

mHH + 2
15
X502

22

03
11

m2
HH + · · ·

)
(q1 + q2) · n. (25)

Hence, by substitution of the exact solution into the approximate coupling conditions
(22), (23), we formally obtain residuals of order three, for X → 0, which confirms
the second statement of the theorem. �

From (24),(25), we observe that the asymptotic behavior of the exact coupling
conditions depends only on the asymptotic behavior of the ratio X

011
and of the
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product X022. We call these two characteristic quantities the fracture resistivity and
conductivity, respectively. In [5], a rigorous asymptotic analysis for the Laplace
equation is conducted, with the focus on the solution in the limit X = 0. In this
context, coupling conditions (at G = ±0) are derived, for the cases X

011
→ W ∈ R,

X
011
→∞, X

011
→ 0, provided 011 → 0, which turn out to correspond to the coupling

conditions, which we derive by means of truncating (24),(25) at order X0 (with
011 = 022 for isotropic diffusion).

1. Case X
011
→ W ∈ R (note that this implies X011 → 0):

q1 · n − q2 · n = 0 and D2 − D1 = W(q1 + q2) · n.

2. Case X
011
→∞ (note that this implies X011 → 0):

q1 · n − q2 · n = 0 and q1 · n + q2 · n = 0.

3. Case X
011
→ 0 and X011 → 0 corresponds to (15).

We can now complete this study by considering the cases X011 → W ∈ R or
X011 →∞ (which both imply X

011
→ 0). We obtain

4. Case X011 → W ∈ R:

q1 · n − q2 · n = WmHH (D1 + D2) and D2 − D1 = 0.

5. Case X011 →∞:

mHH (D1 + D2) = 0 and D2 − D1 = 0.

5 Numerical results

We present here a series of test cases for isotropic diffusion in all of the three domains
Ω1 = (−10,−X)× (−10, 10),Ω2 = (X, 10)× (−10, 10) andΩ 5 = (−X, X)× (−10, 10).
The diffusion coefficients are a in Ω 5 and 1 in the domains Ω1,Ω2. This means that
we consider the model solved on the full domain, which consists of the Laplace
equation ΔD 9 = 0 in Ω 9 , 9 = 1, 2, 5 , together with the coupling conditions

D1 (−X) = D 5 (−X) and D2 (X) = D 5 (X),
mGD1 (−X) = amGD 5 (−X) and mGD2 (X) = amGD 5 (X),

and compare the solution to those obtained by the reduced models, which consist
of the Laplace equation ΔD 9 = 0 in Ω 9 , 9 = 1, 2, together with either leading order
(CC0) coupling conditions,

D1 (−X) = D2 (X) and mGD1 (−X) = mGD2 (X),
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Fig. 2: The reference solution and the !∞-error for the solutions of the reduced models for a = 10,
a = 0.1 and a = 0.001 (from top to bottom). The error is plotted for CC0 and for CC1 coupling
conditions.

or coupling conditions containing next-to-leading-order corrections (CC1),

mGD1 (−X) − mGD2 (X) = XamHH (D1 (−X) + D2 (X)),
D2 (X) − D1 (−X) = Xa−1 (mGD2 (X) + mGD1 (−X)),

which have been shown to have an error of O(X3) compared to the exact solution, for
diffusion problemswith diagonalmatrix �.We use homogeneousDirichlet boundary
conditions at H = ±10 and non-homogeneous Dirichlet boundary conditions with
values ± cos(cH/20) at G = ±10. From Figure 2, we observe an increase of the



pressure jump across the fracture, when increasing the fracture resistivity, as encoded
in the coupling conditions. From the error plots, we see that the theoretical order of
convergence is reproduced, although we note that, in the case of a = 0.001, we need
to decrease the fracture width quite severely to enter the regime of theoretical order
of convergence.

6 Conclusion

We presented a rigorous derivation of coupling conditions for DFM models of very
general type, i.e. advection-diffusion-reaction in the fracture and even more general
second order PDEs in the surrounding matrix domains. The derivation of coupling
conditions relies on a Fourier transform of the physical unknowns in direction tan-
gential to the fracture and, subsequently, on the elimination of the fracture unknowns’
Fourier coefficients by performing a continuous Schur complement. Reduced order
coupling conditions are then obtained by straightforward truncation of an expansion.
We compared the coupling conditions to a commonly used family of (diffusion)
models from the literature and obtained correspondence for the coupling conditions
truncated after the next-to-leading-order terms. We further derived coupling condi-
tions for the fracture resistivity tending to a constant, to infinity and to zero, and
found correspondence to the literature, which contains results for the special case of
the Laplace equation only.
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