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1 Introduction

The Newton algorithm and its variants are frequently used to obtain the numerical
solution of large nonlinear systems arising from the discretization of partial differ-
ential equations, e.g., the incompressible Navier-Stokes equations in computational
fluid dynamics. Near quadratic convergence can be observed when the nonlinearities
in the system are well-balanced. However, if some of the equations have stronger
nonlinearities than the others in the system, a Newton-like algorithm may suffer
from slow convergence in the form of a long stagnation in the residual history, or not
converge at all.

Nonlinear preconditioning aims to tackle this problem by creating an inner itera-
tion with improved balance, which can be thought of as making the residual contours
more spherical (i.e., hypersphericity in high dimension). Nonlinear preconditioners
require solving nonlinear subproblems in inner iterations to remove implicitly local
high nonlinearities that cause Newton’s method to take small updates, so that the fast
convergence of global Newton iteration can be restored. A nonlinear preconditioner
can be applied on the left or on the right of the nonlinear function. The idea of left
preconditioning [2] is to replace the nonlinear function by a preconditioned one with
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more balanced nonlinearities, and then solve the new system using a Newton-like al-
gorithm. In contrast, right preconditioning such as nonlinear elimination (NE) [4, 3]
does not change the nonlinear function but modifies the unknown variables of the
original system. The application of NE can be viewed as a subspace correction step
to provide a new starting point for the global Newton iteration, then the solution is
updated in the whole space.

In this paper, we develop a nonlinear elimination preconditioned inexact Newton
algorithm for steady state flow problems in 3D. It is well known that such problems
are usually difficult to solve if a good initial guess is not available. The Newton-like
algorithms may diverge though applied with some globalization techniques such as
line search. To overcome the difficulty, we introduce an iterative restricted elimination
approach based on the magnitude of the local residual, which successfully reduces
the number of global Newton iterations. Numerical experiments show the value
of the proposed algorithm in comparison to the classical inexact Newton method
applied globally, and the impact of tuning parameters.

2 The nonlinear elimination preconditioned inexact Newton
algorithm

Consider F : R — R™. We aim to find x* € R", such that

F(x") =0, ey
starting from an initial guess x° € R", where F = (F\, ..., F,)",F; = Fi(x1,...,xp),
andx = (xp,..., xn)T. We first recall the inexact Newton algorithm with backtrack-
ing (INB). Assume xX is the current approximate solution. A new x**! can be
computed via

K= xR kR, 2)
where A% is the step length, and the inexact Newton direction s¥ satisfies
IF (x) s* + F (%) 1 < 0 1P GO 3)

Here ¥ € [0,1) is a forcing term that determines how accurately the Jacobian
system needs to be solved. To enhance the robustness of INB, we adapt the choice of
the forcing term based on norms that are by-products of the iteration, as suggested
by Eisenstat and Walker [5].

In many practical situations, especially for nonlinear equations that have unbal-
anced nonlinearities, A* is much smaller than 1 since it is often determined by the
components with the strongest nonlinearities. The objective of nonlinear elimina-
tion (NE) is to balance the overall nonlinearities of the system through subspace
correction. To illustrate the algorithm, we denote by y = L (¥, x) the operation of
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the subspace correction step, where F is a modified nonlinear function and x is
an intermediate approximate solution. The basic algorithm of NE preconditioned
inexact Newton method with backtracking (INB-NE) can be described as follows:

Algorithm 1: The nonlinear elimination preconditioned inexact Newton
method with backtracking (INB-NE)
0

Step 1  Start from the initial guess x° and set k = 0, x~' = x0.
Step 2 Check convergence:
+ If the global condition [|F (x*)|| < v, ||F (x°)| is satisfied, stop.
o If||FCON/NF Y] > po and k < Ny, go to Step 3; otherwise, go to
Step 4.
Step3 The NE step: perform subspace correction iteratively.
o Setx(© = xk,
e For/=0,...,N;-1:
(i) Construct the nonlinear function ¥ (x).
(ii) Evaluate x(*D = L (F,x®).
(iii) If | F (x D) I/ F (x| < pi, break.
o Setxk =xD g0 to Step 4.
Step4 The global INB step:
« Inexactly solve F’(x*)sk = —F(x¥).
+ Compute A¥ using the cubic backtracking technique.
+ Update xk*! = xk + Ak sk,
e Setk =k+1,gotoStep 2.

In the algorithm, vy, is the relative tolerance for the nonlinear solver, pg and p; are
preselected factors to measure the relative reduction of the global residual, and N,
is used to control the number of applications of NE.

Next, we discuss the construction of ¥ (x) and L (¥, x) in detail. In this paper,
we consider a point-based elimination approach, i.e., when one variable on some
particular mesh point is selected to eliminate, all other variables corresponding to
that mesh point are also eliminated. Specifically, let / be an index set of M mesh
points, where each index corresponds to m unknown components x;,. and m nonlinear
residual components F;_, ¢ = 0,...,m — 1. At each subspace correction step, we
decompose I into a “bad" subset Ilgl) with Mlgl) mesh points and a “good" subset
Ié(,l) =1 \Iél) with M — MIED mesh points, where I;l) and Iél) correspond to the
variables that have strong and weak nonlinearities, respectively. In this paper we
consider the bad subset of mesh points / }(j) as

1 = {i it maxc (1 <Ol > BIFG D) e =00om =1}, )

where 8 > 0 is a preselected factor. With this subset, we define two subspaces
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Vlgl) = {v |v=(vo,...,vn_1)T € R", vi, =0ifi ¢ Il(;l)} , (5)

and Vél) = {vlv = (V05 svne1)’ €R™, vi = 0ifi € I;,I)}- (6)

The corresponding restriction operators are denoted as R,(f) and R;l) , which map the

vectors from R" to Vlgl) and Vgl), respectively. Then, the modified nonlinear function
F is defined as

F(x) = RS (x —x D) + R (F(x)). )

The nonlinear system ¥ (x) = 0 is solved by using the classical INB algorithm with
the initial guess x(. x*) is accepted as the approximate solution if the stopping
condition ||F (x™)|| < y7¢||F (xD)| is satisfied, where y"¢ is the relative tolerance
for the nonlinear solver. In practice, we replace the equations corresponding to the
good components by x;_ — xg) = 0 and keep the others unchanged. Therefore, the
solve of ¥ (x) = 0 can be performed in the whole space.

To construct the operator L, we introduce a restricted bad subset
9 =i Fi (x® F(x® =0 -1 8
b e = L HTFmaxc{|F; (x*)[} > (B+&)[F(x™) o, ¢ =0,...,m . (®

where the restricted size £ > 0 is a given parameter. With this subset, we define

the corresponding subspaces V;l)g and Vg(f?g in a similar way to (5) and (6). The

corresponding restriction operators are denoted as Rl(f)e and R g)g, respectively. Then,

with the approximate solution x(*), we define the corrected solution x“*!) for the
subspace correction step as

l 1 *
2D = L(F,x0) = RY, (x D) + R (x). )

Remark I In this paper, an additive Schwarz preconditioned GMRES method is
employed as the linear solver to obtain the solution of the Jacobian systems in both
the global INB process and the NE step.

3 Numerical experiments

Let Q be a bounded domain in R3. The system of interest can be described by the
steady state incompressible Navier-Stokes equations, as follows:

p(u-VYu-V-0=0,in Q,
V-u=0, in Q.

Here u = (u, v, w)T is the velocity, p is the density, and o = —pI+ u (Vu + Vul ) is
the Cauchy stress tensor, where I is an identity matrix, p is the pressure, and y is the
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viscosity coefficient. A P;-P; stabilized finite element method is used to discretize
the incompressible Navier-Stokes equations, which results in a nonlinear system
F(x) = 0 to be solved. Here x is a vector of the velocity and pressure unknowns
defined at the mesh points.

The algorithms studied in this paper are implemented in PETSc [1]. All computa-
tions are carried out on the Tianhe-2 supercomputer. The Jacobian matrices arising
from both the global INB process and the NE step are computed analytically. The
relative tolerances vy, and y”¢ are set to be 1071° and 1073, respectively. The restart
value of GMRES is fixed at 200. In the linear Schwarz preconditioner, the size of
overlap is fixed to 2. A point-block incomplete LU (ILU) factorization with 3 fill-in
levels is used to apply the approximate inverse action of the subdomain matrix. For
all the numerical tests, we fix the parameters py = 0.8, p; = 0.2, and N, = 3. A
zero vector is used as the initial guess, i.e., x° = 0. It is observed in our tests that only
one application of NE is needed for the global Newton to converge quickly, which
usually happens at the 3rd global Newton step.

We first consider a lid-driven cubical cavity flow with different Reynolds numbers.
The length of the cavity is D = 1m. A fluid with density p = 1kg/m? is driven by the
wall at y = D which moves tangentially in the x direction with a constant velocity
U = 1m/s. The other walls impose a no slip boundary condition. The Reynolds
number is defined as Re = pUD [u. We vary the viscosity u to test different Reynolds
numbers 1000, 1600, 1800, and 2000. In this case, we use 8 = 1072, £ = 0, and
N; = 1. A tetrahedral mesh with 1,761,316 elements and 313,858 nodes is used for
the test. The simulation is conducted using 240 processor cores.

For Re = 2000, the projections of streamlines on equidistant planes are shown
in Fig. 1 (left). In Fig. 1 (right), we show the histories of the nonlinear residuals
by using the classical INB and the proposed INB-NE. It is observed that, for the
classical INB, the residual curve converges quickly for case Re = 1000, but stagnates
longer for cases Re = 1600 and Re = 1800, and diverges for case Re = 2000. For
INB-NE, the residual curves for these four cases converge within 16 global nonlinear
steps. Comparatively, the proposed algorithm is more robust with respect to higher
Reynolds numbers.

To study how NE removes the strongest nonlinearities, we show in Fig. 2 the
residual contour of component u before and after the application of NE, and the
corresponding “bad" subset colored in red, at the 3rd global Newton step for case
Re = 2000. Table 1 shows the numbers of iterations and compute times obtained
using different Re. In the table, “Nlg;opq" denotes the number of global Newton
iterations, “Llgjopa;" denotes the averaged number of GMRES iterations per global
Newton, “NI,." refers to the averaged number of Newton iterations per subspace
correction in NE, “LI,,." is the averaged number of GMRES iterations per Newton in
NE, “T,.(s)" is the compute time in second for the NE preconditioner, and “T;,;4;(s)"
is the total compute time in second. As Re increases, though extra compute time is
spent on the nonlinear preconditioning, the total compute time of INB-NE is less
than that of the classical INB due to significant decrease of the number of global
Newton iterations.
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Fig. 1: Lid-driven cavity flow: (left) streamlines for case Re = 2000, (right) nonlinear residual
history. 8 = 102, £=0,and N; = 1.

Fig. 2: Lid-driven cavity flow at the 3rd global Newton step for case Re = 2000: (left) residual
contour of component u before NE, (middle) “bad" subset in red, (right) residual contour of
component u after NE.

Table 1: The numbers of iterations and compute times obtained using different Re in the case of

w . n

lid-driven cavity flow. “~" indicates that the case fails to converge.

INB INB-NE

Re NIglobal LIglobal Tiorai(s) NIglobal LIglobal Nlpe |Llne | Tre(s)| Trorai(s)
1000 10 2440 | 31.44 12 29.25 6.62(21.38 | 60.90
1600 18 3229 | 64.72 15 28.00 6.87(21.86| 70.82
1800 26 39.54 | 101.52 15 34.60 7.38121.85| 73.84
2000 - - - 16 37.93 7.63121.73| 78.23

o0 00 OO0 o0

We next consider another well-understood benchmark problem, flow around a
cylinder, as defined in [6]. The detailed geometry can be found in the reference. The
height and width of the channel is H = 0.41m, and the diameter of the cylinder
is D = 0.1m. The inflow condition is U(0,y,z) = 16U,,yz(H — y)(H — z)/H*,
yielding Re = pUD/u, where U = 4U,,/9. The outlet is imposed with a natural
outflow boundary condition. We fix the density to p = lkg/m?, the velocity to
U,, = 0.45m/s, and vary the viscosity u to test different Reynolds numbers Re = 20,
120, 170, and 200. In this case, we use 8 = & = 5 X 10~* and N; = 2. A tetrahedral
mesh with 4,909,056 elements and 851,024 nodes is used for the test. The simulation
is conducted using 480 processor cores.



Nonlinear Elimination Preconditioned Inexact Newton Algorithm 447

The velocity contour on the plane z = 0.5H for case Re = 20 is shown in Fig. 3
(left). The histories of the nonlinear residuals obtained using the classical INB and
the the present INB-NE are shown in Fig. 3 (right). As Re increases, the number
of Newton iterations of the classical INB increases rapidly. When Re is up to 200,
INB fails to converge. In contrast, INB-NE converges well for all the four cases and
requires fewer nonlinear iterations than the classical INB. Table 2 shows the numbers
of iterations and compute times obtained using different Re. Similar to the case of
driven cavity flow, when Re becomes larger, the proposed INB-NE is more efficient
than the classical INB in terms of the total compute time.

10? ——INB | ]
b —— INB-NE

1

102

Residual

Re=200 |

| & +
= Re=200
1010 Re=20puREs120" e

20 Re=170 Re=170

o
Re=120

0 5 10 15 20 25 30
Global nonlinear step

Fig. 3: Flow around a cylinder: (left) velocity contour for case Re = 20, (right) nonlinear residual
history. 8= &£ =5x 107, N; = 2.

Table 2: The numbers of iterations and compute times obtained using different Re in the case of

flow around a cylinder. “~" indicates that the case fails to converge.
INB INB-NE
Re NIglobal LIglobal Ttotal(s) NIglobal LIglobal NIne LIne Tne(s) Ttotal(s)
20 9 31.67 | 41.51 8 34.38 | 5.5 |12.73|43.72| 81.76

120 19 52.05 | 106.85 11 52.27 | 6.5 {11.85|49.65| 108.29
170 23 64.13 | 142.63 13 45.62 | 6.5 [12.62|50.34| 116.87
200 - - - 14 43.57 | 7.5 |12.27|57.69| 127.43

To study the impact of the parameters on the performance of the NE precondi-
tioner, we test the case of flow around a cylinder at Re = 200 with different values
of Ny, B, and €. Results are listed in Table 3. In general, when increasing the number
of subspace correction steps N; or decreasing the preselected factor 8, the number
of global Newton iterations decreases, but this does not necessarily result in a better
performance in terms of the total compute time. On the other hand, a suitable choice
of the restricted size & improves the convergence of the global Newton iteration. It
is seen form the table that the configuration of N; =2 and 8 = & = 5 x 107* leads to
the smallest compute time for the concerned problem.
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Table 3: The numbers of iterations and compute times obtained using different values of parameters
for the case of flow around a cylinder at Re = 200.

B=c=5x10"7
Ny NIglnhal LIglobal NIe |Llne | Tre(S)| Trorai(s)
1 20 547 | 8.5 |12.6| 66.8 | 181.8
2 14 43.6 | 7.5 (123|577 | 1274
3 14 49.1 | 6.7 95| 73.6 | 146.5

e=B,N =2
:8 NIglobal LIglobal NIy |Llne | Tre(8)| Trorai(s)
2x107° 17 416 | 75]6.5| 533 | 137.1
1073 16 46.2 7 182]51.3 | 133.8
5x 107 14 43.6 | 7.5|12.3| 57.7 | 1274
B=5x107% N, =2
& NIglobal LIglobal Nlpe|Llne | Tre(s)| Trorai(s)
0 18 49.7 6 |149| 46.7 | 1424
5x107° 16 43.3 6 [15.0] 47.3 | 127.9
5x 107 14 43.6 | 7.5|12.3| 57.7 | 1274
5% 1073 16 42.1 |85 (11.2] 67.0 | 149.3

4 Conclusions

We demonstrated the robustifying effect of a nonlinearly preconditioned inexact
Newton algorithm for steady state incompressible flow problems in 3D. The key
idea is to perform iterative subspace correction steps to remove the local high
nonlinearities that cause difficulty for classical Newton-like algorithms. We tested
the algorithm using two well-understood examples including a lid-driven cavity flow
and the flow around a cylinder. Results of numerical experiments show that the
proposed algorithm is more robust and converges faster than the classical algorithm
in problems with high Reynolds numbers where globalized Newton methods may
stagnate.
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