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1 Introduction

We are interested in solving a problem of linear elasticity in three dimensions. Let
Q € R3 be a bounded connected domain with the Lipschitz boundary Q. An elasto-
static problem is described by the equilibrium equation (2) and Hooke’s law (1),
which couples the strain and stress tensors for linear elastic materials. We seek for
the displacement vector u: Q — R? and the stress field o: Q — Rf;‘n?’l subject to
volume forces f and the boundary conditions (3) and (4) 0Q = T'p NTn. Therefore,
we solve the problem

Clo-gw=0 in Q, (1)
—divo =f in Q, 2)
u=up onTp, 3)

o, =ty only, @

where up and t are the prescribed displacement and surface traction, respectively.
The tensor g(u) = % (Va + (Vu)T) is a symmetric strain tensor, and by C~! we
denote the compliance tensor, which implements Hooke’s law for a given Young
modulus and Poisson ratio.

Let n be an outer unit normal vector. Then the normal component v,, and the
tangential component v, of a vector field v on the boundary are given by
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Ve =V-n, Ve =V—v,Nn,

where the dot symbol stands for the inner product between vector fields. The vector-
valued normal component o, of a tensor o can be split into a normal-normal
component 0, and a normal-tangential component o, by

o, =0n, Onn =0p - N, Onr =0 — Oppll.

2 TDNNS Formulation

We want to solve the stated problem on thin plate-type domains, therefore we use the
tangential displacement normal-normal stress (TDNNS) formulation as introduced
in [13] and published in a series of papers [11, 10, 9, 8]. The authors developed
a new mixed method for the Hellinger-Reissner formulation of elasticity, where
the displacement u is sought in the H(curl) Sobolev space, i.e., continuity of the
tangential components of the displacements is preserved. Meanwhile the stresses live
in a new Sobolev space H(div div), which can be approximated with a symmetric
stress tensor preserving continuity of the normal part of their normal component.

The TDNNS elements are applicable for nearly incompressible materials and
for structurally anisotropic discretization of slim domains. Here we assume that the
Q is a polyhedral Lipschitz domain (possibly a thin layer in one direction). Let
Tn = Upe Tk}, Te =T X T : TX € 7,X,T" € 7,!, be a tensor product triangulation
of Q. Since we want to incorporate anisotropic geometrical elements, we need to
distinguish sizes of mesh elements in plane- (isotropy-) and thickness- (anisotropy-)
directions. We denote them by % and A’, respectively. Then for the displacements we
use the second family of Nédélec space V;, with a continuous tangential component,
and for the stresses, we use a normal-normal continuous space X, . Correct definitions
of the appropriate tensor product finite element spaces require more technical details,
therefore we leave the spaces undefined here, and refer the interested reader to [10,
Chapter 6] or [11, 6] for their correct definitions.

The discrete mixed TDNNS formulation of the original problem (1)—(4) reads as:
findu € V; and o € X, such that

/ (g_l g) crdx+ (divr, u)y / UD nTnn ds VreX,, (5
Q I'p

(divo, v)y

—/f~vdx+/ ty.r-vrds VveVy, (6)
Q Ty

with duality pairing that can be evaluated by element-wise volume and boundary
integrals
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(divt,v)y = Z [—/T‘z : §dx+/ar TanVn ds] . 7

TeT,

We can identify the volume integral in (5) with matrix A, the duality product
in (5) and (6) defined by (7) with matrix B, and the right hand sides in (5) and (6)
with vectors F| and F,, respectively. Similarly, the sought finite element solutions
can be identified with vectors S < o and U < u. Then we can write a linear system
for the discrete mixed TDNNS formulation in the following form,

% [[o]-[r) ©

2.1 Hybridization

The system matrix in (8) is symmetric but indefinite, as is typical when mixed formu-
lations are considered. So far, the required continuity of tangential displacement and
normal-normal stress is enforced directly by the conforming choice of the solution
spaces Vj, and X, . We can break the continuity of the stress space and re-enforce it
via Langrangian multipliers. The Lagrangian multipliers will exist in the facet space
V,, and will correspond to normal displacements on element interfaces. Therefore,
we shall denote them as u,. To be equivalent with the normal-normal continuity
condition for o, together with the traction condition oy,|r, = 0, functions in V.,
have to fulfill the following equation,

Z / TanVnds =0 ¥y, € V,. )
or

TeT,

This leads to an enlarged system with discontinuous stress finite elements,

A BT BJ|[S] [F
B, 0 0||U|=|F. (10)
B, 0 0][T] o

where all coupling degrees of freedom are connected to displacement quantities.
The matrix A is block-diagonal with each block corresponding to one element. Such
a matrix can be inverted in optimal complexity and thus, we can eliminate all stress
degrees of freedom from the system by static condensation,

BA B BA BI||U| [BAF-F o
BA'B] BA'B]|[U | BA'R |

The system matrix in (11) is symmetric and positive definite. The Langrange func-
tions are identified with the vector U. We will abbreviate the system using the
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notation R
KU =F. (12)

3 Domain Decomposition

Finite elements in linear elasticity have typically relative high number of degrees
of freedom. This is even worse for mixed formulations. Although the stresses were
hybridized from the system, there is still significant number of degrees of freedom for
displacements. The lowest order anisotropic prismatic and hexahedral finite elements
have 60 and 84 degrees of freedom per element, respectively.

This aspect clearly brings a limitation in the sense of problem size. For a large
number of mesh elements, the corresponding linear system becomes too large to be
solved using direct solvers. Therefore, we resort to an iterative solver and substruc-
turing domain decomposition method as a preconditioner technique [2, 3, 12, 14].
We start our research of preconditioners of mixed TDNNS elements with one which
is straightforward and relatively simple to implement, to get a preliminary overview,
namely the Neumann-Neumann method described in Section 3.1.

We partition the original domain Q into N non-overlapping subdomains Q¥:

Q=

~
I
—_

=

' N
ﬁ(’)’ QDN =0 fori#j, I:= U Q.
i=1

such that each subdomain is a union of elements of the global mesh. Using the
index (i) we indicate an association to subdomain Q(?). By the union of individual
subdomain boundaries without the global boundary of Q we define the inferface I'.

The degrees of freedom can be subdivided into two groups; coupling, those being
associated with the interface (shared with at least one of the other subdomains, or
being on the Dirichlet or Neumann boundary), and interior, which are not coupling.
In our setting, the coupling degrees of freedom are associated with an edge or face.
All the coupling degrees of freedom in the system are denoted by the lower index C
while the interior ones are denoted by the lower index /. The system (12) can then
be reordered into the following form

[ KII KIC

U
KCI KCC

Uc

F;
Fc

. (13)

The interior degrees of freedom are related only to the individual subdomains
and thus can easily be eliminated from the system using the same idea we used in
the hybridization of stresses. This procedure leads to a classical method referred to
in the literature as primal domain decomposition, the Schur complement, particular-
solution, and the three-step approach [7, 5].

The main idea of using the described domain decomposition procedure resides
in preconditioning of the global Schur complement matrix in such a way that the
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resulting method can be effectively run in parallel. In future, we plan to apply some
of the known preconditioner techniques used in [2, 3, 14].

3.1 Neumann-Neumann preconditioner

One of the basic preconditioners of the Schur complement system is the Neumann-
Neumann method, which is derived from its local additive construction. Since the
Schur complement can be assembled subdomain-wise using local Schur comple-
ments multiplied with the restriction operator

_ T QR ) _ 1k e (@) e
S= Zg(l) S(’)B(”, §(1) — KCC _ECI (K”) KIC’ (14)

a simple idea for how to obtain an approximation of S is to also assemble individual
inverses subdomain-wise,

§'~ > DORDT (S‘”)_l RODY =M. (15)

Matrix Q(i) in the formula is a diagonal matrix, whose entry Q]((l]z is computed as a
reciprocal of a number of subdomains that share the k-th degree of freedom.

It is important to note that the Schur complement §(i) on a subdomain has the
same null space dimension as the stiffness matrix KY). Therefore, local problems
on floating subdomains have to be treated with care, since the matrices are singu-
lar. Then, the application of the preconditioner corresponds to solving a problem
with pure Neumann boundary conditions. For more details on Neumann-Neumann
preconditioning, see [1, 4]. In the numerical experiment presented in Section 4,
none of the subdomains is floating due to the Dirichlet boundary condition and the
two-dimensional decomposition.

4 Numerical Experiments

We present here a simple problem of linear elasticity in three dimensions. Our
domain Q := (0; 1) x (0; 1) x (0; L,) is represented by a plate with varying thickness
in the z-direction. The plate is rigidly fixed on the bottom and top side. As we
described above, all volume forces are reflected on the right hand side in (12) and
thus they do not play any role in the study of the system matrix properties. We set
Young’s modulus E to be 1, and Poisson’s ration v to be 0.285. A diagram of the
model problem is depicted in Fig. 1 on the left. On the right, we present a simple
two-dimensional (N X N) domain decomposition of the plate geometry.
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Fig. 1: A diagram of the model problem on plate geometry of thickness L_ and its two-dimensional
decomposition into N X N subdomains in the xy-plane. Dashed lines on the right represent the
interface.

We started the development of the scalable parallel algorithm with this simple N x
N domain decomposition to study and fully understand the behavior of the presented
systems within the TDNNS formulation of linear elasticity. We construct the Schur
complement matrix and its Neumann-Neumann preconditioner as described above.
In Table 1 and Table 2, we present condition numbers with respect to discretization
size h. To discretize the domain Q ,we use anisotropic hexahedral elements with
only one element in the thickness direction, i.e. A = L. The number of subdomains
varies from 2 X 2 to 8 x 8.

Presented numerical experiments were implemented in Matlab (version 8.5.0.19-
7613 (R2015a)). The implementation uses sparse matrices. Condition numbers pre-
sented in Tables 1 and 2 were computed using the built-in condest function, and
inverse matrices were assembled explicitly. Computations were performed on a clas-
sical portable laptop, the biggest problem consisted of 4,096 elements that in case
of 2 X 2 decomposition translate into more than 20,000 inner, and more than 3,000
coupling degrees of freedom.

Table 1: Condition numbers of the Schur complement and preconditioned Schur complement for
a plate with thickness L, = 0.25.

NXxXN 2%X2 4x4 8% 8

H/h k(S) k(M™'S) k(S) k(M7'S) | (S «k(M™'S)
1 1.14-10* 6.16-10% | 3.05-10° 1.61-10° | 1.23-10°> 1.56-103
2 1.42-10° 8.72-10' | 8.14-10> 2.54-10% | 2.81-10° 4.78-103
4 521-10*> 8.50-10' | 1.48-10° 1.00-10% | 1.38-10* 3.03-10*
8 1.17-10° 5.63-10% | 7.22-10° 8.31-10° | 8.16-10* 2.72-10°
16 492-10° 3.81-10° | 459-10* 8.22-10*

32 3.23-10% 3.43.10%

As presented in Table 1, the preconditioner is not working very well when the
thickness is 0.25. The conditioning stays more or less the same except in the case
of 4 subdomains and a low H/h ratio. The situation significantly differs when the
thickness is 0.01, as in Table 2. In this case, the conditioning is decreased by two
orders for all decompositions regardless of the H/h ratio.
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Table 2: Condition numbers of the Schur complement and preconditioned Schur complement for
a plate with thickness L, = 0.01.

N XN 2%X2 4x4 8x 8

H/h k(S) k(M™'S) k(S) k(M7'S) | (S «k(M™'S)
1 2.19-10° 5.58-107 | 5.36-10% 6.32-107 | 1.36-10% 1.59- 107
2 3.19-10% 3.53-10° | 8.14-107 2.24-10° | 2.10-107 6.13-10°
4 6.76-107 7.75-10° | 1.80-107 2.23-10° | 4.99-10° 8.32-10*
8 1.78 - 107 1.97-10° | 4.60-10° 5.82-10* | 1.57-10° 1.47-10*
16 4.60-10° 5.05-10* | 1.26-10° 1.29-10*

32 1.47-10° 1.29-10*

It is well known that the efficiency of the local Neumann-Neumann precondi-
tioner deteriorates with a growing number of subdomains, therefore we expect the
same trend for a continuation of Tables 1 and 2. In order to improve the presented
preconditioner, one needs an additional coarse problem, e.g. by projecting (deflating)
against certain modes (yet to be found) or by using sophisticated primal constraints
(yet to be found) in a BDDC framework.

5 Conclusion and outlook

We have briefly introduced the TDNNS formulation for a problem of linear elas-
ticity in 3-dimensions, which leads to large and ill-conditioned systems. Based on
our experience, we apply a primal domain decomposition procedure to get an initial
overview. We try to follow similar ideas as presented in [9], where the authors in-
troduced FETI preconditioned methods for TDNNS elements in 2-dimensions. Our
N x N domain decomposition of thin plate geometry demonstrates the limited effi-
ciency of the Neumann-Neumann preconditioner, and moves us to further research.
We aim to end up with a parallel and scalable method, therefore, next we plan to im-
plement some of the modern methods that achieve a bound for the condition number
of order C(1 + log(H/h))?, as discussed in [14].
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