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1 Introduction

The discretization of elliptic PDEs leads to large coupled systems of equations.
Domain decomposition methods (DDMs) are one approach to the solution of these
systems, and can split the problem in away that allows for parallel computing. Herein,
we extend twoDDMs to elliptic PDEs posed intrinsic to surfaces as discretized by the
Closest Point Method (CPM) [19, 16]. We consider the positive Helmholtz equation

(2 − ΔS) D = 5 , (1)

where 2 ∈ R+ is a constant and ΔS is the Laplace-Beltrami operator associated with
the surface S ⊂ R3 . The evolution of diffusion equations by implicit time-stepping
schemes and Laplace-Beltrami eigenvalue problems [14] both give rise to equations
of this form. The creation of efficient, parallel, solvers for this equation would ease
the investigation of reaction-diffusion equations on surfaces [15], and speed up shape
classification [18], to name a couple applications.

Several methods exist for the discretization of surface intrinsic PDEs. The surface
may be parametrized to allow the use of standard methods in the parameter space
[10]. Unfortunately, many surfaces of interest do not have simple, or even known,
parametrizations. Given a triangulation of the surface, a finite element discretization
can be formed [9]. This approach leads to a sparse and symmetric system but is
sensitive to the quality of the triangulation. Level set methods for surface PDEs [4]
solve the problem in a higher dimensional embedding space over a narrow band
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containing the surface. The solution of model equation (1) by this method requires
using gradient descent, as the approach was formulated only for parabolic problems.
The CPM is also discretized over a narrow band in the embedding space, but has the
advantage of using a direct discretization of equation (1).

The solution of the linear system arising from the CPMdiscretization of themodel
equation (1) has relied primarily on direct methods, although a multigrid method
was discussed in [5]. Herein we formulate restricted additive Schwarz (RAS) and
optimized restricted additive Schwarz (ORAS) solvers compatible with the CPM to
step towards efficient iterative solvers and to allow for parallelism. The optimized
variant of the classical RAS solver uses Robin transmission conditions (TCs) to
pass additional information between the subdomains [11, 20], and can accelerate
convergence dramatically. This formulation is described in Sections 4 and 5 after
reviewing the CPM in Section 2 and (O)RAS solvers in Section 3. Then, we discuss
a PETSc [1, 2] implementation and show some numerical examples in Section 6.
A more thorough exploration of these solvers, and an initial look at their use as
preconditioners, can be found in May’s thesis [17].

2 The closest point method

The CPMwas introduced in [19] as an embeddingmethod for surface intrinsic PDEs.
It allows the reuse of standard flat space discretizations of differential operators and
provides a surface agnostic implementation. At the core of this method is the closest
point mapping, �%S (G) = arg min

H∈S
|G − H | for G ∈ R3 , which identifies the closest

point on the surface for (almost) any point in the embedding space. This mapping
exists and is continuous in the subset of R3 consisting of all points within a distance
^−1∞ of the surface, where ^∞ is an upper bound on the principal curvatures of the
surface [6].

From this mapping, an extension operator � can be defined that sends functions
defined on the surface, 5 : S → R, to functions defined on the embedding space via
composition with the closet point mapping, � 5 = 5 ◦�%S . The extended functions
are constant in the surface normal direction and retain their original values on the
surface. This extension operator can be used to define surface intrinsic differential
operators from their flat space analogs [19].

Discretization typically requires a Cartesian grid on the embedding space within
a narrow tube surrounding the surface. The extension operator can be defined by any
suitable interpolation scheme, with tensor product barycentric Lagrangian interpo-
lation [3] being used here. As such, the computational tube must be wide enough
to contain the interpolation stencil for any point on the surface. Using degree ?
interpolation and a grid spacing of ΔG requires that the tube contain all points within
a distance of W = ΔG(? + 2)

√
3/2 from the surface, thus limiting the acceptable grid

spacings in relation to ^∞.
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The grid points within the computational tube form the set of active nodes, Σ�.
For (1), we need only discretize the regular Laplacian on R3 . Here we consider the
second order accurate centered difference approximation requiring 23 + 1 points.
Around Σ� and lying outside the tube, a set of ghost nodes, Σ� , is formed from any
incomplete differencing stencils.With a total of #� active nodes and #� ghost nodes,
we define the discrete Laplacian and extension operators, Δℎ : R#�+#� → R#� and
E : R#� → R#�+#� , where Δℎ applies the centered difference Laplacian over all
active nodes, and E is the discretization of � . E extends data on the active nodes
to both the active and ghost nodes, and has entries consisting of the interpolation
weights for each node’s closest point.

TheLaplace-Beltrami operator can be directly discretized asΔℎS,38A = Δ
ℎE, which

was used successfully for parabolic equations with explicit time-stepping in [19].
However, for implicit time-stepping [16] and eigenvalue problems [14] a modified
form is needed. In [16] it was recognized that there was a redundant interpolation
being performed, and that its removal could stabilize the discretization. The stabilized
form ΔℎS = − 23

ΔG2 I +
(

23
ΔG2 I + Δℎ

)
E, will be used in the remainder of this work.

3 (Optimized) Restricted additive Schwarz

Both RAS and ORAS are overlapping DDMs, and can work on the same set of
subdomains (given an additional overlap condition for ORAS [20]). We define these
solvers from the continuous point of view and subsequently discretize, rather than
defining them purely algebraically. This will ease the discussion of TCs within the
context of the CPM later in Section 5.

First, the whole surface S is decomposed into #( disjoint subdomains, S̃ 9 , for
9 = 1, . . . , #( . These disjoint subdomains are then grown to form overlapping
subdomains S 9 , whose boundaries are labelled depending on where they lie in the
disjoint partitioning. Taking Γ 9: = mS 9 ∩ S̃: gives mS 9 =

⋃
:

Γ 9: and allows the

definition of the local problems{
(2 − ΔS) D (=+1)9

= 5 , in S 9 ,
T9:D (=+1)9

= T9:D (=) , on Γ 9: , : = 1, . . . , #( , : ≠ 9 ,
(2)

where T9: are generally linear boundary operators defining the TCs. RAS is achieved
by choosing T9: as identity operators, corresponding to Dirichlet TCs, while ORAS
uses Robin TCs, T9: =

(
m

mn̂ 9: + U
)
, where n̂ 9: is the outward pointing boundary

normal on Γ 9: and U ∈ R+ is a constant weight on the Dirichlet contribution.
The subproblems in equation (2) are initialized with a guess for the global solution

D (0) (defined at least over the boundaries Γ 9: ,∀ 9 , :), which is usually just taken as
D (0) = 0. After all of the subproblems have been solved a new global solution is
constructed with respect to the disjoint partitioning, D (=+1) =

∑
9

D
(=+1)
9

���
S̃ 9
, where



Domain Decomposition for the Closest Point Method 461

the use of the term restricted indicates that the portion of the local solutions in the
overlap regions are discarded. From this new approximation for the global solution
the local problems may be solved again with new boundary data, and the process
repeats until the global solution is satisfactory.

4 Subdomain construction

To solve problems arising from the CPM we first need to decompose the global set
of active nodes Σ�. (O)RAS solvers rely on both a disjoint partitioning of the active
nodes and an induced overlapping partitioning. Following the notation in Section
3, disjoint partitions will be denoted by Σ̃ 9 , overlapping partitions by Σ 9 , and the
boundaries of the overlapping partitions by Λ 9 .

To ensure the solvers work on a variety of surfaces, we seek an automated and
surface agnostic partitioning scheme to generate the disjoint partitions. METIS [13]
is a graph partitioner that is frequently used within the DD community to partition
meshes [8]. The stencils of Δℎ and E may be used to induce connectivity between the
active nodes and define a graph. Here we only consider nearest neighbor coupling
through the stencil for Δℎ . Fig. 1 shows a portion of one such disjoint partition, in
black circles, for a circular surface.

With Σ̃ 9 obtained from METIS, overlapping subdomains Σ 9 can be formed. This
construction proceeds in the following steps:

1. All nodes in Σ̃ 9 are added to Σ 9 .
2. #$ layers of overlap nodes are added around Σ 9 . Layers are added one at a time

from globally active nodes neighboring Σ 9 .
3. A subset of the ghost nodes, Σ� , are placed in Σ�

9
which consists of nodes that

neighbor a member of Σ 9 .
4. The shapes of the disjoint and overlapping subdomains are not known in advance.

The boundary mS 9 is approximated discretely by the closest points of the final
layer of overlap nodes, and held in the set Λ 9 .

5. Nodes needed to complete stencils from the ambient Laplacian or extension
operator, including extension from the points G8 ∈ Λ 9 , are placed in the set Σ��9 .

6. For ORAS a layer of ghost nodes around Σ��
9

are also placed in Σ��
9

.

The active nodes in the 9 th subdomain consist of Σ 9 and the active portion of
Σ��
9

. Σ��
9

is kept separate as that is where the TCs in Section 5 are defined. Each of
these sets are shown in Fig. 1, which shows a portion of one subdomain on a circle
in the vicinity of the points in Λ 9 at one of its boundaries.

The Robin TCs, to be defined in Section 5, need some final information about the
subdomain. Every node in Σ��

9
is identified with the point in Λ 9 that is closest to it.

This identification will be used to override the global closest point function in the
following section. For each point in Λ 9 we also need to know the direction that is
simultaneously orthogonal to the boundary and the surface normal direction. We call
this the conormal direction. It is in this direction that the Neumann component of the
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Fig. 1 A portion of a subdo-
main from a circular problem
with #( = 8 subdomains and
#$ = 4 layers of overlap is
shown here. The nodes are
marked according to their role
in the subdomain as described
in Section 4. The points be-
longing to the set Λ 9 are
shown by (nearly coincident)
black stars.

j

j\ j

G
j

BC
j (active)
BC
j (ghost)

Robin condition will be enforced. However, the discrete nature ofΛ 9 makes this con-
struction difficult. Instead we define the conormal vectors from the point of view of
the boundary nodes. Take G8 ∈ Σ��9 as a node whose associated conormal direction,
@̂8 , is sought. Let H8 be its closest point inΛ 9 , and =̂8 be the unit surface normal there.
Connecting the boundary location to the boundary node via 38 = G8 − H8 , we obtain
a usable approximation to the conormal by computing the component of 38 that is
orthogonal to =̂8 and normalizing, i.e., @̂8 = (38 − (38 · =̂8) =̂8)/(|38 − (38 · =̂8) =̂8 |).
In the unlikely event that 38 lies perfectly in the surface normal direction, we set
@̂8 = 0 which recovers the natural boundary condition on the computational tube as
discussed at the end of Section 5.

5 Transmission conditions

Boundary conditions in the CPM are imposed by modifying the extension operator
over the nodes Σ��

9
beyond the surface boundary [14]. As such, the local operators

will take the form
A 9 =

(
2 + 23

ℎ2

)
−

(
23
ℎ2 + Δ

ℎ
9

) [
E 9

T 9

]
, (3)

where E 9 is the extension operator for the nodes in Σ 9 as inherited from the global
operator and T 9 is the modified extension operator for the nodes in Σ��

9
. When

solving for the local correction to the solution the right hand side of the local
problem, A 9E 9 = A 9 , will be the restriction of the residual to Σ 9 . The final rows
of the right hand side, those lying over Σ��

9
, become zeros corresponding to the

homogenous TCs.
Homogeneous Dirichlet TCs can be enforced to first order accuracy by extending

zeros over all of Σ��
9

. With the right hand side already set to zero there, the modified
extension reduces to the identitymapping,T 9 =

[
0 I

]
, with the zeromatrix padding

the columns corresponding to the interior nodes.
We discretize the Robin condition
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mD

m@̂8

����
�%S 9 (G8)

+ UD
(
�%S 9 (G8)

)
= 0, (4)

using a forward difference in the @̂8 direction for each node in Σ��
9

and the first
order accurate Dirichlet condition from above. Taking the partial derivative mD

m38
, and

applying the change of variables 38 = @̂8 + =̂8 , allows one to write the Neumann term
in equation (4) in terms of the displacement vector 38 from Section 4. Assuming
for the moment that 38 and @̂8 are not perpendicular, the derivative in the conormal

direction can be approximated by mD
m@̂8

���
�%S 9 (G8)

≈ D (G8)−D
(
�%S 9 (G8)

)
38 ·@̂8 where �%S 9

denotes the modified closest point function identifying points in Σ��
9

with points in
Λ 9 . Combining this with (4), and applying the identity extension for the Dirichlet
component, D(G8) = D(�%S 9 (G8)), we find thatT 9 must enforce the extension D(G8) =
D

(
�%S 9 (G8)

)
1+U38 ·@̂8 ,with D

(
�%S 9 (G8)

)
replaced by the same interpolation used in the global

scheme discussed in Section 2.
As 38 approaches the surface normal direction, 38 · @̂8 will tend to zero. In this

event, the extension reduces to D(G8) = D

(
�%S 9 (G8)

)
, which is just the standard

extension corresponding to the interior. Fortuitously, this case arises when the point
G8 lies adjacent to the interior points where this condition would be applied anyway,
and in our experience this ensures that the method remains robust.

6 Results

The solvers described in the previous sections were implemented in C++, with
PETSc [1, 2] providing the linear algebra data structures and MPI parallelization,
and Umfpack [7] providing the local solutions. Here we focus on evaluating the
solver, though in practice one should accelerate the solver with a Krylov method.
The (O)RAS solver was placed into a PETSc PCSHELL preconditioner, allowing it
to be embedded in any of their Krylov methods, and we have found coupling with
GMRES to be a favorable pair.

Equation (1) was solved over the Stanford Bunny [21], which has been scaled to
be two units tall. The original triangulation has not been modified in any way beyond
this scaling. This surface has several holes and is complicated enough to stress the
solvers, making it a good test case. Our chosen grid spacing was ΔG = 1/120, which
paired with tri-quadratic interpolation gives #� = 947, 964 active nodes in the global
problem. The origin was placed at the center of the bounding box containing the
bunny and the right hand side 5 = q(c − q) sin(3q) (sin \ + cos(10\))/2 was used
after extending it to be constant along the surface normals.

Table 1 shows the effects of subdomain count #( , overlap width #$, and Robin
parameter U. For comparison, GMRES preconditioned with the standard block-
Jacobi method with 64, 96, and 128 blocks requires more than 10000 iterations. The
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#$ = 4, U = 16 #( = 64, U = 16 #( = 64, #$ = 4

#( 64 96 128 #$ 4 6 8 U 16 32 64
RAS 992 1237 1533 992 747 610 992 992 992

ORAS 526 672 833 526 418 393 526 707 868
Table 1:Here the iterations to convergence of the ORAS solver are gathered for various parameters.
Convergence was declared when the 2−norm of the residual was reduced by a factor of 106.

solvers display the expected behavior with the iteration count increasing for larger
subdomain counts and decreasing with larger overlap widths. ORAS consistently
requires fewer iterations than RAS, though the final sub-table shows the dependence
of this performance on the appropriate choice of Robin weight U. The partitioning,
the initial error, and the error in the approximate solution after 10 and 550 iterations
are visible in Fig. 2 for one run of the solver.

Choosing an optimal value for U is non-trivial as it depends on the value of
2, the mesh width, and the geometry. Additionally, the presence of cross points in
decomposition, where more than two subdomains meet, complicate the matter. From
the planar case, it is known that U ∼ O (

ΔG−1/2) , but determining precise values a
priori is limited to simple splittings [11, 12]. An upcoming work from the same
authors explores this in much greater detail.

Fig. 2: The Stanford Bunny test problem solved with ORAS using #( = 64, #$ = 4, U = 16. The
first panel shows the disjoint partitioning from METIS. The second, third, and fourth panels show
the error in the solution after the 1st, 10th, and 500th iterations compared to the converged solution.

7 Conclusion

Restricted additive Schwarz and optimized restricted additive Schwarz solvers were
formulated for the closest point method applied to (1). These solvers provide a solu-
tion mechanism for larger problem sizes and will allow users of the CPM to leverage
large scale parallelism. Table 1 shows the dramatic reduction in iteration count when
Robin TCs are used. These solvers were more completely evaluated in [17], which
includes an exploration of their utility as preconditioners. The optimized conditions
come at the cost of some additional complexity in the implementation, and even the
standard RAS solver brings parallel capabilities to the user. Interesting extensions to
this work include multiplicative methods, non-overlapping Robin schemes, two-level
solvers, and inclusion of advective terms in the model equation.
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