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1 Introduction

Our prime motivation is thermal fluid-structure interaction (FSI) where two domains
with jumps in the material coefficients are connected through an interface. There
exist two main strategies to simulate FSI models: the monolithic approach where
a new code is tailored for the coupled equations and the partitioned approach that
allows to reuse existing software for each sub-problem. Here we want to develop
multirate methods that contribute to the time parallelization of the sub-problems for
the partitioned simulation of FSI problems.

We suggest here a parallel, time adaptive multirate method to solve two hetero-
geneous coupled heat equations which could be applied to FSI problems. The work
to be presented is the time adaptive extension of the parallel multirate method in
[12]. Some work has already been done regarding time adaptive multirate methods
for the simulation of FSI problems. A time adaptive partitioned approach based on
the Dirichlet-Neumann iteration for thermal FSI was presented in [4, 5]. However,
the Neumann-Neumann method is inherently parallel. In [10], two new iterative
partitioned coupling methods that allow for the simultaneous execution of flow and
structure solvers were introduced.

A new method that at each iteration solves the two subproblems simultaneously
in parallel before exchanging information across the interfaces for the coupling of
two parabolic problems was introduced in [9, 8, 6]. There, the Neumann-Neumann
waveform relaxation (NNWR)method,which is awaveform relaxation (WR)method
based on the classical Neumann-Neumann iteration, is described. It allows the use
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of different spatial and time discretizations for each subdomain. In [13], a pipeline
implementation of theNNWRmethod together with its parallel efficiency is analyzed
for the coupling of homogeneous materials. However, parallelization in time for the
coupling of heterogeneous materials was not yet considered.

In a previous article [12], we proposed and analyzed a parallel multirate parti-
tioned approach based on the NNWR algorithm [9, 8, 6] for two coupled parabolic
problems with heterogeneous material coefficients. In this work, time adaptivity is
added to the multirate approach resulting in a partitioned coupled scheme that allows
at each iteration to find the local solutions of the subproblems over a certain time
window using different time step controllers. In this setting, one does not need to
exchange information across the interface after each time step. The numerical re-
sults show the advantages of the time adaptive method over the previous multirate
approach.

2 Model problem

The unsteady transmission problem reads as follows, where we consider a domain
Ω ⊂ R3 which is cut into two subdomainsΩ = Ω1∪Ω2 with transmission conditions
at the interface Γ = mΩ1 ∩ mΩ2:



U<
mD< (x,C)

mC
− ∇ · (_<∇D< (x, C)) = 0, x ∈ Ω< ⊂ R3 , < = 1, 2,

D< (x, C) = 0, x ∈ mΩ<\Γ,
D1 (x, C) = D2 (x, C), x ∈ Γ,
_2

mD2 (x,C)
mn2

= −_1
mD1 (x,C)
mn1

, x ∈ Γ,
D< (x, 0) = D0

< (x), x ∈ Ω<,

(1)

where C ∈ [)0, ) 5 ] and n< is the outward normal to Ω< for < = 1, 2.
The constants _1 and _2 describe the thermal conductivities of thematerials onΩ1

and Ω2 respectively. �1 and �2 represent the thermal diffusivities of the materials
and they are defined by

�< =
_<

U<
, with U< = d<2?< (2)

where d< represents the density and 2?< the specific heat capacity of the material
placed in Ω<, < = 1, 2.
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3 The Neumann-Neumann waveform relaxation algorithm

We now describe the Neumann-Neumann waveform relaxation (NNWR) algorithm
[9, 8]. The main advantage of the NNWRmethod is that it allows to find the solution
on the subdomains in parallel.

The NNWR algorithm starts by imposing continuity of the solution across the
interface (i.e, given a common initial guess 60 (x, C) on Γ × ()0, ) 5 )). One can then
find the local solutions D:+1< (x, C) on Ω<, < = 1, 2 through the following Dirichlet
problems:


U<

mD:+1< (x,C)
mC

− ∇ · (_<∇D:+1< (x, C)) = 0, x ∈ Ω<,
D:+1< (x, C) = 0, x ∈ mΩ<\Γ,
D:+1< (x, C) = 6: (x, C), x ∈ Γ,
D:+1< (x, 0) = D0

< (x), x ∈ Ω<.

(3)

Now the second coupling condition which is the continuity of the heat fluxes
is added. To this end, one solves two simultaneous Neumann problems to get the
correction functions k:+1< (x, C) on Ω<, < = 1, 2 where the Neumann boundary
condition at the interface Γ× ()0, ) 5 ) is prescribed by the addition of the heat fluxes
of the solutions D:+1< (x, C) given by the Dirichlet problems:


U<

mk:+1< (x,C)
mC

− ∇ · (_<∇k:+1< (x, C)) = 0, x ∈ Ω<,
k:+1< (x, C) = 0, x ∈ mΩ<\Γ,
_<

mk:+1< (x,C)
mn< = _1

mD:+11 (x,C)
mn1

+ _2
mD:+12 (x,C)

mn2
, x ∈ Γ,

k:+1< (x, 0) = 0, x ∈ Ω<.

(4)

Finally, the interface values are updated with

6:+1 (x, C) = 6: (x, C) − Θ(k:+11 (x, C) + k:+12 (x, C)), x ∈ Γ, (5)

where Θ ∈ (0, 1] is the relaxation parameter. Note that if one uses the optimal
relaxation parameter, we obtain a direct solver instead of an iterative method [6, 12].

In [12, 11], we presented a multirate method for two heterogeneous coupled heat
equations based on the NNWR algorithm. There, an interface interpolation that
preserves a second order numerical solution of the coupled problem when using
SDIRK2 was described to communicate data between the subdomains through the
space-time interface in themultirate case. Furthermore, we performed a fully discrete
one-dimensional analysis of the NNWR algorithm in (3)-(5). By making use of
properties of Toeplitz matrices, we found the optimal relaxation parameter Θ>?C in
1D assuming implicit Euler in time, structured spatial grids and conforming time
grids on both subdomains. Θ>?C then depends on the material coefficients U1, U2,
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_1, _2, the spatial resolution ΔG and the time resolution ΔC. In the limits of ΔC/ΔG2

to zero and to infinity, respectively, the optimal relaxation parameter is given by

Θ0
>?C =

U1U2

(U1 + U2)2
, Θ∞>?C =

_1_2

(_1 + _2)2
. (6)

Using Θ>?C , we get the exact solution at the interface after one iteration, leaving
only to solve the two Dirichlet problems once. We then showed numerically that the
nonmultirate 1DΘ>?C gives excellent estimates for the multirate case using SDIRK2
both in 1D and 2D.

4 Time adaptive method

We now introduce a new adaptive scheme that, in contrast to the multirate method in
[12], increases efficiency by allowing larger step sizes without increasing the error
of the numerical solution. We build our partitioned time adaptive approach on the
SDIRK2-NNWR algorithm introduced in [11, chap. 6] and in [12]. To that end, an
error estimate at each time step is needed to be able to choose a new step size. In
particular, we use an embedded technique [7, chap. IV.8].

In our approach, time adaptive integrators for the two Dirichlet problems (3) build
two independent time grids g1 and g2. The Neumann problems (4) and the update
step (5) then use these grids.

As our time adaptive SDIRK2-NNWR algorithm contains two time adaptive
Dirichlet solvers, the corresponding local errors are given by the difference

r=+1< = u(<) ,=+1
�

− û(<) ,=+1
�

, (7)

where u(<) ,=+1
�

and û(<) ,=+1
�

are the two solutions of the embedded SDIRK2 method
for < = 1, 2 and = is the index of the time recursion. Taking the Euclidean norm
throughout we consider the error estimate at each time step given by ‖r=+1< ‖2, < =

1, 2.We then use a proportional-integral controller (PI controller) for implicit Runge-
Kutta methods of order ? introduced by [14, 15],

ΔC=+1< = ΔC=<

(
C>;

‖r=+1< ‖2

)1/6? (
C>;

‖r=<‖2

)1/6?
, (8)

on the subdomain Ω< for < = 1, 2 respectively and ? = 2 for SDIRK2. In the first
step, the estimate of the previous local error r0

< is not available and then we use
r0
< = C>;.
In order to start the integration, one also needs to pick an initial step size. We

use the following formula suggested by Gustaf Söderlind and inspired by [1, pp.
682-683] which is dependent on the rhs of the ODE evaluated at C0, i.e, 5 (u0):
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ΔC0< =
|) 5 − )0 | · C>;1/2

100 · (1 + ‖ 5 (u0)‖2) =
|) 5 − )0 | · C>;1/2

100 ·
(
1 + ‖M(<)

� �

−1
A(<)
� �

u(<) ,0
�
‖2

) , (9)

whereM(<)
� �

and A(<)
� �

for < = 1, 2 correspond to the mass and stiffness matrices of
the finite element (FE) discretization of the first equation in (3) respectively.

We choose the inner time adaptive tolerance finer than the outer tolerance TOL
used to terminate the iteration. Specifically, we take C>; = )$!/5 for < = 1, 2. This
choice is motivated by [16] and already used in a similar context in [3, sec. 6].

4.1 Relaxation parameter in the time adaptive case

The aim here is to adapt the formula derived for Θ>?C for a fixed step size ΔC in [12]
to the variable step size context. We propose to start the algorithm with an initial
guess for Θ and update the value after each iteration once the time grids g1 and g2
have already been computed.

For the non adaptive SDIRK2-NNWR, it was observed in [12] that the optimal
relaxation parameter moves between the spatial and the temporal limits (6) of Θ>?C
in terms of ΔC/ΔG2. Therefore, we suggest to take an intermediate value between the
two limits for the first iteration. Although other options were tried as the geometric
mean between the limits, the minimum or the maximum, the arithmetic mean was
found to be the most efficient.

To update the relaxation parameter after each iteration, we average all obtained
variable step sizes getting the means Δ̄C1 and Δ̄C2 for each space-time subdomain
Ω1 × [)0, ) 5 ] and Ω2 × [)0, ) 5 ]. Once we have the values Δ̄C1 and Δ̄C2 we choose Θ
by inserting the the larger of the averaged time steps into the formula from [12] for
the fixed time step multirate SDIRK2-NNWR algorithm.

5 Numerical results

All the results in this section have been produced by implementing the algorithm
in Python using the classical 1D or 2D linear FE discretization on equidistant and
identical triangular meshes on both subdomains and using as a initial condition the
smooth function 6(G) = −1668G4 + 5652G3 − 5553G2 + 1842G in 1D or 6(G, H) =
2 sin(cH2) sin((cG2)/2) in 2D on the domain Ω = Ω1 ∪ Ω2 = [0, 1] ∪ [1, 2] or
Ω = Ω1 ∪ Ω2 = [0, 1] × [0, 1] ∪ [1, 2] × [0, 1] respectively. Physical properties of
the materials are shown in table 1.

Figure 1 shows the global error of the overall solution on Ω with respect to the
tolerance for the coupling between air and steel in 1D and 2D. They have been
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Table 1: Physical properties of the materials. _ is the thermal conductivity, d the density, 2? the
specific heat capacity and U = d2? .

Material _ (W/mK) d (kg/m3) 2? (J/kgK) U (J/K m3)
Air 0.0243 1.293 1005 1299.5

Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

calculated with respect to a reference solution DA4 5 that has been computed using
the time adaptive SDIRK2-NNWR algorithm for a very fine tolerance. One observes
in Figure 1 how the error decreases proportionally to the tolerance as expected in a
time adaptive numerical method.
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Fig. 1: Global error as a function of the tolerance of the time adaptive SDIRK2-NNWR algorithm
for different couplings in 1D and 2D. Figure (a): ΔG = 1/50, [)0, )5 ] = [0, 1] and )$! = 14 −
9, 14−8, .., 14−1. Figure (b):ΔG = 1/10, [)0, )5 ] = [0, 100] and)$! = 14−4, 14−3, .., 14−1.

Finally, we compare the performance of the multirate SDIRK2-NNWR algorithm
with fixed time steps in [12] to the time adaptive SDIRK2-NNWR algorithm intro-
duced in this paper. Figure 2 shows the global error as a function of work for both
variants. To compute the work we added together all timesteps performed on both
subdomains over all iterations. The stepsizes ΔC<, < = 1, 2 for the multirate case are
the minimum stepsizes chosen by the time adaptive algorithm on each subdomain.
This way, the methods produce almost the same error. In order to get the relation
between the number of timesteps and the global error, we measure both magnitudes
for a decreasing sequence of tolerances. Number of iterations are specified in table
2. Figure 2 shows that the time adaptive curve is below the multirate curve meaning
that less work is employed to reach the same accuracy of the solution using the time
adaptive scheme. This difference increases when the tolerance decreases. In 1D this
results in 100 times less time steps and in the more relevant 2D case, in 10 times less
time steps.



472 Azahar Monge and Philipp Birken

101 102 103 104 105 106 107

work (total timesteps)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

e
rr

o
r

Time Adaptive

Multirate

(a) Air-water 1D

101 102 103 104

work (total timesteps)

10-4

10-3

10-2

10-1

100

e
rr

o
r

Time Adaptive

Multirate

(b) Air-steel 2D

Fig. 2: Comparison between time adaptive and multirate SDIRK2-NNWR algorithm. Global error
as a function of work with respect to the total number of timesteps for different couplings in 1D
and 2D. Figure (a): ΔG = 1/50, [)0, )5 ] = [0, 1] and )$! = 14 − 9, 14 − 8, .., 14 − 1. Figure
(b): ΔG = 1/10, [)0, )5 ] = [0, 100] and )$! = 14 − 4, 14 − 3, .., 14 − 1.

Table 2: Total number of fixed point iterations (FPI) and total number of timesteps over all FPI
(Work) of the time adaptive SDIRK2-NNWR algorithm for different tolerances.

TOL 14 − 1 14 − 2 14 − 3 14 − 4 14 − 5 14 − 6 14 − 7 14 − 8 14 − 9
FPI 1D 4 6 8 10 14 15 15 15 11
FPI 2D 3 15 10 16 19 - - - -
Work 1D 15 36 74 164 496 1397 4135 12796 29996
Work 2D 24 225 233 849 1023 - - - -

However, the method is not as robust in 2D as in 1D and fails for tolerances
smaller than 14 − 5. This is because the convergence rate is extremely sensitive to
the relaxation parameter. Due to lack of better choices, we use the optimal parameter
from 1D in 2D, and combined with the adaptive time step this apparently leads to
decreased robustness.

6 Conclusions and Further Work

We have introduced a time adaptive extension of the multirate SDIRK2-NNWR
method in [12]. We inserted two different controllers in the Dirichlet solvers to build
two independent time grids g1 and g2 increasing the efficiency of the algorithm.
The new algorithm achieves the same solution as the multirate SDIRK2-NNWR
algorithm in [12] while optimizing the number of time steps. Numerical results
show that the time adaptive method uses 100 times less time steps than the multirate
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method in 1D and 10 times less time steps in 2D. However, the 2D extension of the
time adaptive SDIRK2-NNWR algorithm is not as robust as the 1D version.

Many aspects of the time adaptive approach are left for further research. The
extension of the approach to 3D, investigate alternatives adding time step con-
trollers on the Neumann problems as well, implement time adaptivity with respect
to macrosteps or study the influence of the initial condition on the performance of
the method. Another future direction would be to apply the time adaptive multirate
approach explained in this paper to nonlinear thermal FSI cases.
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