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1 Introduction

Newton-Krylov domain decompositionmethods are well suited for solving nonlinear
structural mechanics problems in parallel, especially due to their scalability proper-
ties. A Newton-Raphson method in combination with a dual domain decomposition
technique, such as a FETI method, takes advantage of the quadratic convergence
behaviour of the Newton-Raphson algorithm and the scalabality and high paral-
lelizability of FETI methods. In order to reduce expensive communication between
computing cores and thus Newton-iterations, a localization step for nonlinearities
was proposed for FETI2, FETI-DP andBDDC solvers [12, 8]. Furthermethodologies
on nonlinear preconditioning of a global Newton method for cases with high local
nonlinearities can be found in literature as well [2]. To further improve the efficiency
of FETI2-solvers methods have been developed, such as adaptive multiprecondi-
tioning [15], derived from simultaneous FETI [7], and reuse techniques of Krylov
subspaces [6]. These reuse techniques are rather memory-intensive. More efficient
recycling strategies based on Ritz-vectors were therefore developed [9]. In this con-
tribution, we combine those recycling methods with localization of nonlinearities
and apply them to static and dynamic structural mechanics problems. We start with
the introduction of the model problems and the solution strategy in Sec. 2.1. Then we
introduce the localization technique in Sec. 2.2, the adaptive multipreconditioning
in Sec. 3 and the used recycling methods in Sec. 4. Finally, we present our numerical
results in Sec. 5.
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2 Localized nonlinearities in dual domain decomposition

2.1 Modelproblem and nonlinear solution strategy

We consider a static structural mechanics problem with nonlinear material behavior,
discretized with Finite Elements and decomposed into #B substructures B of the form

f (B)
8=C
(u(B) ) + B(B)) , − f (B)4GC = 0,

#B∑
B=1

B(B)u(B) = 0, (1)

where u describes the displacements of the elastic structure and the primary solution
of the problem. The substructures are coupled with Lagrange-multipliers , imposed
on the boundary of each substructure by a signedBooleanmatrixB [5]. Accelerations
¥u and velocities ¤u are added with the related massM and damping D for a structural
mechanics problem, which results in the dynamic nonlinear system of equations

M(B) ¥u(B) + D(B) ¤u(B) + f (B)
8=C
(u(B) ) + B(B)) , − f (B)4GC = 0,

#B∑
B=1

B(B) ¥u(B) = 0.

This dynamic system can now be integrated by a suitable time-integration scheme
and handled as subsequently described for the static system. For our experiments
we use a generalized-U scheme [3]. These systems are solved by a Newton-Raphson
scheme and the resulting linearized system by a FETI-method [5] at each time or load
step. By linearizing the system of equations (1) at Newton-iteration = and resolving
it for the incremental displacements, we get the tangent interface problem[

F= −G=
G)= 0

] [
X,
X"

]
=

[
0
e=

]
−

[
d=

G)= ,=

]
F= =

#B∑
B=1

B(B)K(B)
+

) ,=
B(B)

)

G= =
[
B(1)R(1)= . . . B(#B)R(#B)=

]
e= =

[
R(1)

)

= f (1)4GC . . . R
(#B))
= f (#B)4GC

])
d= = −

#B∑
B=1

B(B)K(B)
+

) ,=

(
f8=C (u(B)= ) − f4GC + B(B)) ,=

)
+ B(B)u(B)=

and the local linear solves for the incremental displacements

Xu(B) = −K(B)+
) ,=

B(B)
)

X, −K(B)+
) ,=

(
f (B)
8=C
(u(B)= ) − f (B)4GC + B(B)

)

,=)
)
+ R(B)= X"

Here, K(B)
) ,=

is the tangent stiffness, R(B)= its null space and F= the tangent interface
operator with the superscript + denoting a pseudoinverse. The null spaceR(B)= and its
corresponding additional unknowns X" can be seen as rigid body modes of floating
substructures and are needed for solvability [5]. This isn’t needed in structural
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dynamics due to the additional mass matrix. The interface problem is then solved by
a preconditioned conjugate gradient.

2.2 Localization of nonlinearities

In order to reduce Newton-iterations and hence iterations of the conjugate gradient
method, one can solve local nonlinear problems as some kind of preconditioning step
for the global linear solution step within the Newton algorithm [12, 11, 8]. In case
of a FETI2-solver this is achieved by solving local nonlinear Neumann-problems
while keeping the Lagrange-multipliers constant, whereas for FETI-DP and BDDC
far more options are available [8]. Thus, the displacements

Xu(B) = −K(B)+
) ,=6,=;

(
f (B)
8=C
(u(B)
=6,=;
) − f (B)4GC + B(B)

)

,=6−1

)
, u(B)

=6,=;+1 = u(B)
=6,=;

+ Xu(B)

are calculated within local Newton iterations =; after using the displacements of
the previous global Newton-iteration =6 − 1 as an initialization. To ensure local
solvability, the Lagrange-multipliers have to be initialized with the natural coarse
grid [12, 11]

G)0 ,0 = e0 ,0 = G0

(
G)0 G0

)−1
e0 (2)

3 Adaptive Multipreconditioning

A preconditioner H =
∑#B
B=1 B

(B)S(B)B(B) is commonly used for an efficient solution
of the interface problem, here a Dirichlet-preconditioner with the Schur-complement
S [13]. Due to the summation of the local preconditioners, some local information
gets lost. Hence, multipreconditioning, also known as simultaneous FETI (S-FETI)
[7], has been proposed using separated preconditioners H(B) leading to independent
search directions z(B)

8
= H(B)r8 in each FETI-iteration 8 for the residual r. To avoid

large search spaces, a g-criterion has been introduced to modify the S-FETI to an
adaptive multipreconditioned FETI (AMP-FETI) method [16, 9]. The g-criterion
controls which substructures are chosen for multipreconditioning. To this end the
expression

Θ
(B)
8
=

$)
8
W)
8 F
(B)W8$8

r)
8+1H

(B)r8+1
, W8 = PZ8

is used with $8 being step-lengths from the CG iteration 8 and the natural coarse-grid
projector P. Only the substructures that fulfill the criterion Θ(B)

8
< g are chosen. The

parameter g can be set by the user and g = 0.1 leads to robust behavior in most cases
and has been used in this paper [15, 1]. The search space is constructed with such
� = ( 91, 92, . . . ) chosen substructures as
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Z8 =
[∑

:∉� z(:)
8
| z( 91)
8
| z( 92)
8
| . . .

]

4 Recycling methods for dual solutions

In order to further increase the FETI-solver’s efficiency and render it scalable, we
introduce a deflation or coarse space C for the search directions W8 , which leads
to a two-level FETI (FETI2) solver [4]. A coarse-problem is solved during the
initialization and iterations of the FETI-solver. The remaining search space has to
be F-conjugate, which is ensured by the projector

P� = I − C(C) FC)−1C) F.

In the so-called total reuse of Krylov subspaces (TRKS), proposed in [6], all the
previous solutions are reused to build the coarse grid

C=6 =
[
C=6−1 w=6,8=1 . . . w=6,8=84=3 .

]
In order to improve memory-efficiency, people have investigated the convergence be-
havior of a preconditioned conjugate gradient algorithm. This is mainly governed by
the eigenspectrum of the preconditioned operator HF. High, well-separated eigen-
values might slow down convergence according to studies in [14]. These high eigen-
values are usually captured during the first few iterations of the FETI-solver. Hence,
by first solving the eigenvalue-problem

S(B)y(B) = Φ(B)B(B)
)

HB(B)y(B) , (3)

called generalized eigenvalues in the overlaps (GenEO), the high eigenmodes are pre-
computed separately [16]. Here Φ(B) are the eigenvalues and y(B) the corresponding
eigenvectors. To reduce the high initial cost of the Schur-complements, a local Ritz
Ansatz has been applied in [9], approximating the GenEO eigenvectors and resulting
in a smaller eigenproblem. The Ritz space of substructure B is then constructed as

V(B) = S(B)
−1
B(B)

)

V(B)
,
, V(B)

,
=

[
W0$0 . . . W=B−1$=B−1

]
, =B ≤ 84=3 ,

where the solution space of the first =B iterations is considered and =B limits the Ritz
space size. With such a Ritz space follows the approximation of (3)

V(B)
)

S(B)V(B)q(B) = Φ(B)V(B)
)

B(B)
)

HB(B)V(B)q(B) ,

which can be rewritten as

V(B)
)

,
F(B)V(B)

,
q(B) = Φ(B)V(B)

)

,
F(B)HF(B)V(B)

,
q(B) , F(B) = B(B)S(B)

−1
B(B)

)

.

The resulting coarse space with the first :B local Ritz vectors is
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C(B) =
[
HF(B)V(B)

,
q(B)1 . . . HF(B)V(B)

,
q(B)
:B
,

]
where :B has to fulfill :B ≤ =B . This method is subsequently called local Ritz (LRitz)
approach. It may be even reasonable to build the coarse space directly out of Ritz
spaces only, without solving an eigenproblem [10]

C =

[
HF(1)V(1)

,
. . . HF(#B)V(#B)

,
.

]
This method is referred to as local Ritz direct (LRitzDir) below.

5 Numerical results

5.1 Recycling methods applied to static mechanical problems

50mm

10mm

Fig. 1: Left clamped cantilever beam partitioned to 10 rectangular substructures under pull load
(left) and bending load (right). Mooney-Rivlin-material (Invariant-parameters: �10 = 0.4# /<<2,
�01 = 0.1# /<<2,  = 1 · 102# /<<2); pull-load: 5# , bending-load: 1.5 · 10−3#

Table 1: FETI-iterations cumulated over Newton-iterations and loadsteps and normalized to the
NLF-method without recycling. (NLF: classic nonlinear FETI, LoNo: FETI with localized nonlin-
earities) Load case: pull, 10 loadsteps; Absolute cumulated number of iterations for NLF None:
224

NL-
Method

NLF NLF LoNo NLF NLF LoNo LoNo LoNo

Recycling None plReuse None LRitzDir LRitz plReuse LRitz LRitzDir
rel. Iter 1 0.75 0.7366 0.6964 0.5804 0.5268 0.4955 0.4420

We apply the methods introduced above to a homogeneous, nonlinear cantilever
beam (Mooney-Rivlin material model and geometrical nonlinearity without damp-
ing) under static pull and static bending load and rectangular substructuring, as shown
in Fig. 1. The cumulated numbers of FETI-iterations are normalized to the classic
nonlinear FETI method (NLF) without recycling in Table 1 since that is the reference
we want to compare the performance gain to. The TRKS approach is renamed plain
Reuse (plReuse) as we no longer have Krylov-subspaces due to multipreconditioning
[9]. The coarse spaces are limited to a fixed global size to get compareable results.
The combination of localizations and LRitzDir resulted in a reduction of global
iterations by 55%. Hence, localizations combine well with recycling methods. The
LRitzDir method in particular performs better with localizations than in combination
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with the classic nonlinear FETI. The LRitz approach suffers from a slower build up
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Fig. 2: Coarse grid dimension over load steps in static pull case (Colours are the same as in Fig. 3).

Table 2: Over Newton-iterations and load steps cumulated numbers of FETI-iterations normalized
to theNLF-methodwithout recycling. Load case: bending; Absolute cumulated number of iterations
for NLF None: 519

NL-
Method

LoNo NLF LoNo NLF LoNo NLF NLF LoNo

Recycling None None plReuse LRitzDir LRitz LRitz plReuse LRitzDir
rel. Iter 1.0617 1 0.9422 0.8112 0.7380 0.4566 0.3988 0.3738
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Fig. 3: Eigenvalue spectrum of interface operator HP)�F sorted from lowest to highest in last load
step 40 with localizations (left) and classical nonlinear FETI (right). Loadcase: bending

Table 3: Global Newton iterations of first 3 (of 40) loadsteps. Loadcase: bending

NL-
Method

LoNo LoNo NLF NLF LoNo LoNo NLF NLF

Recycling None plReuse None LRitzDir LRitz LRitzDirLRitz plReuse
LoadStep1 14 19 4 3 10 13 3 3
LoadStep2 4 4 4 3 2 2 2 2
LoadStep3 4 4 4 3 2 2 2 2

of the coarse grid in Fig. 2. Due to the small chosen limit of the Ritz-space by =B = 4
and a reduction of global Newton-iterations, the solver is unable to capture the high
modes fast enough. In the bending case, the localizations lead to worse performance
than the NLFmethod without recycling due to instabilities of local rotational modes,
mentioned as non-physical nonlinearities in literature [12, 11]. The combined local-



480 Andreas S. Seibold, Michael C. Leistner, and Daniel J. Rixen

ization and LRitzDir outperforms the NLF though. In Fig. 3, it is able to capture all
the bad modes better than in the NLF. This doesn’t apply for the LRitz method. The
coarse grid is filled up within the first load step of LoNo-method due to many global
Newton iterations, but with unfavorable modes. In NLF, it takes more load steps,
but apparently better modes are chosen here, which accelerates the solution process.
In the case of LRitzDir, the higher number of global Newton iterations in the first
load step is well compensated by fewer Newton iterations compared to NLF in later
load steps. Anyway, the high number of load steps has been chosen to obtain a stable
convergence of the algorithm with localizations. Fewer load steps would have been
needed for the classic nonlinear method. Moreover, one has to bear in mind the cost
of more local solves for the localization method.

5.2 Recycling methods applied to dynamic mechanical problems

We also apply the localization and recycling methods to a dynamic mechanical
bending problem, meshed with Gmsh 3.0.6 and partitioned with its Metis partitioner.
Here with the plain reuse technique more iterations are needed than with Ritz
Table 4: Number of FETI-iterations cumulated over time steps and global Newton-iterations and
normalized to the NLF-method without recycling. Load case: dynamic bending beam. Absolute
number of cumulated iterations for NLF None: 1473

NL-
Method

LoNo LoNo NLF NLF LoNo NLF LoNo NLF

Recycling None plReuse None plReuse LRitz LRitz LRitzDirLRitzDir
rel. Iter 1.0930 1.0088 1 0.8771 0.8629 0.7916 0.7461 0.7264

approximations due to persistent high modes. The application of localizations leads
to slightly more iterations, even with recycling methods. The influence of nonlinear
material is rather low due to time stepping and localization won’t be able to reduce
global iterations significantly.

6 Conclusions

In this work, we applied recent recycling methods and adaptive multiprecondition-
ing for a FETI2-method together with nonlinear localization to static and dynamic
structural mechanics problems. We were able to reduce global iterations by up to
62% with this combination, even for homogeneous material properties in the static
bending case. This is counterbalanced by very low load step-sizes though, as oth-
erwise the localized method would not converge due to instabilities in rotational
rigid body modes. However, the static case under pull load shows quite promis-
ing results and localization combines well with recycling techniques. Hence, if the
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stability issues could be fixed, these methods would be a reasonable technique to
reduce communication, but at a cost of additional local solves. We were unable to
test these methods in parallel due to our current implementation limitations. So it
still has to be evaluated, whether the increased local solves are compensated by the
reduced global iterations. Moreover, we applied these methods to dynamic structural
mechanics problems, where we don’t encounter the stability issues due to the present
mass-matrix. Localizations didn’t provide any reduction of iterations either due to
limited nonlinear influences caused by time stepping. Hence, it might be different
for a model with local, highly nonlinear phenomena, such as cracks and damaging,
which will be supported by our implementation in the future.
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