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1 Introduction

Additive Schwarz Methods (ASM) are implemented in the PETSc library [2, 1, 3]
within its PCASM preconditioning option. By default this applies the Restricted
Additive Schwarz (RAS) method of Cai and Sarkis [4]. We here present the im-
plementation, using PETSc tools, of two further improvements for this method: a
new and more effective coarse correction, as well as optimized transmission condi-
tions, resulting in an Optimized two-level Restricted Additive Schwarz (or ORAS2)
method.

It is well known that domain decomposition methods applied to elliptic prob-
lems need a coarse correction to be scalable, since without it, information is only
transferred from each subdomain to its direct neighbors which makes the number of
iterations grow with the number of subdomains; for exceptions, see [6, 7]. Scalabil-
ity is achieved by introducing a coarse grid on which a reduced-size calculation is
performed to compute a coarse correction at each iteration of the solution process,
yielding a two-level method. Our choice of the coarse grid points follows the method
introduced in [11]: the coarse grid points are chosen in 1D to be the extreme grid
points of the non-overlapping subdomains used to define RAS, and for a rectan-
gular decomposition in 2D, four coarse grid points are placed around each cross
point of the non-overlapping decomposition. This choice of placing the coarse grid
nodes leads to substantially faster convergence than the classical option of equally
distributing the coarse grid points within each subdomain.

As for optimized transmission conditions, we consider Robin transmission con-
ditions instead of the classical Dirichlet ones, i.e., a well-chosen combination of
Dirichlet and Neumann values at subdomain interfaces such as to minimize the
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number of iterations. We follow here the method described in [8] which only re-
quires modifying the diagonal entries of interface nodes in the subdomain matrices.
A good choice of these diagonal entries leads to a much faster convergence of the
associated domain decomposition method than using the standard diagonal entries
from RAS.

We present weak scaling numerical results on a 2-D Laplace test case using up to
16384 CPU cores. Combining coarse correction and optimized transmission condi-
tions, we obtain substantially improved computation times with the new optimized
two-level RAS method which, despite a larger memory footprint, proves to be com-
petitive with the multigrid library HYPRE (with the default options of the PETSc
interface to this library).

2 Coarse Correction and the two-level RAS method

We consider the solution of �x = b on a domain Ω decomposed into a set of
possibly overlapping subdomains Ω 9 . Introducing a restriction operator ' 9 onto
each subdomain Ω 9 , local matrices can be built as � 9 = ' 9 � '

)
9
. To obtain the

Restricted Additive Schwarz (RAS) method, we need also to introduce a partition
of Ω into non-overlapping subdomains Ω̃ 9 , as well as the corresponding restriction
operators '̃ 9 . Then, the RAS method is defined by the iterations [4]

x=+1 = x= +
�∑
9=1

'̃)9 �
−1
9 ' 9 (b − �x=). (1)

The RAS method has the drawback of yielding a non-symmetric system even for
symmetric problems, but was shown to converge faster than the Additive Schwarz
method because it remedies its non-convergent behavior in the overlaps [9].

To obtain a two-level method through coarse correction, we introduce a restriction
operator '2 to the coarse space, such that the coarse system matrix reads �2 =
'2 � '

)
2 . In turn, the two-level RAS method with multiplicative coarse correction

(denoted RAS2 in what follows) can be written as

x=+1/2 = x= +
�∑
9=1

'̃)9 �
−1
9 ' 9 (b − �x=), (2)

x=+1 = x=+1/2 + ')2 �−1
2 '2 (b − �x=+1/2). (3)

The definition of the coarse space, that is, the choice of the coarse grid nodes,
is critical to obtain an efficient two-level method. Two possible choices are shown
in Fig. 1. Compared to the classical approach (circles), the new approach (squares)
introduced in [11] shows superior performance since it resolves the residual location
along the interfaces well (see also [8, 12]), and is therefore the choice made here (-
we however compare the iteration counts for the two methods in Section 4). For the
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Fig. 1: Two choices of the coarse grid nodes in 1-D and 2-D: 1) the middle of each subdomain
(circles) or 2) one node on each side of the (non-overlapping) subdomain interfaces (squares) in
1-D, or in 2-D four nodes around each cross point of the (non-overlapping) decomposition.

1-D case, it was actually shown in [11] that, for the Laplace equation, the new coarse
correction yields convergence in two iterations, which is because the new coarse
basis functions are harmonic within the subdomains.

In PETSc, the coarse correction was implemented using the PCSHELL precondi-
tioning tool, which gives the possibility to entirely define the preconditioner. This
self-defined preconditioner was then (multiplicatively) composed with the built-in
PCASM (i.e., RAS) preconditioner using the PCCOMPOSITE composition tool [2].

3 Optimized Interface Conditions and the ORAS2 method

In the RAS iterations (1), each local � 9 matrix corresponds to a discretized lo-
cal problem with homogeneous Dirichlet boundary conditions. Optimized inter-
face conditions are introduced by modifying these matrices into �̂ 9 matrices, each
corresponding to a discretized local problem with homogeneous Robin boundary
conditions of the type

mD 9

m= 9
+ ? D 9 = 0 on mΩ 9 \ mΩ. (4)

The resulting optimized RAS method will be denoted by ORAS, and a good choice
of the parameter ? in (4) is important for good performance.

Starting from the RAS2 iterations (2)-(3), the optimized two-level RAS method,
denoted by ORAS2, is obtained as in the one-level case by modifying the local � 9
matrices into �̂ 9 matrices to express Robin interface conditions.

In the numerical experiments below, we consider the 2-D Laplace problem on the
unit square, discretized using the 5-point finite difference stencil. Following [8], we
obtain �̂ 9 using only a first-order accurate discretization of the normal derivative in
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the Robin conditions, which requires modifying only diagonal entries of � 9 , namely
those corresponding to the unknowns on the interfaces. As for the optimized value ?∗
of the parameter ?, we follow again [8] and take, for the one- and two-level methods
(i.e., ORAS and ORAS2)

?∗one-level = 2−1/3c2/3 (>E; ? · ℎ)−1/3, (5)
?∗two-level = 2−1/3c2/3 (>E; ? · ℎ)−1/3 (�G,H)−2/3, (6)

where ℎ and � denote the fine and coarse mesh sizes. As for the value of the overlap
>E; ?, it has to be handled with some care: in the formulas (5)-(6), it is the geometrical
(i.e., physical) overlap of the method, while the overlap value defined in PETSc is the
number of extra mesh layers per subdomain at interfaces. An overlap of 1 in PETSc
implies one extra mesh layer for both subdomains at an interface, thus an algebraic
overlap of 2 (- an algebraic overlap of 0 corresponds to Block Jacobi). An algebraic
overlap of 2 means a geometrical overlap of 3ℎ for the RAS method and ℎ for the
(one- or two-level) ORASmethod [10, 14], and thus >E; ? = 1 in the above formulas.
Similarly, an overlap of 2 in PETSc corresponds to an algebraic overlap of 4, that is
a geometrical overlap of 5ℎ for RAS and 3ℎ for ORAS, and thus >E; ? = 3.

To end this section, note that PETSc provides the PCSetModifySubMatrices
tool to modify the diagonal values of the local matrices.

4 Weak Scalability Results

As stated earlier, we perform numerical experiments on the 2-D Laplace problem on
the unit square discretized using the 5-point finite difference stencil. We perform a
weak scalability analysis, that is, increase the size of the problem while maintaining
constant the workload per processor. Each subdomain of the decomposition is han-
dled by one CPU core (corresponding to oneMPI rank).We increase the number � of
subdomains/cores following the list � = 4, 16, 64, 256, 1024, . . . with decomposition
into � = 1

�
× 1
�

subdomains on the unit square (� being the coarse mesh size as
before). To maintain the workload per CPU core constant, the fine mesh size ℎ is
decreased proportionally, such that the ratio ℎ/� remains constant as well as, in turn,
the local problem size within each subdomain. We consider two workloads, the first
one with a 256 × 256 fine mesh within each subdomain, the second (heavier) one
with 512 × 512 local meshes, yielding a ℎ/� ratio of .004 and .002, respectively.

Three different supercomputers were used to perform our tests: Ada and Turing
at the Institute for Development and Resources in Intensive Scientific Computing
(CNRS/IDRIS), and Occigen at the National Computing Center for Higher Ed-
ucation (CINES). The Ada and Occigen machines are meant for a wide-ranging
usage and are composed of large memory SMP nodes interconnected by a high-
speed InfiniBand network, for a cumulated peak performance of 233 Tflop/s and
3.5 Pflop/s, respectively. The Turing machine is an IBM Blue Gene/Q massively
parallel architecture with a cumulated performance of 1.258 Pflop/s.
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(a) RAS and RAS2 (b) ORAS and ORAS2

(c) RAS2 and ORAS2 (zoom) (d) RAS2 and ORAS2 (GMRES zoom)

Fig. 2: Number of iterations in the weak scaling experiment with ℎ/� = .004 (last panel with
GMRES acceleration).

Fig. 2 shows in the first three pannels the number of stationary iterations obtained
using the one- and two-level (O)RASmethods up to 1024 CPU cores. As can be seen
on Figs. 2a and 2b, the one-level methods do not scale (here in terms of iterations),
while the two-level methods do. Fig. 2c zooms on the two-level results of the previous
plots, showing the superiority of the optimizedmethods. In Fig. 2dwe show that using
GMRES acceleration to the experiments in Fig. 2c lowers the iteration counts for
all methods, but does not change the relative superior performance of the optimized
methods compared to the classical ones. The equivalent zoomed plot obtained (with
stationary iterations) using the classical approach consisting in choosing coarse grid
nodes in the middle of each subdomain (circled points in Fig. 1) is visible on Fig. 5a.
As expected, these results confirm the lower iteration count of the new approach
already observed in [11].

Fig. 3 shows Ada timings for the two workloads (ℎ/� = .004 and ℎ/� = .002)
with stationary iterations, using up to 1024 cores. As above in terms of iterations,
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(a) ℎ/� = .004 (b) ℎ/� = .002

Fig. 3: Computation times (s.) for the weak scaling experiment up to 1024 cores on Ada, for the
two different workloads. HYPRE/BoomerAMG is used with the default PETSc settings.

we here observe that the RAS2 and ORAS2 scale well in terms of computing time,
with the optimized methods again showing superior performances. The use of a
second layer of overlap does not appear beneficial in the ORAS2 method. On these
plots also appear the corresponding results obtained using the multigrid library
HYPRE as interfaced by PETSc, with the default settings. This amounts to using
the BoomerAMG [13] component of HYPRE, for which the default settings are meant
to work fairly well for two-dimensional diffusion problems [5]. The HYPRE results
exhibit a scalability curve that is not as flat as the (O)RAS2 ones within this range
of number of processors, with comparable computing times.

Numerical tests were pursued up to 16384 cores using the Occigen and Turing
machines, as shown in Fig. 4. The scalability properties of the RAS2 and ORAS2

(a) Occigen timings (b) Turing timings

Fig. 4: Computation times (s.) for the weak scaling experiment up to 16384 cores on Occigen and
Turing with ℎ/� = .004.
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methods remain decent, with the latter again performing better. As for the HYPRE
results, they exhibit on Occigen (Fig. 4a) the expected scalability above 4092 cores,
but not up to 1024 cores, as already observed above on Ada. This behavior remains
unexplained to us, and has been observed repeatedly on these twomachines of similar
architecture. Changing architecture and running on Turing (Fig. 4b) however yields
a flat scalability curve for HYPRE already below one thousand cores. The computing
times on Turing are noticeably slower than on Occigen due to slower processors.

Finally, Fig. 5b shows thememory footprints of the differentmethodsmeasured on
Occigen. The overlapping RAS2 and ORAS2 methods yield very close footprints,

(a) RAS2 and ORAS2 (zoom, coarse nodes in
the middle of each subdomain).

(b) Average (on all the MPI tasks) of the max-
imal physical memory consumption.

Fig. 5: Number of iterations with the classical choice of coarse grid nodes (left) and memory
footprint (right) in the weak scaling experiment with ℎ/� = .004.

which differ significantly from the non-overlapping ones only at 16384 cores, prob-
ably because of MPI scalability effects. Fig. 5b also shows that the HYPRE method
yields the lowest memory footprint and it is unclear to us wether this comes from a
better implementation or if it has a theoretical explanation.

5 Conclusions

We implemented two improvements to the RAS method built in the PETSc library,
namely a new coarse correction to obtain a (scalable) two-level method, as well as
optimized interface conditions. This implementation was done using only existing
PETSc tools, mainly preconditioner composition and submatrix modification.

We showed numerically that combining these two improvements yields substantial
improvement on the standard RAS and, on a 2-D Laplace problem, the resulting
ORAS2 method appears competitive with the multigrid HYPRE library up to 16k
cores, despite a larger memory footprint.
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