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1 Introduction

Recently a lot of attention has been devoted to the Stokes-Darcy coupling which is a
system of equations used to model the flow of fluids in porous media. In [2, 1] a non
standard behaviour of the optimized Schwarz method (OSM) has been observed: the
optimized parameters obtained solving the classical min-max problems do not lead
to an optimized convergence. The authors in [2, 1] proposed to consider a different
optimization problem and they claimed that the unexpected behaviour is due to the
Krylov acceleration. In this manuscript, we study OSM as an iterative method and
as a preconditioner for GMRES and we show that the discrepancy is not due to the
Krylov acceleration but to a limitation in the derived convergence factor.

2 The Stokes-Darcy model

We consider a domain Ω divided by an interface Γ into two subdomains, Ω1 and
Ω2. In Ω1, a Newtonian fluid is present described by the Stokes equations whose
unknowns are the velocity field u 5 = (D, E)> and the pressure field ? 5 ,

−∇ · T = 5 in Ω1, (1)
∇ · u 5 = 0 in Ω1,

where T = 2` 5 (∇Bu 5 ) − ? 5 I is the stress tensor, with ∇Bu 5 the symmetrized
gradient, and ` 5 is the fluid viscosity. The motion of the fluid in the porous media is
modelled through the Darcy equations whose unknowns are the velocity and pressure
fields in the porous media domain u3 , ?3 ,
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u3 = −K∇?3 + g, ∇ · u3 = 0 in Ω2, (2)

where K is the permeability tensor and g is a body force vector. Equation (2) can be
simplified taking the divergence of the first equation to obtain a second order elliptic
PDE only for the pressure field,

−∇ · K∇?3 = −∇ · g in Ω2. (3)

Both (1) and (3) are closed byDirichlet boundary conditions on the external boundary
mΩ \ Γ, i.e. u 5 = h 5 , ?3 = ℎ3 on mΩ \ Γ. However the Stokes and Darcy equations
still need to be coupled along the common interface Γ and there are many possible
choices, see Paragraph 3 of [3]. In the following we prescribe the continuity of the
normal velocities and of the normal stresses and the so called Beaver-Joseph-Saffman
(BJS) condition,

u 5 · n = −(K∇?3) · n + g · n,
−n · (2` 5 ∇Bu 5 − ? 5 I) · n = ?3 , (4)
−g · (2` 5 ∇Bu 5 − ? 5 I) · n = jB (u 5 )g .

We remark that the BJS condition (4)3 is not a coupling condition but only a closure
condition for the Stokes equations. OSMs use enhanced transmission conditions on
the interface, thus we take a linear combination of the coupling conditions (4)1,2
introducing the real parameters B1 and B2 which are chosen to optimize the conver-
gence. TheOSM for the Stokes-Darcy system (1)-(3)-(4) then computes for iterations
= = 1, 2 . . .

−∇ · (2` 5 ∇Bu=5 − ?=5 I) = f, in Ω1, (5)

∇ · u=5 = 0, in Ω1

−∇ · K∇?=3 = −∇ · g, in Ω2,

?=3 − B1
(
K∇?=3 · n − g · n)

= −n · (2` 5 ∇Bu=−1
5 − ?=−1

5 I) · n
+ B1u=−1

5 · n on Γ,

−n · (2` 5 ∇Bu=5 − ?=5 I) · n − B2u=5 · n = ?=−1
3 + B2

(
K∇?=−1

3 · n − g · n
)

on Γ,

−g · (2` 5 ∇Bu=5 − ?=5 I) · n = jB (u=5 )g on Γ.

In [2], the authors perform a Fourier analysis of the OSM (5). Their analysis fol-
lows one of the standard approaches in the literature, i.e. the problem of interest
is posed in a simplified setting where one can exploit the Fourier transform for un-
bounded domains or separation of variables for bounded domains. Unfortunately this
last approach is not possible here since no analytical expression is available for the
eigenvectors of the Stokes operator in bounded domainswithDirichlet boundary con-
ditions. Furthermore, to simplify the calculations they assume that K = diag([1, [2)
with [ 9 > 0, 9 = 1, 2. They finally obtain that the convergence factor of algorithm
(5) for all the Fourier frequencies : ∈ R is
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d(:, B1, B2) =
����2` 5 |: | − B1

2` 5 |: | + B2
· 1 − B2

√
[1[2 |: |

1 + B1
√
[1[2 |: |

���� . (6)

The optimal choice B1 = 2` 5 |: | and B2 =
1√

[1[2 |: |
would lead to a direct method

which converges in just two iterations, however this choice corresponds to non-
local operators once backtransformed. Therefore a more practical choice is to set
B1 = 2` 5 ? and B2 =

1√
[1[2 ?

for some ? ∈ R. An equivalent choice of optimized
parameters has been treated in [2] where the authors obtain the following result:

Theorem 1 (Proposition 3.3 in [2]) The unique solution of the min-max problem

min
?

max
:∈[:min ,:max ]

d(:, ?), (7)

is given by the unique root of the non linear equation d(:min, ?) = d(:max, ?).
A possible improvement consists in considering two free parameters, choosing B1 =
2` 5 ? and B2 =

1√
[1[2@

with ?, @ ∈ R. In [1], the authors propose to choose the

couple ?, @ such that d(:min, ?, @) = d( :̂ , ?, @) = d(:max, ?, @), i.e. they impose
equioscillation to obtain the optimized parameters. Even though often the solution
of such min-max problems is indeed given by equioscillation, a priori there is no
reason why this should be the case also for the Stokes-Darcy coupling. In fact
for heterogenous problems, it has been observed that there can exist a couple of
parameters which satisfies the equioscillation property, but leads to a non optimized
convergence or even to a divergence method, see [6, 4, 7]. In Theorem 2 we refine
Proposition 1 of [1].

Theorem 2 The solutions of the min-max problem
min
?,@∈R

max
:∈[:min ,:max ]

d(:, ?, @), (8)

where d(:, ?, @) = 2` 5
√
[1[2

��� :−?
1+2` 5 √[1[2: ?

· :−@
1+2` 5 √[1[2:@

���, are given by two
pairs (?∗

8
, @∗
8
), 8 = 1, 2 which satisfy the non linear equations |d(:min, ?

∗
8
, @∗
8
) | =

|d( :̂ , ?∗
8
, @∗
8
) | = |d(:max, ?

∗
8
, @∗
8
) |, :̂ being an interior maximum. Moreover ?∗2 = @

∗
1

and @∗2 = ?
∗
1.

Proof The proof is based on arguments presented in [4, 8, 7] and we outline the
main steps. We first observe that d(:, ?, @) is invariant under ? ↔ @, hence we
consider only ? < @ and moreover d(:, ?, @) = 0 for : = @ and : = ?. The
partial derivatives with respect to the parameters satisfy sign(m?d) = sign(? −
:) and sign(m@d) = sign(@ − :), therefore at optimality we conclude that ?, @
lie in [:min, :max], see the proof of Theorem 1 in [8]. Solving m: d = 0, we get
that there exists a unique interior maximum :̂ , with ? < :̂ < @, so that we can
restrict max:∈[:min ,:max ] d(:, ?, @) = max{d(:min, ?, @), d( :̂ , ?, @), d(:max, ?, @)}.
Repeating the same arguments of Lemma 2.9 in [7], we obtain that at the optimum
we must have d(:min, ?, @) = d(:max, ?, @), so that we can express q as function
of p and we can restrict the study to min? max{d(:min, ?, @(?)), d( :̂ , ?, @(?))}.
Defining X := 2` 5

√
[1[2, the equioscillation constraint is equivalent to
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; (?) :=
:min − ?

1 + X:min?

1 + X:max?

:max − ? =
:max − @(?)

1 + X@(?):max

1 + X@(?):min
:min − @(?) =: 6(?). (9)

Since m?; (?) < 0 and m?6(?) > 0, @(?) must be a decreasing function of ? so
that eq (9) is satisfied. Then using the sign of the derivatives of d with respect to ?
and @ and the explicit expression of @(?), we have 3d(:min , ?)

3?
> 0 and 3d( :̂ , ?)

3?
< 0

for :min < ? < @(?). These observations are sufficient to conclude, see Theorem
1 in [8], that the solution of min? max{d(:min, ?, @(?)), d( :̂ , ?, @(?))} is given
by the unique ?∗1, such that d(:min, ?

∗
1, @(?∗1)) = d( :̂ , ?∗1, @(?∗1)) and @∗1 given by

@∗1 = @(?∗1). Due to the invariance ? ↔ @, we get the same results in the case @ < ?

and we conclude that the other couple satisfies ?∗2 = @
∗
1 and @

∗
2 = ?

∗
1. �

In [2, 1], the authors studied extensively the methods obtained from Theorems 1-2
as preconditioners for GMRES. They observed that these optimized parameters do
not lead to an optimized convergence and they proposed to minimize the !1 norm
instead of the maximum of the convergence factor,

min
?

1
:max − :min

∫ :max

:min

d(:, ?)3:. (10)

The reason behind this choice lies in the assumption that the Krylov method can
take care of isolated slow frequencies, and therefore it would be better to have a
convergence factor that is very small for a large set of frequencies with possibly high
peaks. This approach was first discussed in [5] for the Helmholtz problem, with the
significant difference that theOSMdoes not converge for theHelmholtz frequencyl,
and thus the authors proposed to minimize min? max:∈[:min ,l− ]∪[l+ ,:max ] d(:, ?).
Since such a bad performance of the optimized parameters obtained from a min-max
problem in combination with a Krylov method does not have comparison in the
literature, we investigate it in details in the next Section.

3 Numerical study of the optimized Schwarz method

We consider the domains Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (−1, 0) and a uniform
structured mesh with mesh size ℎ = 0.02, so that :min = c and :max = c/ℎ. We
discretize the corresponding error equations of (5) with Taylor-Hood finite elements
P2

2−P1 for the Stokes unknowns and P2 elements for the Darcy pressure. The physical
parameters are set equal to ` 5 = 0.1, [1 = [2 = 1. The stopping criterion for the
iterative method is ‖D=‖� 1 + ‖E=‖� 1 + ‖?=

5
‖!2 + ‖?=

3
‖� 1 < 10−9 and similarly for

GMRES the tolerance is 10−9. Figure 1 shows the number of iterations to reach
convergence. On the left panel we show with a circle the optimized parameter ?
obtained from Theorem 1 and with a square the optimized ? obtained solving (10).
We observe that indeed the solution of (10) leads to a faster convergence than
the classical approach of Theorem 1 for the preconditioned GMRES. This is in
accordance with the results proposed in [2, 1], where it has been shown that the
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Fig. 1: Number of iterations to reach the tolerance 10−9 for different optimized parameters. On the
left, the circle represents the solution of Theorem 1, the square corresponds to the solution of (10).
On the right the triangles correspond to the double solutions of Theorem 2 and the contour plot
refers to the iterative method.
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Fig. 2: Comparison of the theoretical and numerical convergence factors. On the left, optimized
parameter from Theorem 1 and on the right, optimized parameter from (10).

solution of (10) leads to an equivalent or faster convergence than Theorem 1 for a
wide range of parameters. However, we remark that (10) leads to a faster method
than (7) also for the iterative method and not only under Krylov acceleration! On
the right panel of Fig. 1 we observe that also Theorem 2 does not lead to an
optimized convergence and the symmetry of the parameters has disappeared. To
understand better the behaviour of the method, we initialize it setting as initial
condition one by one the sine functions which correspond to the restriction of the
Fourier basis {4−8:G}: on bounded domains with Dirichlet boundary conditions.
We then compute numerically an approximation of the convergence factor defining

dE (:, ?) =
( ‖E3 ‖

�1
‖E1 ‖

�1

)
, d?3 (:, ?) =

(
‖?3
3
‖
�1

‖?1
3
‖
�1

)
, where E= is the Stokes velocity in

the y direction at iteration = and ?=
3
is the Darcy pressure at iteration =. From the

results presented in Figure 2, we observe two major issues: the first one is a very
poor approximation of high frequencies. This is due to the fact that the chosen finite
element spaces P2

2 −P1 −P2 are not capable of representing properly the exponential
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boundary layer of the high frequencies near the interface. We propose two remedies
which can also be combined. We could first raise the order of the approximation
of the finite element spaces to P2

3 − P2 − P3 and/or refine the mesh in the normal
direction to the interface. Both remedies improve the representation of the high
frequencies and in the following we only consider the first one. The second issue lies
in a unusual oscillatory behaviour of the low, odd frequencies. This is due to the fact
that the unbounded analysis used to obtain the convergence factor is not transferable
to the bounded case, since the sines do not form a separated variable solution for the
Stokes operator with Dirichlet boundary conditions. Hence, for instance in the right
panel of Figure 2, the first frequency sin(cG) is transformed after one iteration into
a complicated combination of higher frequencies so that actually the parameter ?
makes the method much faster than the theory predicts. Therefore it is not possible
to diagonalize the iteration as the formula of the convergence factor (6) assumes.
This phenomeon was first discussed in [8, 7] where the authors show that for the
coupling of theLaplace equationwith an advection-diffusion equationwith tangential
advection, the unbounded analysis leads to inefficient optimized parameters since the
two equations lack a common eigenbasis. We consider now the Stokes-Darcy system
(5) with periodic boundary conditions on the vertical edges in order to make the
bounded problem as similar as possible to the unbounded case. In this setting there
exists a separated variable solution for the Stokes problem involving the Fourier
basis {4−8:G}: , see [9]. In Figure 3 we show both the numerical and theoretical
convergence factors computed for even frequencies {sin(2:cG)}: . The same results
are obtained using the other periodic frequencies {cos(2:cG)}: . Comparing with
Figure 2, we observe that nowwe have an excellent agreement between the numerical
and theoretical convergence factors and thus we would expect that the optimized
parameters from the min-max theorems provide optimized convergence. We thus
start the OSM method (5) with initial guesses given by a linear combination of
periodic sine and cosine functions multiplied by random coefficients. Figure 4 shows
that both Theorem1 and 2 now lead to optimized convergence for the iterativemethod
(5) and we also observe the symmetry of the optimized parameters in the right panel
as Theorem 2 predicts. However concerning GMRES, we note that the optimized
parameter from Theorem 1 is still a bit too small. This can be understood studying
the eigenvalues of the preconditioned matrix system which are shown in Figure
5. Analyzing the large real eigenvalue, we have observed that the corresponding
eigenvector is given by a zero velocity field u 5 , a constant pressure ? 5 and a linear
Darcy pressure ?3 . This constant mode is actually not treated by the unbounded
Fourier analysis and it is not present in our initial guess for the iterative method.
Defining the functions ?=

3
= �= (H + !) and ? 5 = %= with %, � ∈ R and ! is the

vertical length of the subdomains, and inserting them into the OSM algorithm (5), we
obtain a convergence factor d(: = 0, ?) := 1−B2

1+B1
. Solving numerically the min-max

problem min? max
:∈{0}∪[:min ,:max ]

d(:, ?) we obtain the equioscillation between d(0, ?)
and d(:min, ?) and a numerical value of ? ≈ 48. In the right panel of Figure 5 we
start the method with a totally random initial guess and this shows that taking into
account the constant mode actually makes our analysis exact.
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Fig. 3: Comparison of the theoretical and numerical convergence factors. On the left for the single
sided optimized parameter from Theorem 1 and on the right one for the double sided parameters
of Theorem 2. The minimum frequency is now :min = 2c.
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Fig. 4: Number of iterations to reach the tolerance 10−9 for different optimized parameters. On the
left, the circle represents the solution of Theorem 1, the square corresponds to the approach of (10).
On the right the triangles correspond to the double solutions of Theorem 2 and the contour plot
refers to the iterative method.

4 Conclusions

In this manuscript we showed that the bad performance of the optimized parameters
of the min-max problems for the Stokes-Darcy coupling is not due to the Krylov
acceleration but to the difficulty of transferring the unbounded Fourier analysis
to the bounded case. For Dirichlet boundary conditions, the problem lies in the
odd frequencies which mix among them during the iterations and therefore the
convergence factor (6) loses its accuracy. For periodic boundary conditions, we
recover a perfect agreement between the unbounded analysis and the numerical
simulations for periodic frequencies, however the Fourier analysis does not deal
with the constant mode which is present in the bounded case. Including the constant
mode in the analysis we recover the optimality of the min-max optimized parameters
for periodic boundary conditions.
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