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1 Introduction

Over the last decade, substantial research efforts have gone into developing precon-
ditioners for time harmonic wave propagation problems, like the Helmholtz and the
time harmonic Maxwell’s equations. Such equations are much harder to solve than
diffusive problems like Laplace’s equation, because of two main reasons: first, the
pollution effect [1] requires much finer meshes than would be necessary just to re-
solve the signal computed, and second, classical iterative methods all exhibit severe
convergence problems when trying to solve the very large discrete linear systems
obtained [9]. These research efforts have led to innovative new preconditioners, like
optimized Schwarz methods (OSM) [5, 11], Analytic Incomplete LU (AILU) [12],
the sweeping preconditioner [7, 8], the source transfer domain decomposition [3, 4],
the method based on single layer potentials [14], and the method of polarized traces
[15], for a more complete treatment, see [13] and references therein. In [13], it was
shown that all these methods can be written as alternating optimized Schwarz meth-
ods called Double Sweep Optimized Schwarz Methods (DOSMs). We study here
analytically the contraction properties of DOSMs for the model problem

[D − DGG − DHH = 5 in Ω := (− !2 , 1 + !
2 ) × (0, c),

D = 0 at H ∈ {0, c}, B;1D = 0 at G = − !2 , BA# D = 0 at G = 1 + !
2 ,
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where ! ≥ 0 is a parameter which will be related to the overlap, B;1 and BA
#

are
linear trace operators, and # ≥ 2 is an integer number to be defined below. While
in our derivations in Section 2 and 3 we consider [ ∈ C, and we thus also include
the Helmholtz case of interest, we will focus for our results then in Section 4 on the
positive definite case [ > 0.

2 Iteration Matrix of DOSM

Using a Fourier sine expansion of D solution to (1) in the H direction with Fourier
parameter : , we obtain for the Fourier coefficients 1 for : = 1, 2, . . . the problem

(:2 + [)D − DGG = 5 in (− !2 , 1 + !
2 ), : ∈ N+,

B;1D = 0 at G = − !2 , BA# D = 0 at G = 1 + !
2 .

(2)

We decompose the domain (− !2 , 1 + !
2 ) into # overlapping subdomains of equal

width � + ! := 1
#
+ !, denoted by Ω 9 := (( 9 − 1)� − !

2 , 9� + !
2 ), and we denote

the restricted solution by D 9 := D |Ω 9 , 9 = 1, .., # . In DOSM, (2) is reformulated as
transmission problems on the Ω 9 for 9 = 1, .., # ,

(:2 + [)D 9 − (D 9 )GG = 5 in Ω 9 ,
B;9 (D 9 − D 9−1) = 0 at G = ( 9 − 1)� − !

2 ,BA9 (D 9 − D 9+1) = 0 at G = 9� + !
2 ,

(3)

where B;
9
and BA

9
are linear trace operators and D0, D#+1 are identically zero. Let

6;
9

:= B;
9
D 9 at G = G;

9
:= ( 9 − 1)� − !

2 and 6A
9

:= BA
9
D 9 at G = GA

9
:= 9� + !

2 .
To rewrite (3) in terms of the interface data [6;2; ..; 6;

#
; 6A1 ; ..; 6A

#−1], we define the
trace-to-trace operators (see also Figure 1)

0 9 :
(
ℓ 9 at G = G;9

)
→

(
B;9+1E 9 at G = G;9+1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = ℓ 9 at G = G;9 , BA9 E 9 = 0 at G = GA
9
,

1 9 :
(
W 9 at G = GA9

)
→

(
B;9+1E 9 at G = G;9+1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = 0 at G = G;
9
, BA9 E 9 = W 9 at G = GA9 ,

2 9 :
(
W 9 at G = GA9

)
→

(
BA9−1E 9 at G = G

A
9−1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = 0 at G = G;
9
, BA9 E 9 = W 9 at G = GA9 ,

3 9 :
(
ℓ 9 at G = G;9

)
→

(
BA9−1E 9 at G = G

A
9−1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = ℓ 9 at G = G;9 , BA9 E 9 = 0 at G = GA
9
.

1 We still denote the Fourier transformed quantities for simplicity by the same symbols D, B;1 and
BA
#

to avoid a more complicated notation.
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Fig. 1: Illustration of the interface-to-interface operators.

In the Fourier basis, the operators 0 9 , 1 9 , 2 9 , 3 9 reduce to scalars which we compute
now explicitly. To simplify the notation, let B :=

√
:2 + [ with Re B > 0 if :2 + [

is not exactly on the negative real axis, B := 2sgni
√
−:2 − [ if :2 + [ < 0 with

2sgn ∈ {1,−1} a conventional sign-value from the time-dependence e2sgni√−[C . For
typical OSM transmission conditions (not just DOSM) of the form B;

9
= −@;

9
mG + ?;9

and BA
9
= @A

9
mG + ?A9 , we define

';9 :=
?;
9
− @;

9
B

?;
9
+ @;

9
B

e−!B , ';A9 :=
?A
9−1 − @A9−1B

?;
9
+ @;

9
B

e−!B , &;A9 :=
?A
9−1 + @A9−1B

?;
9
+ @;

9
B
,

'A9 :=
?A
9
− @A

9
B

?A
9
+ @A

9
B

e−!B , 'A;9 :=
?;
9+1 − @;9+1B
?A
9
+ @A

9
B

e−!B , &A;9 :=
?;
9+1 + @;9+1B
?A
9
+ @A

9
B
,

';;9 :=
?;
9+1 − @;9+1B
?;
9
+ @;

9
B

e−!B , 'AA9 :=
?A
9−1 − @A9−1B

?A
9
+ @A

9
B

e−!B , &
;; (AA )
9

:=
?
; (A )
9±1 + @

; (A )
9±1 B

?
; (A )
9
+ @; (A )

9
B
,

and we have for ! ≥ 0

0 9 =
(&;;

9
− 'A

9
';;
9
)e−�B

1 − ';
9
'A
9
e−2�B

, 1 9 =
'A;
9
− ';

9
&A;
9

e−2�B

1 − ';
9
'A
9
e−2�B

,

2 9 =
(&AA

9
− ';

9
'AA
9
)e−�B

1 − 'A
9
';
9
e−2�B

, 3 9 =
';A
9
− 'A

9
&;A
9

e−2�B

1 − 'A
9
';
9
e−2�B

.

When B;
9
= BA

9
= 1, i.e. the classical alternating Schwarz case, we have

0 9 = 2 9 =
(1 − e−2!B)e−�B
1 − e−2�B−2!B , 1 9 = 3 9 =

(1 − e−2�B)e−!B
1 − e−2�B−2!B .

Using the operators 0 9 , 1 9 , 2 9 and 3 9 , we can rewrite (3) as the linear system(
� − � −�
−� � − �

) (
6;

6A

)
=

(
g;

gA

)
. (4)

where � (�) has all its non-zero entries on the subdiagonal (superdiagonal) as
(02, . . . , 0#−1) ((22, . . . , 2#−1)), � = diag(11, . . . , 1#−1), � = diag(32, . . . , 3# ),
and g;

9
:= B;

9
E 9 , gA9 := BA

9
E 9 with E 9 satisfying
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(:2 + [)E 9 − (E 9 )GG = 5 in Ω 9 ,
B;9E 9 = 0 at G = G;

9
, BA9 E 9 = 0 at G = GA

9
.

The DOSM, which comprises a class of the many recently invented preconditioners
for time harmonic wave propagation [13], amounts to a block Gauss-Seidel iteration
for (4): given an initial guess 6A ,0 of 6A , we compute for iteration index < = 0, 1, . . .

6A ,<+1 := (� − �)−1 [
gA + � (� − �)−1 (g; + �6A ,<)] . (5)

We denote by nA ,< := 6A ,< − 6A the error, which then by (5) satisfies a recurrence
relation with iteration matrix ) ,

nA ,<+1 = )nA ,< := (� − �)−1� (� − �)−1�nA ,<. (6)

3 Eigenvalues of the iteration matrix Z

To understand the convergence properties of these methods, we need to study the
spectral radius of ) . We first compute the inverse of ) if � and � are invertible.
For simplicity, we assume from now on that B;

9
= B; , 9 = 2, .., # are the same and

BA
9
= BA , 9 = 1, .., # − 1 are the same. Therefore, 1 9 , 3 9 , 9 = 2, .., # have the same

value and we denote them by 1 and 3. In addition 0 9 = 2 9 , 9 = 2, .., # − 1 which
also have the same value denoted by 0. We thus obtain

)−1 = �−1 (� − �)�−1 (� − �)

= 1−13−1

©«

1−1
1 1 −1−1

1 10

−0 02 + 1 −0
. . .

. . .
. . .

. . . 02 + 1 −0
−0 02 + 3−1

#
3

ª®®®®®®®¬
=: 1−13−1)̃ .

(7)

Let _max (·) and _min (·) denote the largest and smallest eigenvalue in modulus, and
d := _max ()). From (7), we have d = 13_−1

min ()̃). Let _ be an eigenvalue of )̃ and
v = (E 9 )#−1

9=1 ∈ C#−1 the associated eigenvector. It follows that

−0E 9−1 + (02 + 1 − _)E 9 − 0E 9+1 = 0, (8a)
(1−1

1 1 − _)E1 − 1−1
1 10E2 = 0, (8b)

−0E#−2 +
(
02 + 3−1

# 3 − _
)
E#−1 = 0. (8c)

Note that E 9 = b1`
9 + b2`

− 9 , 9 ∈ Z is the general solution of (8a) if ` ≠ ±1 satisfies

−0 + (02 + 1 − _)` − 0`2 = 0, or _ = 1 + 02 − 0(` + `−1). (9)
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Subtracting (8a) at 9 = 1 and 9 = # − 1 from (8b) and (8c) gives the equivalent
boundary conditions

−0E0 + (02 + 1 − 1−1
1 1)E1 − 0(1 − 1−1

1 1)E2 = 0,
(1 − 3−1

# 3)E#−1 − 0E# = 0.

Further substituting E 9 = b1`
9 + b2`

− 9 into the above equations leads to[−0 + (02 + 1 − 1−1
1 1)` − 0(1 − 1−1

1 1)`2] b1+[−0 + (02 + 1 − 1−1
1 1)`−1 − 0(1 − 1−1

1 1)`−2] b2 = 0,[(1 − 3−1
# 3) − 0`

]
`#−1b1 +

[(1 − 3−1
# 3) − 0`−1] `1−# b2 = 0.

Since v ≠ 0, the determinant of the above linear system for [b1; b2] must vanish, i.e.[−0 + (02 + 1 − 1−1
1 1)` − 0(1 − 1−1

1 1)`2] [(1 − 3−1
# 3) − 0`−1] `1−#

=
[−0 + (02 + 1 − 1−1

1 1)`−1 − 0(1 − 1−1
1 1)`−2] [(1 − 3−1

# 3) − 0`
]
`#−1.

(10)

Assume 0 ≠ 0 and let V1 := 0−1 (1 − 1−1
1 1), V# := 0−1 (1 − 3−1

#
3). We can rewrite

(10) as
`2# =

(1 − 0`) (1 − V1`) (1 − V# `)
(1 − 0`−1) (1 − V1`−1) (1 − V# `−1) . (11)

In the special case when B;1 = B; and BA# = BA , we have V1 = V# = 0 so that

`2# =
1 − 0`

1 − 0`−1 . (12)

Remark 1 The value _ = (1∓ 0)2 corresponding to ` = ±1 in (9) is an eigenvalue of
)−1 if and only if E 9 = (b1 + b2 9) (±1) 9 is a non-zero solution of (8) or equivalently

(1 ∓ 0) (±1 ∓ 1−1
1 1 − 0) [(1 − 3−1

# 3) (# − 1) ∓ 0#]
= [±02 + (±1 − 20) (1 − 1−1

1 1)] [1 − 3−1
# 3 ∓ 0] .

In the special case ofB;1 = B; andBA# = BA , the above condition becomes±02# (1∓
0) = −03, that is, 0 = 0 or ± #

#−1 .

4 Roots of the Polynomial Equation for -

We first observe the following facts: ` = ±1 are two roots of (11), and the other
roots appear in pairs as `, `−1. Our goal in this section is to locate all the roots in
the complex plane. We assume from now on that [ ≥ 0 and thus 0, V1, V# ∈ R.
Hence complex roots of (11) appear in conjugate pairs. We begin with the simplest
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Fig. 2: Image of 1 − 0ei\ . Left: 0 < 0 < 1. Right: 0 > 1.

case (12). We assume the argument arg I of a complex number I to take values in
(−c, c].
Lemma 1 If 0 ∈ [−1, 1]\{0}, then the roots of (12) are ±1 and (sign 0) e±i \ 9 for
some \ 9 ∈

[( 9 − 1
2 )c/#, 9c/#

)
, 9 = 1, .., # − 1.

Proof Since (12) is invariant under the transform 0 → −0, `→ −`, we can assume
0 > 0. Substituting the ansatz ` = ei\ , \ ∈ (−c, c] into (12), we obtain for \ the
equation

F(\) := ei2# \ =
1 − 0ei\

1 − 0e−i\ =: I(\). (13)

Since (13) is invariant under the transform \ → −\, we need only to show that
F(\) = I(\) has #−1 roots for \ ∈ (0, c). On the one hand,we note that 1−0ei\ turns
around 1 with radius 0, see Figure 2. It follows that I(\) moves on the unit circle: first
from I(0) = 1 clockwise to the extremal point I(arccos 0) with arg I = −2 arcsin 0,
and then back counter-clockwise to I(c) = 1. On the other hand, F(\) starts from
F(0) = 1 and turns counter-clockwise along the unit circle # times. Hence, in each
lower semi-cycle \ ∈ [( 9 − 1

2 )c/#, 9c/#
)
, 9 = 1, .., # − 1 there must exist a value

of \ such that F(\) = I(\). �

5 Numerical Study of the Convergence Factor

As before, we focus on the regime :2 + [ > 0, and therefore B =
√
:2 + [ varies in

[Bmin, Bmax]. Typically, Bmax is linked to # , for example, if � is proportional to the
mesh size and a second-order discretization is used, we have Bmax = O(#). On the
other hand, Bmin is in this case a constant, which for our sine expansion has the value
Bmin =

√
1 + [ stemming from the lowest Fourier mode : = 1.

In the special case of the classical alternating Schwarz methods,B;
9
= BA

9
= 1, we

have 0 ∈ (0, 1), 1 ∈ (0, 1). By (9) and Lemma 1, we get _min = 1+02−20 cos \1 > 0
for some \1 ∈

[
c

2# ,
c
#

)
. Therefore, the convergence factor d = 12_−1

min becomes
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Fig. 3: Convergence factor of alternating Schwarz with # = 10, ! = 1
5# (left), 4

5# (right) and
B ∈ [

√
2,
√

104 + 1].
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1−
||ρ
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number of subdomains N
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||ρ
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Fig. 4: Scaling of alternating Schwarz with ! = 1
5# (left), 4

5# (right) and B ∈ [
√

2,
√

100# 2 + 1].
The dashed lines correspond to the upper and lower bounds of 1 − ‖d ‖∞.

0 < d =
e−2!B (1 − e−2�B)2
A2

1 + A2
2 − 2A1A2 cos \1

, A1 := 1 − e−2�B−2!B , A2 := (1 − e−2!B)e−�B .

Substituting \1 with its lower (upper) bound into the above expression yields an
upper (lower) bound of d. In Figure 3, we compare these bounds with the exact value
of d computed numerically. We see that the bounds are quite sharp. Then using these
bounds we get the scaling of ‖d‖∞ := maxB |d(B) | with the number of subdomains
# , and the convergence deteriorates, see Figure 4.

For optimized Schwarz, since [ ≥ 0, it is natural to use positive ?;
9
, ?A

9
[10]. In

the special case of ?;
9
= ?A

9
= ?(:2) > 0, we find that ' ∈ (−1, 1), 0 ∈ (0, 1), 1 =

3 ∈ (−1, 1). Again, by (9) and Lemma 1, we have _min = 1 + 02 − 20 cos \1 > 0 for
some \1 ∈

[
c

2# ,
c
#

)
. Therefore, the convergence factor d = 12_−1

min becomes

0 < d =
'2 (1 − e−2�B)2

A2
1 + A2

2 − 2A1A2 cos \1
, A1 := 1 − '2e−2�B , A2 := (1 − '2)e−�B .

We first take ? > 0 a constant. In Figure 5, we show how good the bounds of d are,
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Fig. 5: Convergence factor of DOSM with ? a constant obtained by numerically minimizing the
upper bound of ‖d ‖∞, # = 10, ! = 1

5# (left), ! = 0 (right) and B ∈ [
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√
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Fig. 6: Scaling of DOSM with ? a constant obtained by numerically minimizing the upper bound
of ‖d ‖∞, ! = 1

5# (left), ! = 0 (right) and B ∈ [
√

2,
√

100# 2 + 1]. The dashed lines correspond
to the upper and lower bounds of 1 − ‖d ‖∞ which are too close to be distinguished.

and also the results of minimizing the upper bound of ‖d‖∞. Given ? optimized in
this way (dependent on #), we find that ‖d‖∞ ≈ 1 − O(#−2/3), both with minimal
overlap andwithout overlap; see Figure 6. Next, we take ? = ?̃0+ ?̃2:

2 corresponding
to the second-order boundary condition B;,A = ∓?̃0mG − ?̃2mHH . We show the upper
and lower bounds of d in Figure 7. Using numerically optimized parameters ?̃0 and
?̃2 (dependent on #), we find that ‖d‖∞ ≈ 1 − O(#−1/3) with minimal overlap and
‖d‖∞ ≈ 1 − O(#−2/5) without overlap; see Figure 8.

We can also choose ?(:2) to be a more accurate approximation of B =
√
:2 + [

to obtain an even smaller reflection coefficient ' = exp (−!B) (? − B)/(? + B). In
the recently invented methods [13], Perfectly Matched Layers (PMLs; see [2, 6]) are
most commonly used. Starting from a boundary G = G0, a PML [G0, G0 +�] is added
outside a domain, and a new variable

G̃ :=

{
G +

∫ G−G0
0 f( |C |) dC, G ∈ [G0, G0 + �],

G, inside the domain,
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Fig. 7: Convergence factor of DOSM with ? = ?̃0 + ?̃2:
2 obtained by numerically minimizing the

upper bound of ‖d ‖∞, # = 10, ! = 1
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Fig. 8: Scaling of DOSMwith ? = ?̃0+ ?̃2:
2 obtained by numerically minimizing the upper bound

of ‖d ‖∞, ! = 1
5# (left), ! = 0 (right) and B ∈ [

√
2,
√

100# 2 + 1]. The dashed lines correspond
to the upper and lower bounds of 1 − ‖d ‖∞ which are too close to be distinguished.

is used for the model on the augmented domain (:2 + [)D − D G̃ G̃ = 5̃ , where 5̃ is the
zero extension of 5 and a homogeneous Dirichlet condition is put on the augmented
boundary G = G0 + �. This model amounts to imposing on G = G0 the boundary
condition sign(�)mGD + DtN�D = 0, where DtN� is the Dirichlet-to-Neumann
operator defined by

DtN� : (W at G = G0) → (−sign(�)mGE at G = G0) with E solving
(:2 + [)E − E G̃ G̃ = 0 for G ∈ [G0, G0 + �],
E = 0 at G = G0 + �, E = W at G = G0.

In our case, DtN� reduces to a scalar. Note that G̃(G = G0) = G0, G̃(G = G0 + �) =
G0 + � +

∫ �
0 f( |C |) dC =: G0 + � + f̄. From the above definition, we have

E = b1e−B ( G̃−G0) + b2eB ( G̃−G0) , E(G̃ = G0 + � + f̄) = 0, E(G̃ = G0) = W.

Hence, we obtain in our case
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Fig. 9: Convergence factor of DOSM with ? = DtN� from PMLs, # = 10, ! = 0, f̄ = 5�,
� = 0.05 (left), 0.1 (right) and B ∈ [
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√
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DtN� = B · 1 + e−2(�+f̄)B

1 − e−2(�+f̄)B .

Typically, one chooses f̄ linearly dependent on �. Using ? = DtN� , we show
in Figure 9 how good our upper and lower bounds of d are. It is impressive that
doubling � decreases ‖d‖∞ by a factor of about six. Then, for � proportional to the
subdomain size � = 1/# , we look at their scaling with # in Figure 10. We see that
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Fig. 10: Scaling of DOSM with ? = DtN� from PMLs, ! = 0, f̄ = 5�, � = 1
2# (left), � = 1

#

(right) and B ∈ [
√

2,
√

100# 2 + 1]. The dashed lines correspond to the upper and lower bounds of
1 − ‖d ‖∞.

the improvement by doubling � is only on the constant factor, and the deterioration
‖d‖∞ ≈ 1 − O(#−2) is the same as for the alternating Schwarz method. Hence, to
have convergence independent of # , we must let the relative PML width �/� grow
with # . To see how big a � is necessary, we test a range of � in Figure 11, where we
can read for which size � and which # the bounds of ‖d‖∞ equal to 0.2.We then plot
these pairs in Figure 12, which indicates that a constant PML size �, independent of
the number of subdomains # , is necessary and sufficient. The sufficiency is further
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Fig. 11: Scaling of DOSM with different sizes � of PMLs, ! = 0, f̄ = 5� and B ∈
[
√

2,
√

100# 2 + 1]. Left: lower bound. Right: upper bound. From top to bottom: �/� =

0.5, 1, 2, 4, 6, .., 26 where � = 1/# is the subdomain width.
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Fig. 12: Necessary PML size � to let DOSM converge independently of # , when ! = 0, f̄ = 5�
and B ∈ [
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100# 2 + 1].

shown in Figure 13. Note that in our setting a fixed physical PML size independent
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Fig. 13: Scaling of DOSM using fixed sizes of PMLs, ! = 0, f̄ = 5� and B ∈ [
√

2,
√

100# 2 + 1].
From top to bottom each pair of lines correspond to the lower and upper bounds of ‖d ‖∞ for
� = 0.0125, 0.025, 0.05, 0.1.

of the number of subdomains # means a linear growth of mesh points in the PMLs,
not a logarithmic one.
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