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1 Introduction

Consider the model problem: Find D ∈ �1 (Ω) such that

−∇ · (d(G)∇D) = 5 (G), G ∈ Ω, (1)

for a given polygonal domain Ω ⊂ R2 and d(G) > 0, along with homogeneous
boundary conditions. A standard approach to solve (1) is to discretize with Finite
Element Methods (FEM) for which there is vast literature on the construction of
Domain Decomposition (DD) algorithms; see, e.g., [11] for a complete study. As
usual, wewill decompose the domainΩ into # non-overlapping subdomains {Ω8}#8=1,
each of which is the union of elements of the triangulation Tℎ of Ω. Each Ω8 will
be simply connected and will have a connected boundary mΩ8 . We then construct
overlapping subdomains Ω′

8
by adding layers of elements to Ω8 .

One of the simplest DD algorithms consists in splitting the finite dimensional
space +ℎ (associated with the fine triangulation of the domain) as

+ℎ = '
)
0 +0 +

#∑
8=1

')8 +8 ,

where +1, . . . , +# represent local spaces related to Ω′1, . . . ,Ω
′
#
, respectively, with

corresponding extension operators ')
8

: +8 → +ℎ , and +0 is a coarse space which
is related to +ℎ by the operator ')0 : +0 → +ℎ . Originally, these methods arose in
the presence of regular decompositions where usual Finite Element spaces can be
defined. In the past few years, there has been some efforts to study how to define
coarse spaces if irregular subdomains as the ones obtained by mesh partitioners
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are considered; see, e.g., [5, 14, 6], where a complete theory is developed for Jones
subdomains and nodal elliptic problems. For Raviart-Thomas and Nédélec elements,
see [9, 2]. These studies are based on energy minization, and require to obtain local
discrete harmonic functions by solving Dirichlet problems on the subdomains. In a
more general setting, adaptive coarse spaces can be defined as in [7, 10, 8].

On the other hand, Virtual Element Methods (VEM) [1, 12, 13] allow to handle
general polygonal elements. In the case of triangular elements, VEM reduces to the
usual FEM. Thus, VEM is a natural choice for constructing space of functions on
irregular subdomains. As studied in [3, 4], considering a virtual space on an irregular
decomposition allows us to avoid the computation of discrete harmonic functions,
while we keep the typical bound for the condition number of the preconditioned
system; see Theorem 1 below. In this setting, we can define general virtual functions
for such irregular decompositions. However, virtual functions cannot be evaluated
at interior nodes, and the operator ')0 plays an essential role into approximating
functions in +0. Two different approaches have been studied so far: we can construct
+0 based on linear interpolants [4], or we can use projections onto polynomial spaces
of degree of at least two [3], which we will discuss in this manuscript.

Instead of having a triangular mesh and a FEM discretization for problem (1),
we could also consider a discretization based on VEM. There is a lack of literature
on DD methods for such type of problems. At the DD25 Conference, held in Saint
John’s, Canada on July 2018, interesting talks by Yunrong Zhu (Auxiliary Space
Preconditioners for Virtual Element Discretization) and Daniele Prada (FETI-DP
for Three Dimensional VEM) addressed this problem with different approaches as
ours. We note that the theory developed in [3, 4] is also useful for designing Schwarz
operators for discretizations obtained by VEM, and it is possible to obtain similar
bounds for the condition number of the preconditioned system.

2 Description of the preconditioner

In this section we describe the discretizacion of the model problem and the construc-
tion of the additive preconditioner. We refer [13] for general details on VEM, [3, 4]
for a detailed explanation on the coarse space definition, and [11, Chapter 3] for a
complete study of overlapping preconditioners.

The usual weak form for problem (1) is: Find D ∈ �1
0 (Ω) such that

0(D, E) :=
∫
Ω

∇D · ∇E 3x = ( 5 , E) ∀ E ∈ �1
0 (Ω), (2)

where (·, ·) is the usual inner product in !2 (Ω). When using nodal Lagrange tri-
angular elements, we consider the lowest-order finite-dimensional Lagrange space
+ℎ , which consists of continuous piecewise-linear functions on each element, and
Problem (2) becomes: Find Dℎ ∈ +ℎ such that
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0(Dℎ , Eℎ) = ( 5 , Eℎ) ∀ Eℎ ∈ +ℎ . (3)

When using VEM, we can consider a general triangulation Tℎ composed by
general polygons as in Figure 1 (not necessarily similar or with the same number of
edges), and +ℎ now contains piecewise-linear continuous functions on the boundary
of each element that are harmonic in its interior. We omit further details on how to
modify the bilinear form 0(·, ·) and the right-hand side in Equation (3) when VEM
are used; see, e.g., [13]. We then obtain a linear system �D = 5 , for which we will
describe the construction of an additive preconditioner.

2.1 Virtual coarse space

We present the coarse spaces considered in [3, 4]. We first define the lowest-order
virtual element space on the polygonal decomposition {Ω8}#8=1 of Ω. For each Ω8 ,
consider the set

B(mΩ8) :=
{
E ∈ �0 (mΩ8) : E |4 ∈ P1 (4) ∀ 4 ⊂ mΩ8

}
,

where 4 represents any straight segment of the boundary of the polygon Ω8 . The
local virtual space is then defined as

+Ω8 :=
{
E ∈ �1 (Ω8) : E |mΩ8 ∈ B(mΩ8), ΔE = 0

}
.

A natural choice for the coarse space of the two-level algorithm is the global
virtual space

+0 :=
{
E ∈ �1 (Ω) : E |Ω8 ∈ +Ω8

}
.

Fig. 1: General polygonal mesh for VEM with
irregular subdomains.

Fig. 2: Decomposition {Ω8 }. The coarse space
+0 has one degree of freedom per polygonal ver-
tex (black dots). The reduced coarse space + '0
has only one degree of freedom per subdomain
vertex (black circles)
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Hence, a function in +0 is continuous, piecewise-linear on the boundary of each Ω8 ,
and harmonic in the interior of each subdomain. Thus, it is completely determined
by its values at the vertices of the polygonal domain Ω8 and the dimension of +0 can
be quite large; see Figure 2 for an example with an hexagonal mesh. Therefore, we
define a reduced coarse space as follows.

For each subdomain vertex x0 we define a coarse function k�x0 ∈ +0 by choosing
appropriately its degrees of freedom, a construction modified from [5]. First, we
set k�x0 (x) = 0 for all the subdomain vertices x, except at x0 where k�x0 (x0) = 1.
Second, we set the degrees of freedom related to the nodal values on each subdomain
edge. If x0 is not an endpoint of E, then k�x0 vanishes on that edge. If E has endpoints
x0 and x1, let dE be the unit vector with direction from x1 to x0. For any node x̃ ∈ E
set

k�x0 (x̃) =


0, if (x̃ − x1) · dE < 0
(x̃ − x1) · dE
|x0 − x1 | , if 0 ≤ (x̃ − x1) · dE ≤ |x0 − x1 |

1, if (x̃ − x1) · dE > |x0 − x1 |
It is clear that k�x0 (x0) = 1, k�x0 (x1) = 0, and that the function varies linearly in the
direction of dE for such nodes. In this way, we define all the degrees of freedom of
k�x0 ∈ +0. By construction, 0 ≤ k�x0 ≤ 1 and

∑
x0 k

�
x0 ≡ 1.

We then define the reduced coarse space as the span of {k�x0 }, i.e.,

+'0 :=
{
E ∈ �1

0 (Ω) : E =
∑
x0

Ux0k
�
x0

}
⊂ +0

for some real coefficients Ux0 ; see [4, Section 6]. We point out that in the case where
the partition {Ω8} is composed by triangles or squares, +0 = +

'
0 and they reduce to

the usual linear or bilinear finite element space, respectively. We can naturally define
a linear interpolant �� : +ℎ → +'0 by

��D :=
∑
x0

D(x0)k�x0 ,

and it is easy to deduce that �� reproduces linear polynomials. We can prove
the following lemma, where we present an upper bound for the energy of coarse
functions:

Lemma 1 Given D ∈ +ℎ , let D0 := ��D ∈ +'0 . Then, there exists a constant � such
that

|D0 |2� 1 (Ω8) ≤ �
(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

where �8 is the diameter of Ω8 and ℎ8 is the smallest element diameter of the
triangulation of Ω8 . Here, � depends only on the aspect ratio of Ω8 and the number
of subdomain vertices on mΩ8 .

Proof See [3, Lemma 4.4 and Theorem 6.1], [4, Lemma 5.6]. �
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Since virtual coarse functions cannot be evaluated at internal nodes of the sub-
domains, we still need to define an appropriate operator ')0 : +'0 → +ℎ , such that
each function in +'0 is well-approximated in +ℎ . We could:

(1) Solve a Dirichlet problem on each subdomain in order to compute the discrete
harmonic extension of the values on the boundary of each Ω8 , as it is done in
[5, 14, 6].

(2) Triangulate each subdomain Ω8 and define ')0 as a piecewise-linear interpolant
onto such triangulations; see [4, Section 3.1] for further details and assumptions
that are required.

(3) Construct a projection Π∇
Ω8 ,:

D0 for a given function D0 in +Ω8 , onto the polyno-
mial space defined on Ω8 of degree : ≥ 2, and this operator can be constructed
by knowing only the degrees of freedom of the virtual functions; see [3, Section
6.1] for implementation details. The main advantage in this approach is that in
order to compute all the internal degrees of freedom, we only need to solve a
linear systemwith : (:−1)/2 unknowns. Thus, in the interior of each subdomain
we approximate D0 by Π∇Ω8 ,:D0, avoiding discrete harmonic extensions.

It can be shown that the following estimates hold:

Lemma 2 Given D ∈ +ℎ , let D0 := ��D ∈ +'0 . Then there exists a constant � such
that

‖D − ')0 D0‖2!2 (Ω8) ≤ ��
2
8

(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

|')0 D0 |2� 1 (Ω8) ≤ �
(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

where � is independent of �8 and ℎ8 .

Proof See [4, Lemma 3, Lemma 4] and [3, Lemma 5.7] for cases (2) and (3),
respectively. For case (1), similar estimates holds; see the proof in [5, Theorem 3.1],
[6, Theorem 3.1] �

2.2 Local spaces and preconditioner

For each subdomainΩ8 , we construct the overlapping subdomainΩ′
8
by adding layers

of elements to Ω8 and denote by X8 the size of the overlap. The local virtual space is
then defined by

+8 :=
{
E ∈ �1

0 (Ω′8) : E | ∈ B(m ), ΔE | = 0 in  , ∀  ⊂ Ω′8
}
.

Thus, the degrees of freedom are the values at all the nodes in the interior ofΩ′
8
, and

it is straightforward to define zero extension operators ')
8

: +8 → +ℎ . Consider the
matrix representation of the operators ')

8
denoted again by ')

8
. We use exact local

solvers and define �̃8 = '8�')8 , 0 ≤ 8 ≤ # . Schwarz projections are given by
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%8 = '
)
8 �̃
−1
8 '8�, 0 ≤ 8 ≤ #.

The additive preconditioned operator is defined by

%03 :=
#∑
8=0

%8 = �
−1
03�, with �

−1
03 =

#∑
8=0

')8 �̃
−1
8 '8 . (4)

Multiplicative and hybrid preconditioners can be considered as well; see [11, Section
2.2]. We can then prove the following result:

Theorem 1 There exists a constant �, independent of �, ℎ and d, such that the
condition number of the preconditioned system ^(�−1

03
�) satisfies

^(�−1
03�) ≤ �

(
1 + log

�

ℎ

) (
1 + �

X

)
,

where the ratios �/ℎ and �/X denote their maximum value over all the subdomains.

Proof See [4, Theorem 6.1], [3, Theorem 4.1]. �

3 Some numerical results

We first provide a comparison of the running time when assembling ')0 by discrete
harmonic extensions and by quadratic and cubic polynomial approximations; see
Figure 3 where we have used a serial implementation in MATLAB with # = 4 METIS
subdomains and triangular elements.

We also include an experiment with a different application of the virtual coarse
spaces. We approximate accurately harmonic functions with given Dirichlet bound-
ary conditions in a domain Ω, by using the projector Π∇

Ω,:
for sufficiently large : .

Instead of solving the resulting ill-conditioned linear system �D = 5 that arises from
FEM or VEM, we can approximate the nodal values in the interior nodes of Tℎ by
evaluating Dℎ := Π∇

Ω,:
D. In order to do so, we just need to solve a linear system with

: (: − 1)/2 unknowns. We remark that in the construction of the preconditioner (4),

500 1000 1500 2000
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100

150
Discrete harmonic

Cubic

Quadratic

Fig. 3: Time (in seconds) required for computing ')0 with discrete harmonic extensions, quadratic
and cubic projections, as a function of �/ℎ, with # = 4 irregular subdomains.



Virtual Coarse Spaces for Irregular Subdomain Decompositions 81

a competitive number of iterations can be obtained with just : = 2 or : = 3, since
they provide good-enough approximations for functions in the virtual coarse space.
Here instead, we construct the projection onto the domain Ω, obtaining directly Dℎ .

For simplicity, we consider the unit square Ω = [0, 1]2 with boundary conditions
such that the exact solution is D(G, H) = (42G+4−2G) sin(2H).We consider a triangular
partition for Ω; the inf-norm of the error in the approximation is shown in Figure
4, for different values of : and mesh size ℎ. As we observe, for a fixed : , the error
decreases quadratically as a function of ℎ, and it reaches a minimum value that
depends on : , for which Π∇

Ω,:
cannot improve the approximation. We remark that

further exploration is required, and this approach is being studied for problems in
two and three dimensions.

For further experiments on the performance of the preconditioner (4), we refer to
the numerical experiments shown in [3, 4].

10
-3

10
-2

10
-1

10
-8

10
-5

10
-2

Fig. 4: Inf-norm of the error, ‖D−Dℎ ‖∞, as a function of ℎ, in the approximation of the solution of
Laplace’s equation in the unit square by computing Π∇

Ω,:
D . Convergence is quadratic as a function

of ℎ.

4 Conclusions

We note that the main advantage of our approach with respect to previous stud-
ies is that no discrete harmonic extensions are required in the algorithm, saving
computational time. We also aim to contribute and enrich the literature related to
iterative solvers for VEM discretizations, since there is a lack of theoretical analysis
for such problems. Even though theory does not include the case of a discontinuous
coefficient in the interior of each subdomain, a reasonable number of iterations is
obtained even for extreme cases of discontinuities and high-contrast jumps across the
elements; see [3, Section 6.2.4]. For higher values of : , we can directly obtain more
accurate approximations of harmonic functions, as shown in Figure 4. For precondi-
tioning, experimentally we have found that using quadratic or cubic polynomials is
sufficient, but we can use higher degree spaces in order to improve accuracy in the
approximation of harmonic functions.
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