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1 Introduction

Neumann-Neumann methods (NNMs) are among the best parallel solvers for dis-
cretized partial differential equations, see [12] and references therein. Their common
polylogarithmic condition number estimate shows their effectiveness for many dis-
cretized elliptic problems, see [9, 10, 5]. However, NNM was originally described
in [1] as an iteration at the continuous level like the classical Schwarz method, but
only for two subdomains, see also [11]. This is because in contrast to the Schwarz
method, it does not converge for general decompositions into many subdomains
when used as a stationary iteration [4, 3]. Furthermore, for decompositions present-
ing cross points, NNM is not well-posed in �1 and has as a stationary iteration a
convergence factor that deteriorates polylogarithmically in the mesh size ℎ, see [4].
The iterates being discontinuous at the cross points also prevents NNM from being
well-posed in �2. We propose here a very specific local coarse space that leads to a
well posed NNM at the continuous level for the model problem

−ΔD = 5 in Ω, D = 0 on mΩ, (1)

where 5 ∈ !2 (Ω), and Ω can be decomposed as in Fig. 1, i.e. the decomposition
can contain cross points. In Section 2 we present NNM at the continuous level for
a 2 × 1 decomposition and show why it is always well-posed in �1. In Section 3
we show why NNM for a 2 × 2 decomposition containing a cross point is not in
general well-posed in �1. To make it well-posed in �2, we introduce a very specific
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Fig. 1: Decomposition without a cross point (left) and with a cross point (right)

Algorithm 1: NNM for a 2 × 1 decomposition
1. Set 60

12 to zero or any inexpensive initial guess.
2. For = = 0, 1, . . . until convergence

a. Solve the Dirichlet problems

−ΔD=1 = 5 in Ω1,

D=1 = 6
=
12 on Γ,

D=1 = 0 on mΩ1 ∩ mΩ,

−ΔD=2 = 5 in Ω2,

D=2 = 6
=
12 on Γ,

D=2 = 0 on mΩ2 ∩ mΩ.

b. Solve the Neumann problems

−Δk=1 = 0 in Ω1,

mk=1
m=1

=
1
2
( mD

=
1

m=1
+ mD

=
2

m=2
) on Γ,

k=1 = 0 on mΩ1 ∩ mΩ,

−Δk=2 = 0 in Ω2,

mk=2
m=2

=
1
2
( mD

=
1

m=1
+ mD

=
2

m=2
) on Γ,

k=2 = 0 on mΩ2 ∩ mΩ,

where =8 is the outward pointing normal on mΩ8 , 8 = 1, 2.
c. Update the trace 6=+112 = 6=12 − 1

2 (k=1 + k=2 ) on Γ.

local coarse space correction. Our new NNM then converges as a stationary iterative
solver, also in the presence of cross points, and we show numerically that it is a better
preconditioner than the classical NNM in the case of many cross points.

2 Existence of iterates for a 2 × 1 decomposition

For a decomposition as shown in Fig. 1 (left), let Γ := {0} × (0, 1) be the interface
between Ω1 and Ω2. The NNM in Algorithm 1 is well-posed with iterates in �1:
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Theorem 1 If 60
12 ∈ �

1
2
00 (Γ) (the Lions-Magenes space defined in [7, Chapter 1]),

then Algorithm 1 is well-posed and for all = ≥ 0 we have D=
8
∈ +8 , where +8 :={

E ∈ �1 (Ω8) : E = 0 on mΩ8 ∩ mΩ
}
for 8 = 1, 2.

To prove Theorem 1, we first need to prove

Lemma 1 Denote by W : +1 ↦→ �
1
2
00 (Γ) the restrictionmap onΩ1. There exists�1 > 0

such that for all E1 ∈ +1
‖WE1‖

�
1
2

00 (Γ)
≤ �1‖E1‖+1 . (2)

Moreover, there exists �2 > 0 such that for all 6 ∈ �
1
2
00 (Γ), there exists Ẽ2 such that

W̃Ẽ2 = 6, and
‖Ẽ2‖+2 ≤ �2‖6‖

�
1
2

00 (Γ)
, (3)

where W̃ : +2 ↦→ �
1
2
00 (Γ) denotes the restriction map on Ω2.

Proof The continuity and surjectivity of W : +1 ↦→ �
1
2
00 (Γ) comes from [8, Chap-

ter 4,Th 2.3] and the definition of �
1
2
00 (Γ). Let 6 ∈ �

1
2
00 (Γ). The surjectivity of

W̃ : +2 ↦→ �
1
2
00 (Γ) ensures the existence of Ẽ2 ∈ +2 such that the equality W̃Ẽ2 = 6

holds. Using then the open mapping theorem for W̃; see e.g. [2, Chapter 2,Th 2.6], we
know that there exists �2 > 0 such that Eq. (3) holds, which concludes the proof. �

Proof (of Theorem 1) Since 60
12 satisfies the �1-compatibility relations, we know

by the Lax-Millgram Lemma that D0
1 ∈ +1 and D0

2 ∈ +2. Now it suffices to show that
k0

1 and k0
2 are also in +1 and +2. We know that k0

1 and k0
2 satisfy∫

Ω1

∇k0
1∇E1 =

∫
Γ

1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
E1, for all E1 ∈ +1,∫

Ω2

∇k0
1∇E2 =

∫
Γ

1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
E2, for all E2 ∈ +2.

In order to apply the Lax-Milgram Lemma, it suffices to show that 11 (E1) :=∫
Γ

1
2 (
mD0

1
m=1
+ mD

0
2

m=2
)E1 and 12 (E2) :=

∫
Γ

1
2 (
mD0

1
m=1
+ mD

0
2

m=2
)E2, define a continuous map on +1

and +2. It suffices to prove this for 11, and the same then holds for 12. Indeed, we
have for all E1 ∈ +1
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11 (E1) =
〈
mD0

1
m=1

, E1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)
+

〈
mD0

2
m=2

, E1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)

=

〈
mD0

1
m=1

, WE1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)
+

〈
mD0

2
m=2

, W̃Ẽ2

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)

= −
∫
Ω1

5 E1 +
∫
Ω1

∇D0
1∇E1 −

∫
Ω2

5 Ẽ2 +
∫
Ω2

∇D0
2∇Ẽ2.

Hence, |11 (E1) | ≤ � (‖E1‖+1 + ‖Ẽ2‖+2 ) ≤ � (1 + �1�2)‖E1‖+1 . We deduce then that
11 is a continuous map on +1. In the same manner, we prove that 12 is continuous
on+2, and by applying the Lax-Milgram Lemma, we obtain that k0

1 and k
0
2 are in +1

and+2. Finally, we conclude that 61
12 ∈ �

1
2
00 (Γ). Repeating then the same arguments,

we conclude that 6=12 ∈ �
1
2
00 (Γ) for all = ≥ 0. �

3 Existence of iterates for a 2 × 2 decomposition

We now study the well-posedness of NNM for a 2 × 2 decomposition, see Fig. 1
(right). The well-posedness in this case cannot be treated as in Section 2. In fact, let
Γ12 := {0} × (−1, 0), Γ23 := (0, 1) × {0}, Γ34 := {0} × (0, 1), Γ41 := (−1, 0) × {0}
be the shared interfaces. Then 60

12 ∈ �
1
2 (Γ12), 60

23 ∈ �
1
2 (Γ23), 60

34 ∈ �
1
2 (Γ34),

60
41 ∈ �

1
2 (Γ41) is not sufficient for the first iterates to exist: the traces need to satisfy

additional assumptions which are known as the �1-compatibility relations (CR1)
which are∫ Y

0

��60
12 (−f) − 60

41 (−f)
��2 df
f

< ∞,
∫ Y

0

��60
12 (−f) − 60

23 (f)
��2 df
f

< ∞,∫ Y

0

��60
23 (−f) − 60

34 (−f)
��2 df
f

< ∞,
∫ Y

0

��60
34 (−f) − 60

41 (f)
��2 df
f

< ∞,

for Y > 0 small enough; see [8, chapter 4,Th 2.3]. However, even if the initial iterates
satisfy CR1, this does in general not hold for the following iterates. This explains
why NNM is in general not well-defined for a 2 × 2 decomposition with a cross
point. This is also the reason why NNM does not converge iteratively and has a
convergence factor that grows logarithmically with respect to the mesh size after
discretization as we mentioned in Section 1. We propose here to add a very specific
local coarse space correction such that NNM becomes well-posed. Since the CR1
are global, it is not clear how to define a coarse space such that NNM with the
additional coarse correction satisfies these conditions systematically. We thus look
for a coarse space correction such the iterates are not in�1 but rather in�2. However,
even the condition 60

12 ∈ �
3
2 (Γ12), 60

23 ∈ �
3
2 (Γ23), 60

34 ∈ �
3
2 (Γ34), 60

41 ∈ �
3
2 (Γ41)

does not ensure the existence of �2 iterates, and one needs to satisfy the so-called
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Fig. 2: Iterates 1,2,3 of NNM for the solution of Eq. (1) (note the different scale).

Algorithm 2: NNM for a 2 × 2 decomposition
1. Initialize 60

12, 6
0
23, 6

0
34, 6

0
41.

2. For = = 0, 1, . . . until convergence

• Compute 6=+
1
2

12 , 6=+
1
2

23 , 6=+
1
2

34 , 6=+
1
2

41 using NNM (which used superscript = + 1).

• Find i12, i23, i34, i41 ∈ � 3
2 in a given local coarse space, e.g. in (4), s.t.

6=+112 := 6=+
1
2

12 + i12, 6
=+1
23 := 6=+

1
2

23 + i23,

6=+134 := 6=+
1
2

34 + i34, 6
=+1
41 := 6=+

1
2

41 + i41,

satisfiy by solving (5) the compatibility conditions

6=+112 (0) = 6=+123 (0) = 6=+134 (0) = 6=+141 (0).

�2-compatibility relations (CR2). This can also be illustrated numerically: we show
in Fig. 2 the first iterates of NNM for Eq. (1) with 5 = 1 discretized by %1 finite
elements with a mesh size ℎ = 0.1, and starting with smooth traces along the shared
edges. The iterates in Fig. 2 show that NNM does not converge iteratively and has a
discontinuity that forms at the origin. This discontinuity cannot happen if the iterates
are in �2 since their traces are in � 3

2 , hence continuous at the cross point. One can
show that this is the only problem that needs to be fixed in order to have a well-posed
method. We thus propose to add a coarse space correction consisting of functions
that are in � 3

2 on the common edges such that we enforce the continuity of the
iterates at the origin. The NNM with this local coarse space correction is given in
Algorithm 2. The next theorem ensures the well-posedness of Algorithm 2.

Theorem 2 If (60
12, 6

0
23, 6

0
34, 6

0
41) ∈ �

3
2 (Γ12)×� 3

2 (Γ23)×� 3
2 (Γ34)×� 3

2 (Γ41) satisfy
60

12 (0) = 60
23 (0) = 60

34 (0) = 60
41 (0), then Algorithm 2 is well-posed and for all = ≥ 0

we have D=
8
∈ �2 (Ω8) ∩ +8 , where +8 :=

{
E ∈ �1 (Ω8) : E = 0 on mΩ8 ∩ mΩ

}
for

8 = 1, . . . , 4.

We first state a result for the �2 compatibility relations (CR2) which can be found
in [8, chapter 4,Th 2.3].

Theorem 3 Define the trace mapping
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W : �2 (Ω1) ∩+1 ↦→ �
3
2 (Γ12) × �

1
2 (Γ12) × �

3
2 (Γ41) × �

1
2 (Γ41)

D ↦→ (
D(0, ·), mGD(0, ·), D(·, 0), mHD(·, 0)

)
.

Then (612, ℎ12, 641, ℎ41) ∈ Im (W) iff 6G (0) = 6H (0) and∫ Y

0

��6′12 (−f) − ℎ41 (−f)
��2 df
f

< ∞,
∫ Y

0

��6′41 (−f) − ℎ12 (−f)
��2 df
f

< ∞,

for Y > 0 sufficiently small.

From Theorem 3, we obtain the corollaries

Corollary 1 Define the mapping

W� : �2 (Ω1) ∩+1 ↦→ �
3
2 (Γ12) × �

3
2 (Γ41)

D ↦→ (D(0, ·), D(·, 0)) .

Then (612, 641) ∈ Im (W�) iff 612 (0) = 641 (0).

Proof In fact, it suffices to define ℎ41 := 6′12 (f) ∈ �
1
2 (Γ41) and ℎ12 := 6′41 (f) ∈

�
1
2 (Γ12) and apply Theorem 3 to (612, ℎ12, 641, ℎ41). �

Corollary 2 Define the mapping

W# : �2 (Ω1) ∩+1 ↦→ �
1
2 (Γ12) × �

1
2 (Γ41)

D ↦→ (
mGD(0, ·), mHD(·, 0)

)
.

Then W# is onto.

Proof Here again, it suffices to define 612 := −k(f)
∫ 0
f
ℎ41 (f′) 3f′ and 641 :=

−k(f)
∫ 0
f
ℎ12 (f′) 3f′, where k(f) ∈ �∞ [−1, 0] such that k(f) = 1 on (−Y, 0]

and k(f) = 0 on [−1,−2n), and apply Theorem 3 to (612, ℎ12, 641, ℎ41). �

Proof (of Theorem 2) We start by showing that D0
8
∈ �2 (Ω8) ∩ +8 for 8 = 1, . . . , 4.

We prove it for D0
1 and the proof for the remaining D0

8
is exactly the same. We

have that 60
12 ∈ �

3
2 (Γ12) and 60

14 ∈ �
3
2 (Γ14) and they satisfy 60

12 (0) = 60
14 (0),

hence using Corollary 1 we know that there exists F1 ∈ �2 (Ω1) ∩ +1 such that
D̃1 := D0

1 − F1 ∈ �1
0 (Ω1) is the solution of the variational problem∫
Ω1

∇D̃1∇E =
∫
Ω1

( 5 + ΔF1)E, for all E ∈ �1
0 (Ω1),

which using the result in [6, Chapter 3, p 147] has a unique solution in �2 (Ω1) ∩
�1

0 (Ω1), and it follows that D0
1 = D̃1 +F1 ∈ �2 (Ω1) ∩+1. In the same manner we can

show that D0
2, D

0
3, D

0
4 are in �

2 (Ω2) ∩+2, �2 (Ω3) ∩+3 and �2 (Ω4) ∩+4. Now, since
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mk0
1

m=1 |Γ12

=
1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
∈ � 1

2 (Γ12),
mk0

1
m=1 |Γ14

=
1
2

(
mD0

1
m=1
+ mD

0
4

m=4

)
∈ � 1

2 (Γ14),

we know by Corollary 2 that there exists again a function F̃1 ∈ �2 (Ω1) ∩ +1 such
that k̃1 := k0

1 − F̃1 ∈ �2 (Ω1) ∩+1 is the solution of the variational problem∫
Ω1

∇k̃1∇E =
∫
Ω1

ΔF̃1E for all E ∈ +1,

which has a solution k̃1 ∈ �2 (Ω1) ∩ +1, hence k0
1 = k̃1 + F̃1 ∈ �2 (Ω1) ∩ +1.

The same conclusion can be drawn for k0
2 , k

0
3 , k

0
4 using the same reasoning. It

follows then that 61
12, 6

1
23, 6

1
34, 6

1
41 are in �

3
2 (Γ12), � 3

2 (Γ23), � 3
2 (Γ34) and � 3

2 (Γ41)
respectively. Since the coarse functions q12, q23, q34, q41 in Algorithm 2 are chosen
such that 61

12 (0) = 61
23 (0) = 61

34 (0) = 61
41 (0), we can apply again Corollary 1. We

proceed again as before to prove that the next iterates are well defined, and so on.
Finally, we conclude that Algorithm 2 is well defined with iterates D=

8
∈ �2 (Ω8) ∩+8

for 8 = 1, . . . , 4. This finishes the proof. �

It remains to choose the coarse basis, and a first idea is to use linear functions,

i12 := U12 (1 + H), i23 := U23 (1 − G),
i34 := U34 (1 − H), i41 := U41 (1 + G),

(4)

where the coefficients U are determined using the pseudo inverse,
U12
U23
U34
U41

 =

1 −1 0 0
0 1 −1 0
0 0 1 −1


† 
6
=+ 1

2
23 (0) − 6

=+ 1
2

12 (0)
6
=+ 1

2
34 (0) − 6

=+ 1
2

23 (0)
6
=+ 1

2
41 (0) − 6

=+ 1
2

34 (0)

 , (5)

i.e. we compute the smallest correction to obtain continuous traces at the cross point.
The plots in Fig. 3 (top) show that this local linear coarse correction is sufficient
to obtain a convergent iterative method which does not form a singularity at the
cross point any more. To investigate how the convergence depends on the basis
chosen, we now use exponentially decaying functions of the form 4−`G and 4−`H .
Choosing ` := 3, we obtain the results shown in Fig. 3 (bottom): convergence is
much faster than with the linear coarse basis; see also Fig. 4 (left) for a comparison.
The number of iterations required for NNMwith our local coarse correction to reach
a tolerance of 10−6 for mesh size ℎ = 0.4, 0.2, 0.1, 0.05, 0.03 is 9, 15, 19, 23, 26 with
the linear coarse functions, and 7, 7, 7, 7, 10with the exponential ones.We finally test
Algorithm 2 with Krylov acceleration (GMRES), for the case of nine cross points
and the exponential coarse basis functions: the result is shown in Figure 3 (right),
and we see that the fact to be well posed in function space leads to a more effective
preconditioner.

We thus answered an interesting question in this short manuscript, namely why
NNM only appears in the literature for two subdomains at the continuous level, and
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Fig. 3: Iterates 1,2,3 of Algorithm 2 for Eq. (1) using a linear coarse basis (top) and an exponentially
decaying coarse basis (bottom)
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Fig. 4: Error curves of NNMwith and without coarse correction for one cross point (left), and with
Krylov acceleration for nine cross points (right)

otherwise only at the discrete level as a preconditioner: it is because it is not well
posed at the continuous level in the many subdomain case with cross points. We
then showed that a specific local coarse space can make NNM well posed at the
continuous level, which both leads to a convergent iterative NNM algorithm, and a
better preconditioner in the presence of cross points. We are currently investigating
if coarse basis functions exist for which we can prove that the convergence factor of
NNM becomes independent of the mesh size ℎ like for 2 subdomains.
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