
Happy 25th Anniversary DDM! ... But How Fast
Can the Schwarz Method Solve Your Logo?

Gabriele Ciaramella and Martin J. Gander

1 The ddm logo problem and the Schwarz method

“Vous n’avez vraiment rien à faire”!1 This was the smiling reaction of Laurence
Halpern when the first author told her about our wish to accurately estimate the
convergence rate of the Schwarz method for the solution of the ddm logo2, see
Figure 1 (left). Anyway, here we are: to honor the 25Cℎ anniversary of the domain
decomposition conference, we study the convergence rate of the alternating Schwarz
method for the solution of Laplace’s equation defined on the ddm logo. This method
was invented by H.A. Schwarz in 1870 [12] for the solution of the Laplace problem

ΔD = 0 in Ω, D = 6 on mΩ. (1)
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Fig. 1: Left: ddm logo. Center: Original drawing of Schwarz from 1870 [12]. Right: Geometric
parametrization of the ddm logo.
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1 “You have really nothing to do”!
2 This logo was created by Benjamin Stocker, a friend for over 30 years of the second author and a
computer scientist and web designer for SolNet.
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Here 6 is a sufficiently regular function and Ω is the ddm logo, obtained from the
union of a discΩ1 and a rectangleΩ2, as historically considered by Schwarz [12]; see
Figure 1 (center). In this paper, we assume that Ω1 is a unit disc, and Ω2 has length
X + ! and height 2 cosU. Here, X, ! and U are used to parametrize Ω; see Figure 1
(right). In particular, X and ! measure the overlapping and non-overlapping parts of
Ω2, and U is the angle that parametrizes the interface Γ1 := mΩ1 ∩Ω2. The other
interface Γ2 := mΩ2 ∩Ω1 is clearly parametrized by X and U, and it is composed
by three segments whose vertices are (X, 0), (0, 0), (0, 2 sinU), and (X, 2 sinU). To
avoid meaningless geometries (e.g., Ω2 \Ω1 becomes a disjoint set), we assume that
X and U are non-negative and satisfy X < 2 cosU.

In error form, the classical alternating Schwarz method for the solution to (1) is

Δ4=1 = 0 in Ω1,

4=1 = 0 on mΩ ∩Ω1,

4=1 = 4
=−1
2 on Γ1,

Δ4=2 = 0 in Ω2,

4=2 = 0 on mΩ ∩Ω2,

4=2 = 4
=
1 on Γ2,

(2)

where the left subproblem is a Laplace problem on the disc and the right one on the
rectangle. Assuming that one begins with a sufficiently regular initial guess 40, then
solving iteratively (2) one obtains the sequence (4=1 )=∈N+ of errors on the discΩ1 and
the sequence (4=2 )=∈N+ of errors on the rectangle Ω2. The functions 4=1 and 4=2 are
continuous in their (open) domain, but can have jumps at the two points where mΩ1
and mΩ2 intersect, except if the initial guess satisfies the boundary conditions. How
fast do these two sequences converge to zero? The estimate of the convergence rate
of the Schwarz method for this particular geometry is not easy. Over the course of
time, different analysis techniques have been proposed to study the classical Schwarz
method: maximum principle analysis, see, e.g., [12, 10, 3], Fourier analysis, see, e.g.,
[6, 2], variational analysis, see, e.g., [9, 4], and stochastic analysis [10]. In the spirit
of this historical manuscript, we estimate the convergence rate by using tools that
are considered “classical” in domain decomposition methods: maximum principle,
the Riemann mapping theorem, the Poisson kernel, and the Schwarz-Christoffel
mapping3. However, we wish to remark that, to the best of our knowledge the results
presented in this work are new, and that the techniques used to prove them can
be in principle used to study other domains with complicated geometries, whose
subdomains can be mapped into circles and (semi-)infinite rectangles.

2 Convergence analysis

We begin our analysis noticing that maximum principle arguments, as done in [3,
Theorem 7], allow us to obtain the following convergence result; see also [8].

3 The Schwarz-Christoffel mapping was discovered independently by Christoffel in 1867 [1] and
Schwarz in 1869 [11]; see [5] for a review.
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Fig. 2: Left: Level sets of F . Right: Geometric parametrization of a level set of F .

Theorem 1 (Convergence of the Schwarz method) The Schwarz method (2) con-
verges geometrically to the solution of (1) in the sense that there exists a convergence
factor d < 1 such that4

max
9=1,2
‖4=9 ‖∞,Ω 9 ≤ d

= max
9=1,2
‖40
9 ‖∞,Ω 9 , (3)

where d =
(
supΓ1 E2

) (
supΓ2 E1

)
, with E 9 solving for 9 = 1, 2 the problem

ΔE 9 = 0 in Ω 9 , E 9 = 1 on Γ 9 , E 9 = 0 on mΩ ∩Ω 9 . (4)

We thus have to study the two functions E1 and E2. Notice also the two sup in the
definition of d could be replaced by max, as we see in what follows. We begin by
studying E1 and recalling the following result, which is proved in [3] by the Riemann
mapping theorem and the Poisson kernel formula.

Lemma 1 Problem (4) for 9 = 1 has a unique solution F which is harmonic in Ω1
and constant on arcs of circles A Ũ passing through the two extrema of Γ1 (see Fig.
2, left) and parametrized by angles Ũ between the horizontal line and the line that
connects the center of the arc A Ũ to the point % (see Fig. 2, right), i.e.

F(G, H) = Ũ − U
c

∀(G, H) ∈ A Ũ, (5)

with 0 < F(G, H) < 1 for any (G, H) ∈ Ω1 and U ≤ Ũ < c. Moreover, it holds that
F(G, H) = o/c for all (G, H) ∈ A Ũ, where o is the angle between the tangent to A Ũ

in % and the tangent of mΩ2 in %; see Fig. 3 (left).

Lemma 1 allows us to identify the sup of E1 on Γ2 with the max, that we estimate:

Lemma 2 (Estimated convergence factor on the disc) Consider the function E1
solving (4) for 9 = 1. It holds that

max
Γ2

E1 =

{ 1
2 − U

c
if X ≥ sinU,

1 − 1
c

[
U + arcsin

( 2X sin U
X2+sin2 U

) ]
if X < sinU.

(6)

4 The convergence rate is − log d, see [7, Section 11.2.5].
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Proof Lemma 1 implies that E1 decays monotonically in Ω1, in the sense that,
according to formula (5) as Ũ decreases, the arc A Ũ is closer to mΩ1 \ Γ1, and
E1 |A Ũ decreases monotonically. Therefore, to estimate the maximum of E1 on Γ2 we
must find the arc that intersects Γ2 on which E1 has the highest value. To do so, we
distinguish two cases: X ≥ sinU and X < sinU.

If X ≥ sinU, then there exists an arcA (a semi-circle) that lies in the closure of the
overlapping domain Ω1 ∩Ω2 and that is tangent to Γ2 in the two points mΩ1 ∩ mΩ2.
Notice that if X = sinU, then A intersects Γ2 also in the midpoint of its vertical
segment. By the monotonicity of E1,A is the arc intersecting Γ2 on which E1 attains
the highest value. Since A is tangent to Γ2 in both the points in mΩ1 ∩ mΩ2, a
simple geometric argument and the formula E1 (G, H) = o/c allow us to obtain that
maxΓ2 E1 = maxmΩ1∩mΩ2 E1 =

1
2 − U

c
.

Consider now that X < sinU. In this case, the monotonicity of E1 implies that
the arc that intersects Γ2 on which E1 attains the highest value is the one that passes
through the two points in mΩ1 ∩ mΩ2 and the midpoint of the vertical segment of Γ2.
Once this arc is found, direct calculations using simple geometric arguments and the
formula E1 (G, H) = o/c allow us to obtain the claim. �

Next, we focus on the function E2 defined on the rectangleΩ2. We begin recalling
the following result proved in [3].

Lemma 3 Let < denote the Möbius transformation that maps the half-plane P :=
R × R+ onto the unit disc Ω1. Recall the function F defined in Lemma 1. Then the
function F̂(b, [) := F(<(b, [)) for all (b, [) ∈ P is harmonic in P, it satisfies the
boundary conditions F̂(b, [) = 1, for all (b, [) on the segment <−1 (Γ1) that lies on
the horizontal line, and F̂(b, [) = 0, for all (b, [) ∈ (R×{0})\<−1 (Γ1). Moreover F̂
is constant on arcs of circles passing through the extrema of <−1 (Γ1). Let & be one
of the two extrema of <−1 (Γ1) and let o be the external angle between the tangent to
one of these arcs, denoted by Ao , in & and the horizontal axis, then F̂ |Ao = o/c.

Notice that Lemma 3 allows us to identify the sup of E2 on Γ1 with the max. We
can then prove the following lemmas.

Lemma 4 Consider a semi-infinite stripΩ∞2 obtained by extendingΩ2 from the right
to infinity and recall the half-plane P from Lemma 3.

(a)The Schwarz-Christoffel function that maps the semi-infinite strip onto the half-
plane, denoted as 6 : Ω∞2 → P, is given by

6(G, H) =
[
cosh(G c

2 sin U ) cos(H c
2 sin U )

sinh(G c
2 sin U ) sin(H c

2 sin U )
]
.

Moreover, 6 maps the interface Γ2 onto the set [6(X, 0), 6(X, 2 sinU)] × {0}.
(b)Let E∞2 be a harmonic function in Ω∞2 such that E∞2 = 1 on Γ2, E∞2 = 0 on
mΩ∞2 \ Γ2 and E∞2 (G, H) → 0 as G → ∞. Let E2 be the solution of (4) for 9 = 2.
Then E2 (G, H) < E∞2 (G, H) for all (G, H) ∈ Ω2.
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Proof Part (a): Recall the Schwarz-Christoffel function 5 (Z) = � +  arcosh(Z)
for Z ∈ C, where � and  are two constants in C. It is well known that 5 maps
the half-plane into any semi-infinite strip. Therefore, it is sufficient to determine the
constants � and  by requiring that 5 (1) = 0 and 5 (−1) = 82 sinU, where 8 is the
imaginary unit. These conditions imply that the two corners of Γ2 are mapped onto
the points {−1, 1} that lie on the real line in C. We get � = 0 and  = 2(sinU)/c.
Hence, 5 (Z) = (2(sinU)/c) arcosh(Z). Now, for any I = G + 8H = 5 (Z), we have that
Z = cosh((G + 8H)c/(2 sinU)). The function 6 is then obtained by using the formula
cosh(0(G + 8H)) = cosh(0G) cos(0H) + 8 sinh(0G) sin(0H), with 0 = c/(2 sinU). The
last claim follows by the fact that (6(G, 0))2 = (6(G, 2 sinU))2 = 0 for any G and
(6(0, H))2 = 0 for any H and the properties of cosh and cos.

Part (b): Consider the function ? := E∞2 |Ω2
. Clearly ? is harmonic in Ω2 and it

satisfies ? = E2 on Γ2, ? = 0 on mΩ2 ∩ Ω∞2 . However, by the maximum principle
?(G, H) > 0 for all (G, H) ∈ mΩ2 \ Ω∞2 . We can then decompose ? as ? = E2 + ?̃,
where ?̃ is harmonic in Ω2, ?̃ = 0 on mΩ2 \ Ω∞2 and ?̃ = ? on mΩ2 ∩ Ω∞2 . By the
maximum principle ?̃(G, H) > 0 for all (G, H) ∈ Ω2. Hence, E∞2 |Ω2

(G, H) = ?(G, H) =
E2 (G, H) + ?̃(G, H) > E2 (G, H) for all (G, H) ∈ Ω2 and the claim follows. �

Next, we parametrize the arc Γ1 by an angle i ∈ [0, c] such that every point %
on Γ1 can be obtained as

%(i) =
[
G% (i)
H% (i)

]
:=

[
X + A (i) sin i

sinU − A (i) cos i

]
,

where A (i) = − cosU sin i +
√

sin2 U + cos2 U sin2 i. Using the function 6 in
Lemma 4, we can map the arc Γ1 into the half-plane and define Γ̂1 := 6(Γ1) =
{(b, [) ∈ P : (b, [) = 6(G% (i), H% (i)) for i ∈ [0, c]}. Notice that Γ̂1 is a curve
in the half-plane P and intersects the horizontal axis in the two points 6(X, 0) and
6(X, 2 sinU). We consider the following conjecture.

Conjecture Consider the arc Γ of the circle passing through the points 6(X, 0) and
6(X, 2 sinU) and that intersects Γ̂1 in 6(G% (c/2), H% (c/2)). Then for any X ≥ 0 and
U ≥ 0 such that X < 2 cosU, Γ is contained in the closure of the domain whose
boundary is Γ̂1 ∪ ([6(X, 0), 6(X, 2 sinU)] × {0}). �

A pictorial representation of Conjecture 1 is given in Fig. 3 (right). Notice that
we have observed by direct numerical evaluation that Conjecture 1 always holds. We
can then prove the following result.

Lemma 5 (Estimated convergence factor on the rectangle) Let Conjecture 1 hold
and recall the function E∞2 in Lemma 4. Then

max
Γ1

E2 ≤ E∞2 (G% (c/2), H% (c/2)) =
1
2
− 1
c

arcsin(^(X, U)), (7)

where
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mΩ1 Γ1
F = 0 F = 1
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o

Fig. 3:Left: Geometry used in Lemma 1. Right: Geometric representation of Conjecture 1: the black
solid curve represents Γ̂1 = 6 (Γ1) and the black dashed arc of circle is Γ that passes through the
points 6 (X, 0) , 6 (G% ( c2 ) , H% ( c2 )) and 6 (X, 2 sin U) . The set 6 (Γ2) is [6 (X, 0) , 6 (X, 2 sin U) ]×
{0} and is marked in grey.

^(X, U) =
sinh2

(
c (1+X−cos U)

2 sin U

)
− cosh2

(
c X

2 sin U

)
sinh2

(
c (1+X−cos U)

2 sin U

)
+ cosh2

(
c X

2 sin U

) . (8)

Proof Lemma 4 (b) implies that E2 (G, H) ≤ E∞2 (G, H) for all (G, H) ∈ Γ1. Using the
function 6 in Lemma 4 (a), we define F∞ (b, [) := E∞2 (G, H) for all (G, H) ∈ Ω∞2 and
(b, [) = 6(G, H). Notice that maxΓ1 E

∞
2 = max

Γ̂1
F∞. The function F∞ is harmonic

in P and satisfies the conditions F∞ (b, 0) = 1 for b ∈ [6(X, 0), 6(X, 2 sinU)] and
F∞ (b, 0) = 0 for b ∈ R \ [6(X, 0), 6(X, 2 sinU)]. Hence, by using Lemma 3 we
obtain that the function F∞ is constant on arcs of circles Ao passing through the
two points 6(X, 0) and 6(X, 2 sinU). Moreover, the value of F∞ on these arcs is given
by F̂ |Ao = o/c, where o is defined in Lemma 3. This means that as o decreases,
the arcAo becomes larger and the value F̂ |Ao decreases monotonically. Therefore,
the value max

Γ̂1
F∞ is given by the value of F∞ on the arc Γ of the circle that

passes through the two points 6(X, 0) and 6(X, 2 sinU), that intersects Γ̂1, and that
corresponds to the largest o; see Fig. 3 (right). By Conjecture 1, Γ is the arc of the
circle that passes through the point 6(G% ( c2 ), H% ( c2 )). Notice that Γ is represented
by a dashed line in Fig. 3 (right). Hence, max

Γ̂1
F∞ = F∞ (6(G% (c/2), H% (c/2))).

The result follows by the formula F̂ |Ao = o/c and a direct calculation based on
geometric arguments to obtain the angle o characterizing Γ (see Fig. 3, right). �

We are now ready to prove our estimate of the convergence rate of the Schwarz
method for the ddm logo.

Theorem 2 (Estimated convergence factor on the ddm logo) The Schwarz method
(2) converges in the sense of (3), where

d ≤
{( 1

2 − 1
c

arcsin(^(X, U))) ( 1
2 − U

c

)
if X ≥ sinU,( 1

2 − 1
c

arcsin(^(X, U))) [1 − 1
c

(
U + arcsin

( 2X sin U
X2+sin2 U

) )]
if X < sinU,

(9)

with ^(X, U) given in (8).

Proof Recalling Theorem 1 and the formula d =
(
maxΓ1 E2

) (
maxΓ2 E1

)
, the estimate

(9) follows using Lemmas 2 and 5. �
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The estimated convergence factors obtained in Lemmas 2 and 5 and Theorem 2 are
shown in Fig. 4. In particular, in Fig. 4 (left) the function (6) is shown. Fig. 4 (center)
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Fig. 4: Left: Values of maxΓ2 E1 as function of U and X given in (6). Center: Estimate of maxΓ1 E2
given in (7). Right: Estimated convergence factor for the ddm logo given in (9).

represents the upper bound (7). Fig. 4 (right) shows the estimated convergence factor
(9) for the ddm logo. The black curves in Fig. 4 (left and right) represent the function
sinU separating two regions according to (6) and (9).

3 Numerical experiments

We now compare our theoretical estimates with the numerical convergence behavior.
We discretize the ddm logo by linear finite elements using Freefem5. Two finite
element discretizations of the ddm logo are shown in Fig. 5. In order to accurately
describe the behavior of the (continuous) Schwarz method, we used however in our
experiments much finer meshes than the ones shown in Fig. 5. We solve problem
(1) for a fixed ! = 2 and different values of the parameters U and X. Our results are
shown in Fig. 6, where the decay of the error with respect to the number of iterations
is represented. In particular, our theoretical estimates (solid lines) are compared with

Fig. 5: Examples of finite element discretizations of the ddm logo obtained by Freefem. Left:
U = 0.5, X = 0.5 and ! = 2. Right: U = 0.5, X = 0 and ! = 2.

5 This finite-element code was designed by the first author and Felix Kwok for the DD Summer
school organized by the second author at the University of Nice, June 19-21, 2018, and it was also
used by the second author in his plenary lecture at the 25Cℎ domain decomposition conference.
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Fig. 6: Theoretical (solid line) and numerical (dashed line) convergences.

the numerical errors (dashed lines). The first two pictures in Fig. 6 (left and center)
correspond to U = 0.1 and U = 0.5 and different values of X > 0. Notice that, even
though our theoretical estimate is an upper bound for the true convergence rate, it
describes very well the behavior of the method for different parameters. To study the
sharpness of our results, we consider also the case with X = 0 and different values of
U. The results of these experiments are shown in Fig. 6 (right), where one can clearly
see that our results are very sharp for X = 0 and small values of U. The reason for this
behavior is that our results are based on Theorem 1, where few estimates are present
in the proof; see [3]. These are sharper when the dominating error is localized near
the two points in mΩ1 ∩ mΩ2 and the overlap is small.
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