
Preface

This volume contains a selection of 58 papers submitted to the 25th International
Conference on Domain Decomposition Methods, hosted by Memorial University
of Newfoundland, in St. John’s, Newfoundland and Labrador, Canada, from July
23–27, 2018.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conference on Domain
Decomposition Methods has been held in 15 countries in Asia, Europe, and North
America, and now for the first time in Canada. The conference is held at roughly
18-months intervals. A complete list of 25 meetings appears below.

Domain decomposition is often seen as a form of divide-and-conquer for math-
ematical problems posed over a physical domain, reducing a large problem into a
collection of smaller problems, each of which is much easier to solve computa-
tionally than the undecomposed problem, and most or all of which can be solved
independently and concurrently, and then solving them iteratively in a consistent
way. Much of the theoretical interest in domain decomposition algorithms lies in
ensuring that the number of iterations required to converge is very small. Domain
decomposition algorithms can be tailored to the properties of the physical system as
reflected in the mathematical operators, to the number of processors available, and
even to specific architectural parameters, such as cache size and the ratio of memory
bandwidth to floating point processing rate, proving it to be an ideal paradigm for
large-scale simulation on advanced architecture computers.

The principle technical content of the conference has always been mathematical,
but the principle motivation has been to make efficient use of distributed mem-
ory computers for complex applications arising in science and engineering. While
research in domain decomposition methods is presented at numerous venues, the
International Conference on Domain Decomposition Methods is the only regularly
occurring international forum dedicated to interdisciplinary technical interactions
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between theoreticians and practitioners working in the development, analysis, soft-
ware implementation, and application of domain decomposition methods.

As we approach the dawn of exascale computing, where we will command 1018

floating point operations per second, clearly efficient and mathematically well-
founded methods for the solution of large-scale systems become more and more
important-as does their sound realization in the framework of modern HPC archi-
tectures. In fact, the massive parallelism, which makes exascale computing possible,
requires the development of new solutions methods, which are capable of efficiently
exploiting this large number of cores as well as the connected hierarchies for memory
access. Ongoing developments such as parallelization in time asynchronous itera-
tive methods, or nonlinear domain decomposition methods show that this massive
parallelism does not only demand for new solution and discretization methods, but
also allows to foster the development of new approaches.

Here is a list of the 25 first conferences on Domain Decomposition:

1. Paris, France, January 7-9, 1987
2. Los Angeles, USA, January 14-16, 1988
3. Houston, USA, March 20-22, 1989
4. Moscow, USSR, May 21-25, 1990
5. Norfolk, USA, May 6-8, 1991
6. Como, Italy, June 15-19, 1992
7. University Park, Pennsylvania, USA, October 27-30, 1993
8. Beijing, China, May 16-19, 1995
9. Ullensvang, Norway, June 3-8, 1996
10. Boulder, USA, August 10-14, 1997
11. Greenwich, UK, July 20-24, 1998
12. Chiba, Japan, October 25-20, 1999
13. Lyon, France, October 9-12, 2000
14. Cocoyoc, Mexico, January 6-11, 2002
15. Berlin, Germany, July 21-25, 2003
16. New York, USA, January 12-15, 2005
17. St. Wolfgang-Strobl, Austria, July 3-7, 2006
18. Jerusalem, Israel, January 12-17, 2008
19. Zhangjiajie, China, August 17-22, 2009
20. San Diego, California, USA, February 7-11, 2011
21. Rennes, France, June 25-29, 2012
22. Lugano, Switzerland, September 16-20, 2013
23. Jeju Island, Korea, July 6-10, 2015
24. Spitsbergen, Svalbard, Norway, February 6-10, 2017
25. St. John’s, Newfoundland, Canada, July 23-27, 2018
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International Scientific Committee on Domain Decomposition Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, CU Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Laurence Halpern, University Paris 13, France
• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Luca Pavarino, University of Pavia, Italy
• Olof Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 25th Conference

The twenty-fifth International Conference on Domain Decomposition Methods had
187 participants from 20 different countries. The conference contained 12 invited
presentations selected by the International Scientific Committee, fostering both ex-
perienced and younger scientists, 19 minisymposia around specific topics (including
an industrial minisymposium), 6 contributed sessions, and a poster session. The
present proceedings contain a selection of 58 papers grouped into three separate
groups: 5 plenary papers, 39 minisymposia papers, and 14 contributed papers.

Sponsoring Organizations

• Memorial University
• Faculty of Engineering, Memorial University
• Department of Mathematics and Statistics, Memorial University
• Atlantic Association for Research in the Mathematical Sciences
• Fields Institute
• Centre de Recherches Mathématiques
• Pacific Institute for the Mathematical Sciences
• Canadian Applied and Industrial Mathematics Society
• National Science Foundation
• Lawrence Livermore National Laboratory
• Los Alamos National Laboratory
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Local Organizing/Program Committee Members

• Ronald D. Haynes, Memorial University of Newfoundland
• Scott MacLachlan, Memorial University of Newfoundland
• Hermann Brunner, Memorial University of Newfoundland / Hong Kong Baptist

University
• Sue Brenner, Louisiana State University
• Shaun Lui, University of Manitoba
• Emmanual Lorin, Carleton University

Plenary Presentations

• A review of the computational aspects in Seismic Imaging and Reservoir Simu-
lation, Henri Calendra (Total E&P, France)

• Computation of High Frequency Waves in Unbounded Domains: Perfectly
Matched Layer and Source Transfer, Zhiming Chen (Academy of Mathematics
and Systems Science, China)

• Anisotropic mesh adaptation using enriched reconstructed solutions, André
Fortin (Université Laval, Canada)

• OnScalability, Optimal andOptimizedCoarse Spaces,MartinGander (University
of Geneva, Switzerland)

• Hierarchical Algorithms on Hierarchical Architectures, David Keyes (King Ab-
dullah University of Science and Technology, Saudi Arabia)

• Thoughts on Composing of Nonlinear Solvers, Matthew Knepley (University at
Buffalo, USA)

• Finite Elements Methods for multiscale problems, and related issues, Claude Le
Bris (Ecole Nationale des Ponts et Chaussées and INRIA, France)

• Reducing flops, communication and synchronization in sparse factorizations,
Xiaoye (Sherry) Li (Lawrence Berkeley National Laboratory, USA)

• An algebraic view on BDDC - from local estimates to eigenvalue problems,
parallel sums and deluxe scaling, Clemens Pechstein (CST GmbH, Germany)

• Domain decomposition tips the scales: From additive Schwarz methods to ho-
mogenization, Daniel Peterseim (University of Augsburg, Germany)

• Discretizations based on BDDC/FETI-DP Techniques, Marcus Sarkis (Worcester
Polytechnic Institute, USA)

• Unified Analysis of IterativeMethods Based onOne-WayDomain Decomposition,
Hui Zhang (Zhejiang Ocean University, China)
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Does the Partition of Unity Influence the
Convergence of Schwarz Methods?

Martin J. Gander

1 Which Schwarz Methods Need a Partition of Unity?

The classical alternating Schwarz method does not need a partition of unity in its
definition [3]: one solves one subdomain after the other, stores subdomain solutions,
and always uses the newest data available from the neighboring subdomains. In the
parallel Schwarz method introduced by Lions in [10], where all subdomains are
solved simultaneously, one also stores subdomain solutions, but one has to distin-
guish two cases: if in the decomposition there are never more than two subdomains
that intersect, which we call the no crosspoint assumption, then one also does not
need a partition of unity to define the method, one simply takes data from the
neighboring subdomains with which the subdomain intersects, and in that case the
parallel Schwarz method has a variational interpretation [10]. If however points of
the boundary of a subdomain are contained in more than one neighboring subdo-
main, then one has to decide from which neighboring subdomain to take data, or
one can use a linear combination. In this case, the parallel Schwarz method does
not have a variational interpretation [10], for an example, see Figure 2.2 in [3]. The
decision from which of the neighboring subdomains data should be taken has to be
made only on the boundary of each subdomain, and by the maximum principle, it
is better to take data as far away from the boundary of the neighboring subdomains
as possible to benefit from the largest error decay. This can be achieved if the over-
lapping domain decomposition is obtained from a non-overlapping one by enlarging
the non-overlapping subdomains equally, and then using the subdomain solutions
restricted to the non-overlapping subdomains to define a global approximation from
which data is taken for the next iteration, see [3] for more details.

The situation for the algebraic Schwarz methods is more delicate, since these
methods define approximate iterates over the entire domain only, so in the overlap,
where necessarily more than one iterate is available, one has to decide which one or
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Université de Genève, Switzerland e-mail: Martin.Gander@unige.ch

3



4 Martin J. Gander

which combination should be stored. For the multiplicative Schwarz method, which
was proved to be equivalent to the discretization of the alternating Schwarz method,
see [3], one also does not need a partition of unity, since the method stores the
most recently updated values in the overlaps. Additive Schwarz does also not use
a partition of unity, it adds all contributions in the overlap, which however leads
to a non convergent stationary iterative method [3]. Additive Schwarz is thus not
equivalent to a discretization of the parallel Schwarz method of Lions [3], it has to
be used as a preconditioner for a Krylov method, which corrects the error made by
Additive Schwarz adding all contributions in the overlap. In RAS [1], implicitly a
partition of unity was defined by “neglecting part of the communication routine”,
but any other partition of unity could be used as well. A natural question is if the
choice of the partition of unity influences the convergence properties of RAS. It was
proved in [3] that RAS is equivalent to the discretization of the parallel Schwarz
method of Lions, if the parallel Schwarz method of Lions uses as partition of unity
the restriction to the non-overlapping domain decomposition, as described above.
Similarly, it was shown in [9] that Additive Schwarz with Harmonic extension [1]
is also equivalent to the discretization of the parallel Schwarz method of Lions, but
only under certain restrictions on the decomposition. Finally, also a variant called
Restricted Additive Schwarz with Harmonic extension (RASH) was introduced in
[1], but it was found to have less good convergence properties, even though RASH
is symmetric for symmetric problems, while RAS and ASH are not.

Optimized transmission conditions [2] were introduced for RAS in [12, 11] lead-
ing the Optimized Restricted Additive Schwarz method (ORAS), and also for ASH
leading to OASH [9], and in both cases a direct equivalence to discretized opti-
mized Schwarz methods was proved. A symmetric variant ORASH was proposed
in [5] (under the name SORAS), which needs a special coarse correction to permit
a convergence analysis of the method using the abstract Schwarz framework. The
symmetrized version ORASH has also been studied again with radiation transmis-
sion conditions for the Helmholtz case in [4], see also the earlier work for Helmholtz
in [7, 8] for a BDD variant with overlap.

We are interested in understanding if the choice of partition of unity influences the
convergence of RAS and RASH and their optimized variants ORAS and ORASH.
We will prove that in the two subdomain case the choice of partition of unity has
no influence on the convergence properties of RAS, and ORAS under an additional
condition on the partition of unity, while RASH and ORASH are extremely sensitive
to the choice of the partition of unity. The main reason for this is that RAS and ORAS
are equivalent to classical and optimized parallel Schwarz methods, while RASH
andORASH have no such interpretation as iterative domain decompositionmethods,
and generate an extra residual term which we compute explicitly. We also investigate
the many subdomain case, including cross points, and show numerically that the
partition of unity in the presence of cross points has the same weak influence on
the functioning of RAS as on the equivalent discretized parallel Schwarz method
of Lions. RASH however is extremely sensitive, and its convergence properties are
much less favorable than the convergence properties of RAS.
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2 Partitions of Unity for RAS, RASH, ORAS and ORASH

To get a better understanding on how information is transmitted between subdomains
in RAS, ORAS, RASH and ORASH, and how this is influenced by the partition of
unity used, we consider as our model problem

([ − Δ)D = 5 in Ω, D = 0 on mΩ, (1)

where [ ≥ 0 is a parameter,Ω ⊂ R2 and 5 is some given source function 5 : Ω→ R.
We discretize (1) using a finite element or finite difference method and obtain the
linear system

�u = f, (2)

where � ∈ R<×< is the system matrix, f ∈ R< is the discretization of the source
term, and u ∈ R< is an approximation of the solution at the grid points. Schwarz
methods are based on a decomposition of the domainΩ into overlapping subdomains
Ω 9 , 9 = 1, 2, . . . , �. At the discrete level this decomposition can be identified with
a decomposition of the degrees of freedom of the discrete system (2) into a set of
overlapping or non-overlapping subsets1, and ismost easily represented by restriction
matrices ' 9 of size < 9 × < which are restrictions of the identity matrix to the
rows corresponding to the degrees of freedom in subdomain Ω 9 . The restriction
operators ' 9 can also be used to define the subdomainmatrices � 9 := ' 9�')9 , which
correspond to subdomain problems with Dirichlet transmission conditions. We next
define a discrete partition of unity represented by diagonal matrices j 9 ∈ R<×<
such that

∑�
9=1 j 9 = �, the identity, and which equal one on the diagonal for degrees

of freedom that belong to one subdomain only. This discrete partition of unity can
conveniently be used to define also modified restriction matrices '̃ 9 := ' 9 j 9 , and
the classical choice we have seen in Section 1 is to use a non-overlapping partition
to define the j 9 , which leads to '̃ 9 matrices that still only contain zeros and ones,
see [1]. There are however also other possibilities, and we define in particular the
five partition of unity functions jℓ

9
, ℓ = 1, 2, 3, 4, 5 shown in Figure 1. The first one

is the one used in RAS. The second one computes the average of the two subdomain
solutions in the overlap. The third one takes a linear combination, weighted by a
linear function depending on the distance from the interfaces, and the fourth and
fifth one are spline functions, the last one staying longer close to one on the boundary
then the former. Each partition of unity function jℓ

9
leads to an associated restriction

matrix '̃ℓ
9

:= ' 9 jℓ9 for ℓ = 1, 2, 3, 4, 5.
We can now define the discrete Schwarz methods RAS, RASH, ORAS and

ORASH by defining the preconditioning matrix "−1 in the stationary iterative
method

u= = u=−1 + "−1 (f − �u=−1), (3)

1 For a detailed explanation why a non-overlapping decomposition at the algebraic level still implies
an overlapping decomposition at the continuous level for classical finite element and finite difference
methods, see [3, Section 3]
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Fig. 1: Five partitions of unity functions we will test, shown in one dimension across a typical
overlap size.
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$'�(�ℓ
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�∑
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('̃ℓ9 )) �̃−1

9 '̃
ℓ
9 ,

where the subdomain matrices �̃ 9 correspond to subdomain problems with Robin
transmission conditions, see [11].

3 Influence of the Partition of Unity on RAS and RASH in 1D

We start by a numerical experiment in one spatial dimension: we use Ω := (0, 1),
two subdomains Ω1 := (0, V) and Ω2 := (U, 1) with U < V and solve the model
problem in (1) for [ = 0 with boundary conditions D(0) = 0 and D(1) = 1, so that
the solution is a straight line going from zero to one. We discretize the problem
using centered finite differences with < = 100 interior mesh points, which leads to
the mesh size ℎ = 1

<+1 , and we assign the first 1 mesh points to the first subdomain
matrix, and the last<−0mesh points to the second subdomainmatrix, which implies
that �1 ∈ R1×1 , �2 ∈ R<−0×<−0, 'ℓ1 ∈ R1×< 'ℓ2 ∈ R<−0×< and that U = 0ℎ and
V = (1 + 1)ℎ. We choose 0 = 40 and 1 = 60. The parallel Schwarz method of Lions,
which does not need a partition of unity in the case of two subdomains, would then
compute

�1


D=1,1
...

D=1,1−1
D=1,1


=


51
...

51−1
51 − 1

ℎ2 D
=−1
2,1+1


, �2


D=2,0+1
D=2,0+2
...

D=2,<


=


50+1 − 1

ℎ2 D
=−1
1,0

50+2
...

5<


. (4)

We show in Figure 2 in the first five panels the iterates of RAS and RASHwhen using
the five partition of unity functions jℓ . Note that the iterates of the parallel Schwarz
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Fig. 2: Iterates of RAS (blue) and RASH (red) for the five partitions of unity, and corresponding
convergence curves.

method would just converge monotonically from below to the solution which is a
straight line from zero to one. We see that RAS (in solid blue) is converging in
the same way for all five partition of unity functions, we only see a difference in
the overlap depending on the partition of unity used. RASH however (in dashed
red) is diverging violently for the first two partition of unity functions j1 and j2,
converging, albeit more slowly than RAS for the partition of unity functions j3 and
j4, and diverging again for the partition of unity function j5. The corresponding
convergence curves are shown in the last panel in Figure 2, and we see indeed that
RAS converges at the same rate for all partition of unity functions, while RASH only
converges for two, and is substantially slower than RAS.

We now prove that the convergence of RAS does not depend on the choice of the
partition of unity function, and that RAS is a faithful implementation of the parallel
Schwarz method of Lions.

Theorem 1 (The convergence of RASℓ does not depend on the partition of unity
used) If the initial iterate u0 of RASℓ satisfies D0

0 = D
0
2,0 and D0

1+1 = D
0
1,1+1, where

D0
2,0 and D

0
1+1 are the initial guess of the parallel Schwarz method of Lions (4), then

the iterates of RASℓ outside the overlap coincide with the iterates of the discretized
parallel Schwarz method of Lions (4), D=

9
= D=1, 9 , 9 ∈ {1, 2, . . . 0} ∪ {1 + 1, 1 +

2, . . . , <}, independently of the partition of unity jℓ used in RASℓ .

Proof The proof is by induction: according to the iteration formula for RASℓ in (3),
one first computes the residual f − �u0, which can be written partitioned into two
parts in two different ways,
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51
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51
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5<


−



�1


D0

1
...

D0
1

 +


0
...

1
ℎ2 D

0
1+1


�1


D0
1+1
...

D0
<

 +


1
ℎ2 D

0
1

0
...




=



51
...

50
50+1
...

5<


−



�2


D0

1
...

D0
0

 +


0
...

1
ℎ2 D

0
0+1


�2


D0
0+1
...

D0
<

 +


1
ℎ2 D

0
0

0
...




,

where � 9 is the remaining diagonal block for the subdomain matrix � 9 and of no
importance, since the following restriction step in RASℓ removes it,

'1 (f − �u0)=


51
...

51 − 1
ℎ2 D

0
1+1

− �1


D0

1
...

D0
1

 , '2 (f − �u0)=

50+1 − 1

ℎ2 D
0
0

...

5<

− �2


D0
0+1
...

D0
<

 .
(5)

Next the subdomain solves �−1
9

are applied in parallel, which cancel the remaining
� 9 matrices,

�−1
1 '1(f−�u0)= �−1

1


51
...

51− 1
ℎ2 D

0
1+1

−

D0

1
...

D0
1

, �
−1
2 '2(f−�u0)= �−1

2


50+1− 1

ℎ2 D
0
0

...

5<

−

D0
0+1
...

D0
<

.
We now see that due to the assumption of identical starting values, D0

0 = D
0
2,0 and

D0
1+1 = D

0
1,1+1, precisely the subdomain solves of the parallel Schwarz method of

Lions (4) appeared,
D1

1,1
...

D1
1,1

 = �
−1
1


51
...

51 − 1
ℎ2 D

0
1+1

 ,

D1

2,0+1
...

D1
2,<

 = �
−1
2


50+1 − 1

ℎ2 D
0
0

...

5<

 ,
and we therefore obtain in the last combination step of RASℓ

u1 =


D0

1
...

D0
<−1

 + ('̃
ℓ
1))

©«

D1

1,1
...

D1
1,1

 −

D0

1
...

D0
1−1


ª®®¬ + ('̃ℓ2))

©«

D1

2,0+1
...

D1
2,<

 −

D0
0+1
...

D0
<


ª®®¬

= ('̃ℓ1))

D1

1,1
...

D1
1,1

 + ('̃
ℓ
2))


D1

2,0+1
...

D1
2,<

 , (6)

because the old iterate cancels due to the partition of unity used in the '̃ℓ
9
, and the

same property also shows that the new iterate u1 of RASℓ coincides outside the
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overlap with the parallel Schwarz iterates from (4), and this independently of the
partition of unity used. Induction now concludes the proof. �

So why does RASHℓ fail? This can be seen in step (5), where in RASHℓ the '̃ℓ9
operators would be applied containing the partition of unity. Adding and subtracting
' 9 (f − �u0), we obtain in RASHℓ

'̃1 (f − �u0) =


51
...

51 − 1
ℎ2 D

0
1+1

 − �1


D0

1
...

D0
1

 + ('̃1 − '1) (f − �u0), (7)

'̃2 (f − �u0) =

50+1 − 1

ℎ2 D
0
0

...

5<

 − �2


D0
0+1
...

D0
<

 + ('̃2 − '2) (f − �u0). (8)

This implies that in the last combination step of RASHℓ artificial source terms are
left,

u1 = ('̃ℓ1))

D1

1,1
...

D1
1,1

 + ('̃
ℓ
2))


D1

2,0+1
...

D1
2,<

 +
©«

2∑
9=1

'̃)9 �
−1
9 ('̃ 9 − ' 9 )

ª®¬ (f − �u0). (9)

These source terms modify the correct Schwarz iterates, and even though these
artificial source terms go to zero when the residual goes to zero, they greatly affect
the convergence, and can even lead to divergence, see Figure 2.

4 RAS, RASH, ORAS and ORASH in 2D

The generalization of Theorem 1 to higher spatial dimensions and more than two
subdomains does not present any difficulties under the no-crosspoint assumption2.
As an illustration, we show numerical experiments on the unit square, solving the
model problem (1) for [ = 0 using a uniform mesh size ℎ = 1

40 and two equal
subdomains which overlap by 11ℎ and f = 0, which means that we simulate directly
the error equations. We show in Figure 3 the third iteration starting with the same
random initial guess for RASℓ (left) and the corresponding results for RASHℓ (right).
As in one spatial dimension, RASℓ converges outside of the overlap like the parallel
Schwarz method of Lions, only in the overlap one can see the influence of the
partition of unity, which does not affect the convergence. This is very different for
RASHℓ , where convergence can be completely destroyed by the partition of unity.

2 Even in the presence of cross points, the equivalence of the discretized parallel Schwarz method
of Lions and RAS is proved in [3, Theorem 3.5] for a partition of unity of the form j1, the proof
for other partitions of unity can be obtained following the arguments in the proof of Theorem 1.
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Fig. 3: Third iterate of RASℓ (left) and RASHℓ (right) for ℓ = 1, 2, 3, 4, 5 corresponding to the
five different partitions of unity.
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Fig. 4: Spectra and numerical range of the preconditioned operators with RASℓ (left) and RASHℓ
(right) for ℓ = 1, 2, 3, 4, 5 corresponding to the five different partitions of unity.
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Fig. 5:Convergence ofRASℓ andRASHℓ as iterative solvers (left) andwhen used as preconditioners
for GMRES (right), for for ℓ = 1, 2, 3, 4, 5 corresponding to the five different partitions of unity.

In Figure 4 we show the spectra and numerical range of the preconditioned
operators. As expected, we see that the spectra of RASℓ are not affected by the
partition of unity, while the spectra of RASHℓ are: the first two partitions of unity
cause large negative eigenvalues,which explain the divergence of the iterativemethod
in this case. The smoother partitions of unity lead to convergent methods, but the
spectra are clearly less favorable for convergence. A similar observation holds also
for the numerical range which can be related to the convergence of preconditioned
GMRES: for RASℓ , the numerical range is very similar, which indicates similar
convergence for GMRES, whereas for RASHℓ , the first two partitions of unity
lead to a much larger numerical range which is unfavorable for GMRES. This
is illustrated in Figure 5, where we see on the left that as iterative solver, RASℓ
faithfully produces the same convergence behavior of the parallel Schwarz method
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Fig. 6: Third iterate of RASℓ (left) and RASHℓ (right) for ℓ = 1, 2 and the 4 × 4 subdomain case.

of Lions independently of the partition of unity used, which leads on the right when
used as preconditioner to rapid convergence of the residuals, not identical, since the
residuals are also minimized in the overlap, where the partition of unity has a slight
influence on the numerical range as seen in Figure 4 on the left. This is very different
for RASHℓ , which can both converge and diverge as an iterative solver, see Figure
5 on the left. When used as a preconditioner, RASHℓ is much less effective than
RASℓ , and the convergence depends on the partition of unity used: as indicated by
the numerical range in Figure 4 on the right, the first two partitions of unity lead to
worse convergence of GMRES for RASHℓ , see Figure 5 on the right.

We next investigate for the first two partitions of unity the case where cross points
are present, namely a decomposition of the unit square into 4× 4 subdomains, using
the samemesh size ℎ = 1

40 but a smaller overlap 3ℎ to still clearly see the subdomains,
see Figure 6. Like the parallel Schwarz method of Lions, RAS depends only little on
the partition of unity used, while RASH depends very strongly. In Figure 7 we show
the spectra and numerical range of the preconditioned operators, and we see that
while RASℓ also is convergent in the presence of cross points, RASHℓ is not for the
two partitions of unity. We show in Figure 8 (left) the corresponding convergence
plots. We observe that in the presence of cross points, the convergence of RAS
depends a little on the partition of unity, exactly like the parallel Schwarz method
of Lions: the first partition of unity is better than the second one, since it takes
data further away from the interfaces, which is better for the Schwarz method by
the maximum principle. The dependence of RASH is however very strong: we see
violent divergence for the first partition of unity, and also slow divergence for the
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Fig. 7: Spectra and numerical range of the preconditioned operators with RASℓ (left) and RASHℓ
(right) for ℓ = 1, 2 and the 4 × 4 subdomain case.
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for GMRES (right), for ℓ = 1, 2 and the 4 × 4 subdomain case.

second one. The spectrum and numerical range in Figure 7 (right) explains their less
favorable properties as preconditioners, see Figure 8 (right).

We finally test the optimized variants ORAS and ORASH: it was shown in
[11] that ORAS is a discretization of the optimized Schwarz method with Robin
transmission conditions for the partition of unity function j1, and this result holds
provided the partition of unity equals one at least for the first layer inside the overlap,
which is almost satisfied by j5 as well, but not for the other partitions of unity. We
show in Figure 9 the results corresponding to Figure 5 but now using ORASℓ and
ORASHℓ . We see that ORAS1 performs indeed best, like an optimized Schwarz
method and much better than RASℓ . ORAS5 also works, but ORAS2, ORAS3 and
ORAS4 are now not functioning properly, since the partition of unity overwrites
the location where derivative information needs to be extracted. ORASHℓ never
works properly, which then also leads to very poor performance when used as a
preconditioner, see Figure 9 on the right, even worse than RASℓ , and only marginally
better than RASHℓ . It is therefore delicate to use the symmetrized versions RASHℓ
andORASHℓ , and for ORASℓ the partition of unity needs to satisfy a constraint. Note



14 Martin J. Gander

0 2 4 6 8 10

iteration

10
-15

10
-10

10
-5

10
0

10
5

10
10

ORAS P1

ORAS P2

ORAS P3

ORAS P4

ORAS P5

ORASH P1

ORASH P2

ORASH P3

ORASH P4

ORASH P5

0 2 4 6 8 10

iteration

10
-15

10
-10

10
-5

10
0

ORAS P1

ORAS P2

ORAS P3

ORAS P4

ORAS P5

ORASH P1

ORASH P2

ORASH P3

ORASH P4

ORASH P5

Fig. 9: Convergence of ORASℓ and ORASHℓ as iterative solvers (left) and when used as precon-
ditioners for GMRES (right), for ℓ = 1, 2, 3, 4, 5 corresponding to the five different partitions of
unity.

that similar problems were also observed in an alternating version in [6, subsection
6.1] when not keeping the correct Robin interface data.

Acknowledgments: The author would like to thank an anonymous referee for
pointing out the important references [6, 7, 8].
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Adaptive BDDC Based on Local Eigenproblems

Clemens Pechstein

1 Introduction

FETI-DP (dual-primal finite element tearing and interconnecting) and BDDC (bal-
ancing domain decomposition by constraints) are among the leading non-overlapping
domain decomposition preconditioners. For standard symmetric positive definite
(SPD) problems and standard discretizations, the spectral condition number ^ of the
preconditioned systems of either FETI-DP or BDDC can be bounded from above
by � (1 + log(�/ℎ))2. Here, � is the subdomain diameter and ℎ the discretization
parameter, and � is a constant independent of �, ℎ, and the number of subdo-
mains; for more details see e.g. [19]. In the past decade, there has been significant
effort in analyzing the dependence of the constant � on problem parameters, such as
coefficient values. This research has also led to new parameter choices of the precon-
ditioners themselves, such as more sophisticated scalings and primal constraints. In
particular, adaptive choices of primal constraints have been studied, starting with the
pioneering work by Mandel and Sousedík [13] and later with Šístek [15], continued
from different angles by Spillane and Rixen [18] as well as Klawonn, Radtke, and
Rheinbach [8], and meanwhile pursued by various researchers [2, 5, 6, 9, 10, 20].

Our own work started with talks and slides [4, 16] and led to the comprehensive
paper [17], where we present a rigorous and quite general theoretical framework for
adaptive BDDC preconditioners and show the connections and differences between
various existing methods. The paper [17] appears to be rather long and technical.
In the contribution at hand, we would like to summarize the big picture from a less
detailed perspective in favor of simplicity.

Clemens Pechstein
Dassault Systèmes Austria GmbH, Semmelweisstraße 15, 4600 Wels, Austria, e-mail: clemens.
pechstein@3ds.com

16
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Fig. 1: Sketch of the spaces* , ,̃ , and, for primal dofs on subdomain vertices in 2D.

2 BDDC Basics

The original problem to be solved reads �D∗ = 5 , with the SPD matrix � ∈ R=×=,
originating from a PDE on the global domainΩ and projected to a finite-dimensional
space via a finite element method (FEM), discontinuous Galerkin (DG) method, or
isogeometric analysis (IGA). Using a decomposition of the domain Ω into non-
overlapping subdomains {Ω8}#8=1, each degree of freedom (dof) is associated with
one or several subdomains. After formal static condensation of the inner dofs (those
owned only by one subdomain), we are left with the interface system

(̂D̂ = 6̂, (1)

where (̂ : * → * is again SPD. The global Schur complement (̂ can be assembled
from subdomain contributions (8 in the following way,

(̂ = ') (' =

#∑
8=1

')8 (8'8 , (2)

where '8 : * → ,8 is the restriction matrix that selects from all global dofs those of
subdomain 8, and ( = diag((8)#8=1 : , → , :=

∏#
8=1,8 . Throughout the paper we

assume that each matrix (8 is symmetric positive semidefinite (SPSD).
The space * of interface dofs can be visualized as the global continuous space,

whereas, can be visualized as a discontinuous space, see Fig. 1. The subspace of
, containing continuous functions is ,̂ := range(').

The balancing domain decomposition by constraints (BDDC) preconditioner [3,
12] can be seen as a fictitious space preconditioner [17, Appendix A]: Selecting a
subspace ,̃ ⊂ , such that ,̃ ⊃ ,̂ , the preconditioner reads

"−1
BDCC := �� �̃ (̃−1 �̃) �)� , (3)

where (̃ is the restriction of ( to ,̃ , �̃ : ,̃ → , is the natural embedding operator,
and �� : , → * is a linear averaging operator mapping back to the original space
*. In the following, we assume that ��' = �, such that '�� becomes a projection.



18 Clemens Pechstein

In this case, _min ("−1
BDDC(̂) ≥ 1 and _max ("−1

BDDC(̂) ≤ � where1

| (� − '��)F |2( ≤ � |F |2( ∀F ∈ ,̃, (4)

cf. [12]. For parallel computing, the subspace ,̃ should have small co-dimension
with respect to, . In order to ensure invertibility of (̃, the space ,̃ has to be made
smaller than, and with that allow some coupling between individual subdomains.
In case of highly varying coefficients, one typically needs even more coupling. For
some motivating numerical results obtained by adaptively chosen spaces ,̃ see e.g.
[6, Sect. 8] (using the pair-based approach).

We decompose the global set of interface dofs into equivalence classes called
globs such that dofs within a glob are shared by the same set of subdomains. In the
sequel, we refer to globs shared by two subdomains simply as faces.2 Next, we define
a primal dof as a linear combination of regular dofs within the same glob.

For the following investigation we make two assumptions:

1. The space ,̃ is based on primal constraints, i.e., it is the subspace of, where
on each glob, the associated primal dofs are continuous across the subdomains.

2. The averaging operator is block-diagonal w.r.t. the glob partition, i.e., the global
dofs of ��F associated with a glob only depend on the values of F8 on that
glob.

To formulate these assumptions more precisely, we need some notation. Let '8�
extract the dofs of,8 that belong to glob� and letN� denote the set of subdomains
sharing glob �. Then Assumption 1 reads

,̃ = {F ∈ , : &)� ('8�F8 − ' 9�F 9 ) = 0 ∀8, 9 ∈ N�}, (5)

where &)
�

is the matrix evaluating all primal dofs on �. Assumption 2 reads
'̂���F =

∑
8∈N� �8�'8�F8 , where '̂� extracts the dofs of * that belong to

glob � and {� 9�} 9∈N� are local weighing matrices, not necessarily diagonal. To
ensure that '�� is a projection, we assume the glob-wise partition of unity property∑

9∈N�
� 9� = � . (6)

There are several ways to realize the application of �̃ (̃−1 �̃) in practice (see [3, 11] and
[17, Appendix C]), but all essentially boil down to block factorization where a sparse
matrix on the space of primal dofs forms the coarse problem, whereas independent
subdomain problems with the primal dofs being fixed form the remainder.

1 assuming that '�� is different from zero and identity
2 In simple setups, one may visualize globs as open faces, open edges, and vertices, but this can
change due to the geometry and/or the particular discretization.
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Fig. 2: Sketch of spaces and support (indicated by dots) of local operator %�,� for glob-based
approach. Left: ,̃N� for face � = � . Middle: ,̃N� for vertex �. Right: ,̃�

N� for vertex �.

3 Localization, Eigenproblems, and Adaptivity

Under the assumptions from the previous section, the global estimate (4) can be
localized. In the following, we consider two kinds of localizations and work out the
associated generalized eigenproblem and adaptive coarse space enrichment.

3.1 Glob-based approach

Let %�,� : ,N� → ,N� :=
∏
8∈N� ,8 be given by

(%�,�F)8 = ')8�
∑

9∈N�
� 9� ('8�F8 − ' 9�F 9 ), (7)

and let ,̃N� ⊂ ,N� denote the subspace of functions where on all neighboring
globs of �, the primal constraints of the global problem are enforced (see Fig. 2).3
Two globs � and � ′ are neighbors if they share at least two common subdomains.

Theorem 1 If for each glob � the inequality∑
8∈N�

| (%�,�F)8 |2(8 ≤ l�
∑

8∈N�
|F8 |2(8 ∀F ∈ ,̃N� (8)

holds, then
^("−1

BDDC(̂) ≤
(

max
8=1,...,#

|G8 |2
) (

max
�

l�
)
, (9)

where |G8 | is the number of globs associated with subdomain 8.

Proof We only have to show estimate (4), i.e., |%�F |2( ≤ � |F |2( for all F ∈ ,̃ where
%� := (� − '��), cf. [12, Thm. 5] and [17, Sect. 2.3]. Under our assumptions, for
any F ∈ ,̃ ,

3 Precisely, ,̃N� = {F ∈ ,N� : ∀8 ≠ 9 ∈ N�∀�′, {8, 9 } ⊂ N�′ :&)�′ ('8�′F8−' 9�′F9 ) =0}.
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(%�F)8 =
∑
�∈G8

')8�

∑
9∈N�

� 9� ('8�F8 − ' 9�F 9 ) =
∑
�∈G8
(%�,� [F 9 ] 9∈N�︸      ︷︷      ︸

∈,̃N�

)8 . (10)

I.e., the operators %�,� are localizations of %� , and applying Cauchy’s inequality
and using (8) yields the desired result, see [17, Thm. 3.10]. �

Remark 1 If all dofs of glob � are primal dofs (&� = �) then %�,� = 0. For such
globs, estimate (8) holds with l� = 0 and need not be accounted for in |G8 | in (9).

Generalized Eigenproblem. With (N� := diag(( 9 ) 9∈N� , estimate (8) is linked to
the generalized eigenproblem, find (F, _) ∈ ,̃N� × R such that

I) (N�F = _ I
) %)�,�(N�%�,�F ∀I ∈ ,̃N� , (11)

Since the local operator %�,� is a projection [17, Lemma 3.8], (11) is of the form
�G = _%) �%G where � is SPSD and % a projection. Therefore all finite eigenvalues
_ of (11) fulfill _ ≤ 1, see Lemma 1 in the Appendix. Moreover, if the smallest
eigenvalue _1 is positive, then (8) holds with l� = _−1

1 . We further obtain the
improved bound

|%�,�F |2(N� ≤ _
−1
:+1 |F |2(N� (12)

for all F ∈ ,̃N� such that

(H (ℓ) )) %)�,�(N�%�,�F = 0 ∀ℓ = 1, . . . , :, (13)

where H (1) , . . . , H (:) are the eigenvectors corresponding to the : smallest eigenvalues
of (11), cf. [13]. As a viable alternative, we can replace the space ,̃N� in (11) by
the space ,̃�

N� where just the primal constraints on � are enforced (but not on its
neighbors),4 see Fig. 2, cf. [17, Strategy 4]. This discards any (good) influence of
primal constraints on neighboring globs but makes the underlying operator much
more simple to implement.

Adaptive enrichment.We show now how to realize (13) by primal constraints.
If � = � is a face shared by two subdomains 8 and 9 then (13) reads

('8� H (ℓ)8 −' 9� H (ℓ)9 ))
[
� 9�

−�8�

]) [
(8� 0
0 ( 9�

] [
� 9�

−�8�

]
︸                                                             ︷︷                                                             ︸

=:(&∗
�
))

('8�F8−' 9�F 9 ) = 0, (14)

where (:� := ')
:�
(:':� is the principal minor of (: associated with the dofs on �.

Apparently, the columns of &∗
�
make up the new primal dofs.

For globs shared by more than just two subdomains, it has turned out to be a
challenge to enforce (13) in terms of primal constraints. For simplicity we assume

4 Precisely, ,̃�
N� := {F ∈ ,N� : &)

�
('8�F8 − ' 9�F9 ) = 0 ∀8, 9 ∈ N� }.
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that � is a glob shared by three subdomains 8, 9 , and : (the general case follows the
same idea, cf. [17, Sect. 5.4]). Then the constraints (13) take the form

2
(ℓ)
8

2
(ℓ)
9

2
(ℓ)
:


) 
(� − �8�)F8� − � 9�F 9� − �:�F:�
−�8�F8� + (� − � 9�)F 9� − �:�F:�
−�8�F8� − � 9�F 9� + (� − �:�)F:�

 = 0, (15)

where 2 (ℓ) = (N�%�,�H (ℓ) and F8� is a short hand for '8�F8 . We introduce

F̂� := 1
3 (F8� + F 9� + F:�), F̌2� := F8� − F 9� , F̌3� := F8� − F:� , (16)

together with the corresponding inverse transformation

F8� = F̂� − 1
3 F̌2� − 1

3 F̌3� , F 9� = F̂� + 2
3 F̌2� − 1

3 F̌3� , (17)
F:� = F̂� − 1

3 F̌2� + 2
3 F̌3� .

We apply this transformation to (15) and find out that due to the partition of unity
property (6), the whole expression is independent of F̂� , and so (15) is of form

(2̌ (ℓ)2 )) F̌2� + (2̌ (ℓ)3 )) F̌3� = 0. (18)

In [17] we enforce this constraint by the two stronger constraints (2̌ (ℓ)2 )) F̌2� = 0
and (2̌ (ℓ)3 )) F̌3� = 0, rewritten in the original variables,

(2̌ (ℓ)2 )) ('8�F8 − ' 9�F 9 ) = 0, (2̌ (ℓ)3 )) ('8�F8 − ':�F: ) = 0. (19)

With the enforcement of an even stronger set, namely,

(2̌ (ℓ)2 )) ('<�F< − '=�F=) = 0
(2̌ (ℓ)3 )) ('<�F< − '=�F=) = 0

}
∀<, = ∈ {8, 9 , :}, (20)

we see that 2̌ (ℓ)2 , 2̌ (ℓ)3 define the new primal dofs. In [17, Thm. 5.18], we show that
it is more favorable to use the stronger primal constraints (20) than using so-called
generalized primal constraints realizing exactly (15).

3.2 Pair-based approach

A different way of writing the %� operator (compared to (10)) is

(%�F)8 =
∑
9∈N8

∑
�:{8, 9 }⊂N�

')8�� 9� ('8�F8 − ' 9�F 9 ), (21)
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Fig. 3: Sketch of spaces and support of %�,Γ8 9 for pair-based approach. Dots indicate support of
the local operator %�,Γ8 9 . Left: Sketch of the space ,̃8 9 . Right: Sketch of ,̃8: .

where N8 denotes the set of subdomains that share a non-trivial set of globs with
subdomain 8. It was used in the early works [14, 15] and put on solid ground in [6].

Defining for 8 ≠ 9 the generalized facet

Γ8 9 :=
⋃

� : {8, 9 }⊂N�
�, (22)

and collecting only the non-trivial ones into the set Υ, we obtain

(%�F)8 =
∑

9 : Γ8 9 ∈Υ
')8Γ8 9� 9Γ8 9 ('8Γ8 9F8 − ' 9Γ8 9F 9 )︸                                   ︷︷                                   ︸

=:(%�,Γ8 9 F8 9 )8

, (23)

where '8Γ8 9 extracts the dofs on Γ8 9 , the matrix � 9Γ8 9 is block-diagonal with blocks
{� 9�}�⊂Γ8 9 , and %�,Γ8 9 : ,8 9 → ,8 9 := ,8 × , 9 . Before we can formulate the
counterpart of Theorem 1, we have to introduce the subspace ,̃8 9 of ,8 9 where all
primal constraints between subdomain 8 and 9 are enforced,5 see Fig. 3.

Theorem 2 If for each generalized facet Γ8 9 ∈ Υ the inequality

| (%�,Γ8 9F)8 |2(8 + |(%�,Γ8 9F) 9 |2( 9 ≤ l8 9
( |F8 |2(8 + |F 9 |2(8 ) ∀F ∈ ,̃8 9 (24)

holds, then
^("−1

BDDC(̂) ≤
(

max
8=1,...,#

=2
8

)
max
Γ8 9 ∈Υ

l8 9 ,

with =8 := |{ 9 : Γ8 9 ∈ Υ}| the number of pairs associated with subdomain 8.

Proof The proof is similar to that of Theorem 1, see also [17, Lemma 3.16]. �

Generalized eigenproblem. The generalized eigenproblem associated with esti-
mate (24) is finding (F, _) ∈ ,̃8 9 × R such that

I) (8 9F = _ I
) %)�,Γ8 9 (8 9%�,Γ8 9F ∀I ∈ ,̃8 9 , (25)

where (8 9 := diag((8 , ( 9 ).

5 Precisely, ,̃8 9 := {(F8 , F9 ) ∈ ,8 ×,9 : ∀�, {8, 9 } ⊂ N� : &)
�
('8�F8 − ' 9�) = 0}.
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Remark 2 Unlike the operator %�,� from Sect. 3.1, the operator %�,Γ8 9 in general
fails to be a projection,6 so Lemma 1 from the appendix (and some other tools from
[17]) cannot be applied.

We obtain the improved bound

|%�,Γ8 9F |2(8 9 ≤ _−1
:+1 |F |2(8 9 (26)

for all F ∈ ,̃8 9 such that

(H (ℓ) )) %)�,Γ8 9 (8 9%�,Γ8 9F = 0 ∀ℓ = 1, . . . , :, (27)

where H (1) , . . . , H (:) are the first : eigenvectors of (25).

Adaptive enrichment.We wish to enforce condition (27) by primal constraints and
follow [15, 10, 6]. Because of its particular form, %�,Γ8 9F only depends on the
difference of F8 and F 9 on Γ8 9 , and so for fixed ℓ, (27) can be written as

(2 (ℓ) )) ('8Γ8 9F8 − ' 9Γ8 9F 9 ) = 0. (28)

Splitting the dofs of Γ8 9 into globs, we can express the latter as∑
� : {8, 9 }⊂N�

(2 (ℓ)
�
)) ('8�F8 − ' 9�F 9 ) = 0, (29)

where 2 (ℓ) = [2 (ℓ)
�
]� : {8, 9 }⊂N� , up to possible renumbering. Apparently, (29) holds

if we enforce the stronger conditions

(2 (ℓ)
�
)) (':�F: − 'ℓ�Fℓ) = 0 ∀:, ℓ ∈ N� (30)

for each glob � such that {8, 9} ⊂ N� . Conditions (30) have exactly the form of
primal constraints and will imply (27).

Remark 3 Apparently, for glob� shared by< > 2 subdomains, we have to collect the
adaptive primal constraints originating from (< − 1) (< − 2) pairs. E.g., for an edge
(in three dimensions) shared by three subdomains, these are three pairs; if it is shared
by four subdomains, six pairs. In order to avoid redundancy, an orthonormalization
procedure should be applied, e.g., modified Gram-Schmidt. For the typical 3D mesh
decompositions created by METIS, it is very unlikely that an edge will be shared by
more than three subdomains [6]. Nevertheless, there can be a large number of short
edges or thin faces, see also [6, Sect. 7].

6 A simple counterexample can be constructed by looking at an edge shared by two subdomains
with its endpoints shared by four and using the multiplicity scaling. At an interior dofs G of the
edge %�,Γ8 9 evaluates as ± 1

2 (F8 (G) − F9 (G)) whereas at an endpoint G as ± 1
4 (F8 (G) − F9 (G)) .
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3.3 Three different approaches

We basically have three approaches:

1. The glob-based approach with the original space ,̃N� where primal constraints
on neighboring globs are enforced ([17, Strategy 1–3]),

2. the glob-based approach with ,̃�
N� where no constraints are enforced on neigh-

boring globs ([17, Strategy 4]),
3. the pair-based approach (where constraints on neighboring globs are sometimes

enforced, sometimes not, see also [6]).

The difference between the glob- and pair-based approach is not only the space but
also the localized %� operator, see Fig. 2 and Fig. 3. A priori, there is no theoretical
argument on which of the three approaches is better, and dedicated numerical studies
will be necessary to find out more. For typical METIS partitions, the pair-based
approach involves a smaller number of eigenproblems, while potentially creating
some unnecessary constraints.7 Each of the approaches can be hard to load balance,
the glob-based approach likely more difficult (if one thinks of subdomain edges).

4 Simplification of the generalized eigenproblems

In this subsection, we pursue only the glob-based localization from Sect. 3.1 with
the space ,̃N� in (11) being replaced by the space ,̃�

N� where just the primal
constraints on � are enforced (but not on its neighbors), see Fig. 2.

In the following, suppose that � is a face shared by subdomains 8 and 9 . The
eigenproblem (11) involves the dofs on the subdomain (boundary) 8 and 9 , so more
than twice as many dofs as on �. However, the matrix %�,� has a large kernel
with co-dimension equal to the number of dofs on �. Hence, there are many infinite
eigenvalues that are irrelevant to our consideration (recall that we are after the first
few smallest eigenvalues and their associated eigenvectors). It turns out that using
Schur complement techniques, the eigenproblem (11) can be reduced to an equivalent
one in the sense that the number of infinite eigenvalues is reduced, the rest of the
spectrum is untouched, and the full eigenvectors can easily be reconstructed from
the reduced ones, see [17, Principle 4.4]. For the face, (11) (on ,̃�

N� ) is equivalent
(up to infinite eigenvalues) to

Ǐ)� ((★8� : (★9� )F̌� = _ Ǐ)�"� F̌� (31)

where F̌� = F8� − F 9� , and so the initially chosen primal dofs on � of F̌� , Ǐ�
vanish. Above, (★

:�
is the Schur complement of (: eliminating all dofs except those

7 Let us note that the sizes of the corresponding eigenproblems will not differ much, provided
that one applies the same reduction technique. A comparison of approach 2. and 3. with different
reduction techniques can be found in [10].
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on �, (★
8�

: (★
9�

is the parallel sum [1], defined by � : � = �(� + �)†� (see [17,
Sect. 5.1]), and "� = �)8�( 9��8� + �)9�(8�� 9� , cf. [17, Sect. 5.2].

For the choice of the deluxe scaling, �8� = ((8� + ( 9� )−1(8� it can be shown
[17, Sect. 6.1] that "� = (8� : ( 9� , such that the eigenproblem (here with no initial
primal constraints) takes the form

((★8� : (★9� )F̌� = _ ((8� : ( 9� )F̌� . (32)

This has been implemented in a PETSc version of BDDC by Zampini [20].
For globs � shared by more than two subdomains, one can easily eliminate the

dofs not on � in a first step such that one is left with an eigenproblem of size
#N� × #dofs(�) and with kernel dimension #dofs(�). Getting rid of the kernel
completely is possible but more tricky. But this is not so severe since the number
of dofs on such a glob (e.g. an edge) is typically much less than on a face, and so
one can usually afford computing with the eigenproblem from the first reduction
step. Even so, some decoupling approaches have been suggested, see [2, 5] and [17,
Sect. 5.5, Sect. 5.6, and Sect. 6.4].

5 Optimality of the deluxe scaling

Let � be a face and consider the reduced eigenproblem from the previous section,

Ǐ)�)� F̌� = _ Ǐ
)
�

[
-) ( 9� - + (� − -)) (8� (� − -)

]︸                                       ︷︷                                       ︸
"� (- )

F̌� , (33)

where )� = (★8� : (★
9�

and where we have set �8� = - and � 9� = � − - in order
to obtain the partition of unity. The choice of the weighting matrix, here - , can
have quite an influence on the spectrum of (33). It is of course desirable to have a
spectrum that has as few small eigenvalues (lower outliers) as possible. Depending
on the problem, outliers can often not be avoided, but at least its number could be
minimized, because this number will be the number of new primal constraints on
face � if one aims at a robust method, cf. [2].

For simplicity, we first look at the case where � consists of a single dof and so
(8� , ( 9� , and - are scalars. Since )� is fixed, we see that minimizing the quadratic
expression ((8� + ( 9� )-2 − 2(8� - is favorable, because then the (only) eigenvalue
_ is maximized (such that the local bound l� = _−1 is small). Minimization is
achieved with the choice -∗ = (8�

(8�+(8� which is the well-known weighted counting
function (with exponent W = 1, see [19, Sect. 6]).

If � hasmore than one dof, no initial primal constraints, and if)� is non-singular,8
then it is favorable to minimize the trace of the matrix on the right-hand side of (33)

8 If one of the subdomain “Neumann” matrices (★
:�

is singular (e.g., corresponding to the Laplace
operator on a floating subdomain), then also )� = (★8� : (★

9�
is singular.
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because of the following (for details see [17, Sect. 6.2]). Firstly, the trace of a matrix
equals the sum of its eigenvalues and is similarity-invariant, i.e.,

tr("� (-)) = tr
(
)
−1/2
�

"� (-))−1/2
�

)
=

∑=

:=1
_−1
: , (34)

where _1, . . . , _= are the (generalized) eigenvalues of (33). Secondly, minimizing∑=
:=1 _

−1
:

means that it is less likely that the smallest eigenvalues are very small. At
the minimum, we obtain -∗ = ((8� + ( 9� )−1(8� , the deluxe scaling. For numerical
studies comparing different scalings (including deluxe) see, e.g., [8, 7].
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ries) for many fruitful discussions on BDDC, especially during the week of the DD25 conference.

Appendix

We consider the generalized eigenproblem �G = _�G with SPSD matrices �, � and
call (_, G) a genuine eigenpair if _ ∈ R and G ∉ ker(�) ∩ ker(�). We call (∞, G)
an eigenpair with infinite eigenvalue if G ∈ ker(�) \ {0}, and (_, G) an ambiguous
eigenpair if G ∈ ker(�) ∩ ker(�).

Lemma 1 Let us consider the generalized eigenproblem

�G = _ %) �%G, (35)

where � ∈ R=×= is SPSD and % ∈ R=×= a projection. Then all genuine eigenvalues
_ of (35) fulfill _ ≤ 1.

Proof [17, Lemma 4.12] yields that the infinite eigenspace is

+∞ = ker(%) �%) = ker(%) ⊕ (ker(�) ∩ range(%))

and the ambiguous eigenspace turns out to be

+amb := ker(�) ∩+∞ = (ker(�) ∩ ker(%)) ⊕ (ker(�) ∩ range(%)).

The latter is a subspace of the above: +amb ⊂ +∞. Since +∞ ⊂ ker(%) �%), we can
eliminate+∞ and obtain an eigenproblem that has the same finite and non-ambigious
eigenvalues as (35). For such an elimination, we need a space splittingR= = +∞⊕+2 .
Here we use some complementary space+2 with the property+2 ⊂ range(%) (that is
feasible because R= = ker(%) ⊕ range(%)). We have the property that %H = H on +2
because % is a projection. Following [17, Principle 4.4], the reduced eigenproblem
reads: find (_, H) ∈ R ×+2 such that

I) (H = _I) �H ∀I ∈ +2 ,
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where ( is the Schur complement w.r.t. +∞ such that H) (H ≤ (G + H)) �(G + H)
for all G ∈ +∞ and H ∈ +2 . Note that � is definite on +2 because +2 ⊂ range(%)
but ker(�) ∩ +2 = {0} since +∞ ⊃ ker(�) ∩ range(%). Since � is definite on +2 ,
the right-hand side matrix of the reduced eigenproblem is definite and so we can
express the maximal eigenvalue _max in terms of the Rayleigh quotient. The proof is
completed by using the minimizing property of the Schur complement. �
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From Domain Decomposition to
Homogenization Theory

Daniel Peterseim, Dora Varga, and Barbara Verfürth

1 Introduction

Elliptic boundary value problems with oscillatory coefficients play a key role in
the mathematical modelling and simulation of complex multiscale problems, for
instance transport processes in porous media or the mechanical analysis of com-
posite and multifunctional materials. The characteristic properties of such processes
are determined by a complex interplay of effects on multiple non-separable length
and time scales. The challenge is that the resolution of all details on all relevant
scales may easily lead to a number of degrees of freedom and computational work
in a direct numerical simulation which exceed today’s computing resources by mul-
tiple orders of magnitude. The observation and prediction of physical phenomena
frommultiscale models, hence, requires insightful methods that effectively represent
unresolved scales, i.e., multiscale methods.

Homogenization is such a multiscale method. It seeks a simplified model that
is able to capture the macroscopic responses of the process adequately by a few
localized computations on the microscopic scale. Consider, e.g., prototypical second
order linear elliptic model problems with highly oscillatory periodic diffusion coef-
ficients that oscillate at frequency Y−1 for some small parameter 0 < Y � 1. Then,
the theory of homogenization shows that there exists a constant coefficient such that
the corresponding diffusion process represents the macroscopic behaviour correctly.
In practice, this yields a two- or multi-scale method that first computes the effective
coefficient which is implicitly given through some PDE on the microscopic periodic
cell, and then solves the macroscopic effective PDE. This is done for instance in
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the Multiscale Finite Element Method [8] or the Heterogeneous Multiscale Method
[2]. In certain cases, the error of such procedures can be quantified in terms of
the microscopic length scale Y. The approach and its theoretical foundation can be
generalized to certain classes of non-periodic problems. However, the separation of
scales, i.e., the separation of the characteristic frequencies of the diffusion coefficient
and macroscopic frequencies of interest, seems to be essential for both theory and
computation.

There is a more recent class of numerical homogenization methods that can deal
with arbitrarily rough diffusion coefficients beyond scale separation [31, 23]. While,
at first glance, these methods seemed to be only vaguely connected to classical ho-
mogenization theory, the recent paper [14] identifies them as a natural generalization
of some new characterization of classical homogenization. Another deep connec-
tion, which was always believed to exist in the community of domain decomposition
methods, is the one between homogenization and domain decomposition. This one
was made precise only recently by Kornhuber and Yserentant [28, 26, 27]. By com-
bining their iterative approach to homogenization and the results of [14], the present
paper illuminates the role of domain decomposition in the theory of homogenization
and provides homogenization limits without any advanced compactness arguments
or two scale limits. In addition, compared with [14], we are able to drop a technical
assumption on some artificial symmetries of the diffusion coefficient with respect to
the periodic cell.

Our new construction of effective coefficients (see Sections 3–4) is not necessarily
any easier than the classical one. For the simple diffusion model problem, this
is merely an instance of mathematical curiosity and we do not mean to rewrite
homogenization theory. However, the connection between homogenization theory
and domain decomposition and, in particular, the method of proof turn out to be very
interesting and, moreover, they unroll their striking potential for problems beyond
scale separation and periodicity. Using this approach, new theoretical results could
be derived and some of them are briefly discussed in Section 5.

2 Model problem and classical homogenization

For the sake of illustration we restrict ourselves to the simplest possible yet repre-
sentative and relevant setting. Let Ω = [0, 1]2 be the unit square and YΩ := [0, Y]2.
Moreover, let �1 ∈ !∞ (Ω;R2×2) be a symmetric, uniformly elliptic, Ω-periodic
(matrix-valued) coefficient and let �Y (G) := �1 ( GY ), G ∈ Ω. The extension to a
cuboidal domain in 3� is straight forward. We denote by + := �1

# (Ω)/R the equiva-
lence class of Ω-periodic functions in �1 (Ω) factorised by constants, and similarly,
by +Y := �1

# (YΩ)/R for their Y-periodic counterparts. The model problem under
consideration then reads: given 5 ∈ !2 (Ω), find a function DY ∈ + such that∫

Ω

�Y (G)∇DY (G) · ∇E(G) dG =
∫
Ω

5 (G)E(G) dG, (1)
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for all E ∈ + . In order to ensure the well-posedness of the problem, we assume that
�Y ∈ MUV , whereMUV is defined as

MUV := {� ∈ !∞ (Ω) | U |b |2 ≤ b · �(G)b ≤ V |b |2 for all b ∈ R2 and a.a. G ∈ Ω}.

The idea behind classical homogenization is to look for a so-called effective
(homogenized) coefficient �0 ∈ MUV so that the solution D0 ∈ + of the problem∫

Ω

�0∇D0 · ∇E dG =
∫
Ω

5 E dG, (2)

for all E ∈ + , represents the limit of the sequence {DY}Y>0 of solutions of the problem
(1). In general, explicit representations of effective coefficients are not known, except
for the simple case of the one-dimensional or (locally) periodic setting. However, the
so-called energy method of Murat and Tartar ([34]) or the two-scale convergence
([3]) provide us with the following form(

�0

)
: 9

=

∫
Ω

(
�1 (G) (4 9 + ∇F 9 (G))

)
·
(
4: + ∇F: (G)

)
dG, (3)

where F 9 are defined as the unique solutions in + of the so-called cell problems∫
Ω

�1 (G)
(∇F 9 (G) − 4 9 ) · ∇E(G) dG = 0,

for all E ∈ + , with the canonical basis (4 9 )29=1 of R
2. The substitution G ↦→ G

Y
yields

0 = Y−2
∫
YΩ

�1

( G
Y

) (
∇ F 9

( G
Y︸︷︷︸

=:@̂ 9 (G)

)
− 4 9

)
· ∇ E

( G
Y

)
︸︷︷︸
=:EY (G)

dG

=

∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇EY (G) dG. (4)

Since all functions EY in +Y can be written as E( G
Y
) for a certain function E ∈ + ,

equation (4) yields that the function @̂ 9 ∈ +Y solves∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇EY (G) dG = 0, (5)

for all EY ∈ +Y . Moreover, @̂ 9 ∈ +Y ⊂ + solves the same problem in the space+ , i.e.,∫
Ω

�Y (G) (∇@̂ 9 (G) − 4 9 ) · ∇E(G) dG = 0,

for all E ∈ + , since the solution of an elliptic model problem with periodic data
(coefficient, source function) is also periodic, with the same period.
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3 Novel characterization of the effective coefficient

In order to define the effective coefficient from the alternative perspective of finite
elements, we first introduce the necessary notation on meshes, spaces, and interpo-
lation operators.

We consider structured triangulations of Ω = [0, 1]2 as depicted in Figure 1,
where the triangles ) form the triangulation T� and the boldface squares & are part
of the square mesh Q� . The theoretical arguments below require the triangulation to
be aligned with the periodicity cells of the coefficient represented by the elements of
Q� . Moreover, T� should not introduce any nodes in the interiors of those cells. We
shall emphasize that the general numerical homogenization method of Section 5 can
deal with fairly general meshes. Denote the set of nodes by NT� = NQ� . Since we
are working with periodic boundary conditions, we will frequently understand Q�
and T� as periodic partitions (or partitions of the torus or partitions of the whole
R2), i.e., we identify opposite faces of the unit square. The parameter � denotes the
length of the quadrilaterals and is supposed to be not smaller than the microscopic
length scale Y of the model problem.

Fig. 1: Admissible triangulations.

Let P1 (T� ) denote the space of globally continuous piecewise affine functions
on Ω with periodic boundary conditions. As in the continuous case with + , we also
factor out the constants here, i.e., in fact we consider (P1 (T� ))/R, but still write
P1 (T� ) for simplicity. Since Y ≤ � is assumed, the finite element method with
the space P1 (T� ) does not yield faithful approximations of the solution DY to (1);
see, e.g., [37, Sec. 1]. We introduce a bounded local linear projection operator �� :
+ → P1 (T� ), which can be seen as a composition �� := �� ◦Π� , where a function
E ∈ + is first approximated on every element ) ∈ T� by its !2-orthogonal projection
Π� onto the space of affine functions. Hence, a possibly globally discontinuous
function Π� E is obtained. In the second step �� , the values at the inner vertices
of the triangulation are averages of the respective contributions from the single
elements, i.e.,
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�� ◦ Π� (E) (I) :=
1

#{) ∈ T� , I ∈ )}
∑
) ∈T�
I∈)

Π� (E) |) (I)

for all vertices I, where the triangulation is understood in a periodic manner, see
[35].

Let , := kern�� be the kernel of the quasi-interpolation operator �� . It can be
seen as the set of rapidly oscillating functions, which cannot be captured by standard
finite elements functions on the (coarse) mesh T� . Motivated by the reformulation
(5) of the cell problems and the interpretation of, as rapidly oscillating functions,
we define now the correctors @∞

&, 9
as the unique solutions in , of the following

variational problems∫
Ω

�Y (G)∇@∞&, 9 (G) · ∇F(G) dG =
∫
&

�Y (G)4 9 · ∇F(G) dG, (6)

for all F ∈ , , and the correctors are defined for every & ∈ Q� , 9 = 1, 2. We define
the following w.r.t. Q� piecewise constant numerical coefficient �∞

�
which will play

the main role in Proposition 1:[
�∞
� |&

]
: 9

=
1
|& |

∫
&

�Y (G)4 9 · 4: dG − 1
|& |

∫
Ω

�Y (G)∇@∞&, 9 (G) · 4: dG, (7)

for all & ∈ Q� , :, 9 = 1, 2.

Proposition 1 In the case that the mesh size � is an integer multiple of Y, the
coefficient �∞

�
coincides with the homogenized coefficient �0 from classical homog-

enization defined in (3).

Proof We will first show that the function @ 9 :=
∑
&∈Q� @

∞
&, 9

coincides with the
corrector @̂ 9 ∈ +Y , the unique solution of the problem (5). The crucial observation
needed for the proof is the fact that the space of Y-periodic functions is contained
in the kernel , of the quasi-interpolation operator �� , in the case of the present
setting with the triangulations T� and Q� . To see this we observe that, for an Y-
periodic function EY ∈ +Y , the values �� (EY) (I) coincide for all I ∈ NT� . That is,
�� (EY) ∈ P1 (T� ) is a global constant. As we factored out the constants, we can take
the zero function as representative, i.e., �� (EY) = 0.

Moreover, summing up the equations (6) over all & ∈ Q� and taking advantage
of the symmetry of �Y , we get that @ 9 :=

∑
&∈Q� @

∞
&, 9

solves∫
Ω

�Y (G)∇@ 9 (G) · ∇F(G) dG =
∫
Ω

�Y (G)4 9 · ∇F(G) dG (8)

=

∫
Ω

�Y (G)∇F(G) · 4 9 dG, (9)

for all F ∈ , , and in particular for all F ∈ +Y . The combination of (5) and (9)
readily yields that @ 9 ≡ @̂ 9 , 9 = 1, 2. Moreover, (9) with F = @∞

&,:
implies
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Ω

�Y (G)∇@∞&,: (G) · ∇4 9 dG =
∫
Ω

�Y (G)∇@ 9 (G) · ∇@∞&,: (G) dG

=

∫
Ω

�Y (G)∇@∞&,: (G) · ∇@ 9 (G) dG

=

∫
&

�Y (G)4: · ∇@ 9 (G) dG.

Hence, in the definition of �∞
�
we can replace the second term, namely(

�∞
� |&

)
: 9

=
1
|& |

∫
&

�Y (G)4 9 · 4: dG − 1
|& |

∫
&

�Y (G)4 9 · ∇@: (G) dG

=
1
|& |

∫
&

�Y (G)4 9 · (4: − ∇@̂: (G)) dG

=

(
�0

)
: 9

,

for 9 , : = 1, 2. �

4 Numerical effective coefficient by domain decomposition

The correctors @∞
&, 9

defined in the previous section require the solution of a global
problem involving the oscillating coefficient �Y . Employing domain decomposition,
we introduce localized variants and then use arguments from the theory of iterative
(domain decomposition) methods as presented in [26, 28] to show that the error
decays exponentially in the number of iterations. With the localized correctors, we
then introduce an effective localized coefficient �ℓ

�
which is piecewise constant on

Q� .
Let l8 be the union of all squares& ∈ Q� having the vertex I8 as a corner and let

,8 = {E − �� E | E ∈ �1
0 (l8)}.

We emphasize that l8 is understood as a subset of R2, i.e., it is continued over the
periodic boundary. The functions in,8 vanish outside a small neighbourhood of the
vertex I8 . The,8 are closed subspaces of the kernel, of �� , see [26]. Let %8 be the
0Y-orthogonal projection from + to,8 , defined via the equation

0Y (%8E, F8) = 0Y (E, F8), ∀F8 ∈ ,8 .

Introducing the with respect to the bilinear form 0Y (·, ·) symmetric operator

% = %1 + %2 + · · · + %=,

the following properties are proved in [26]:
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Lemma 1 There are constants  1 and  2, independent of � and Y, such that

 −1
1 0Y (E, E) ≤ 0Y (%E, E) ≤  20Y (E, E)

for all E ∈ + . Moreover, for an appropriate scaling factor o only depending on  1
and  2, there exists a positive constant W < 1 such that

‖ id−o%‖L(+ ,+ ) ≤ W. (10)

Starting from @0
&, 9

= 0, 9 = 1, 2, the localized correctors @ℓ
&, 9

are defined for all
& ∈ Q� via

@ℓ+1&, 9 = @
ℓ
&, 9 + o%(G 9 1& −@ℓ&, 9 ), 9 = 1, 2, (11)

where 1& denotes the characteristic function of& and G 9 denotes the 9-th component
of the (vector-valued) function G ↦→ G. The scaling factor o is chosen as discussed
in Lemma 1. The correction %(G 9 1& −@ℓ&, 9 ) is the sum of its components �ℓ

8
=

%8 (G 9 1& −@ℓ&, 9 ) in the subspaces,8 of, , where the �ℓ
8
solve the local equations

0Y (�ℓ8 , F8) = 0Y (G 9 1&, F8) − 0Y (@ℓ&, 9 , F8), ∀F8 ∈ ,8 . (12)

The sloppy notation using 1& as argument in 0Y is to denote that the integration
is over the element & only, i.e., 0Y (G 9 1&, F8) =

∫
&
�Y4 9 · ∇F8 3G. Since the local

projections %8 only slightly increase the support of a function, we deduce inductively
that the support of @ℓ

&, 9
is contained in an ℓ�-neighbourhood of &. In particular, in

each step of (11) only a few local problems of type (12) have to be solved.
We now replace @∞

&, 9
by its localized variant @ℓ

&, 9
in the definition of the numerical

effective coefficient. This procedure is justified by an exponential error estimate in
Proposition 2. We define the piecewise constant (on the mesh Q� ) (localized)
effective matrix �ℓ

�
via(

�ℓ� |&
)
: 9
=

1
|& |

∫
&

�Y (G)4 9 · 4: 3G − 1
|& |

∫
Ω

�Y∇@ℓ&, 9 (G) · 4: 3G. (13)

Since the numerical effective coefficient (7) is the “true” one in the sense that
�∞
�
= �0, we simply need to estimate the error of the iterative approximation.

Proposition 2 Let H be an integer multiple of Y and let the localization parameter ℓ
be chosen of order ℓ ≈ | log� |. Then,

‖�∞� − �ℓ� ‖!∞ (Ω) . �. (14)

Proof We first estimate the error between the correctors @∞
&, 9

and @ℓ
&, 9

. Using
the definition of @∞

&, 9
in (6), we deduce that %(G 9 1&) = %(@∞&, 9 ). Hence, we can

characterize the error between the correctors @∞
&, 9

and their localized approximations
@ℓ
&, 9

via
@∞&, 9 − @ℓ&, 9 = (id−o%)ℓ@∞&, 9 .
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Using (10), this yields the exponential convergence of @ℓ
&, 9

towards @∞
&, 9

, i.e.,

‖∇(@∞&, 9 − @ℓ&, 9 )‖ . Wℓ ‖∇@∞&, 9 ‖ . Wℓ |& |1/2. (15)

By the definitions of �∞
�
in (7) and �ℓ

�
in (13), we obtain���(�∞� |&) 9: − (�ℓ� |&) 9: ��� = |& |−1

�����∫Ω �Y∇(@ℓ&, 9 − @∞&, 9 ) · 4: 3G
�����

. |& |−1‖4: ‖!2 (Ω) ‖∇(@ℓ&, 9 − @∞&, 9 )‖!2 (Ω) .

Estimate (15) and the choice ℓ ≈ | log� | readily imply the assertion. �

The same estimate was previously derived in [14] with a slightly different local-
ization strategy and with more restrictive conditions on the triangulation. There, the
homogenization error in the !2-norm is quantified as follows. Let Ω be convex. Let
DY ∈ + solve (1) and let D0 ∈ + be the solution to (2). For sufficiently small Y, it
holds that

‖DY − D0‖!2 (Ω) . Y | log Y |2‖ 5 ‖!2 (Ω) .

This estimate recovers the classical result that DY → D0 strongly in !2 and further-
more states that the convergence is almost linear for right-hand sides 5 ∈ !2 (Ω). We
shall emphasize that the proofs of [14] are solely based on standard techniques of
finite elements. The authors believe that such a result is also possible in the slightly
more general setup of this paper. However, it seems that there is no simple argument
but the generalization requires to revise the analysis of [14] step by step which is far
beyond the scope of this paper.

5 Beyond periodicity and scale separation

The numerical approach presented in Section 4 does not essentially rely on the
assumption of periodicity or separation of scales (between the length scales of
the computational domain and the material structures). Of course, in such general
situations, one cannot identify a constant effective coefficient. Instead the goal is
to faithfully approximate the analytical solution by a (generalized) finite element
method based on a (coarse) mesh, which does not need to resolve the fine material
structures and thereby is computationally efficient.

For this generalization, note that the definition (11) can be formulated verbatim
for any boundary value problem involving a potentially rough, but not necessarily
periodic diffusion tensor � ∈ !∞ (Ω). Moreover, the choice of the function G 9 1& in
the definition of @ℓ

&, 9
can be generalized to any function E ∈ + in the following way.

Define the operator �ℓ
)

: + → , inductively via �0
)
= 0 and

�ℓ+1) = �ℓ) + o%(id |) − �ℓ) )
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for all ) ∈ T� , see [26]. Instead of modifying the diffusion tensor as in the pre-
vious sections, we then modify the basis functions and define a generalized fi-
nite element method using the test and ansatz spaces +ℓ

�
:= (id+�ℓ)P1 (T� ) with

�ℓ :=
∑
) ∈T� �

ℓ
)
. This method is known as the Localized Orthogonal Decomposi-

tion (LOD) [23, 31, 19, 37] and originally arose from the concept of the Variational
MultiscaleMethod [24, 25]. Note that mostly a slightly different definition of the cor-
rectors�ℓ

)
based on patches of diameter ℓ� around the element) is used. The present

approach via domain decomposition and iterative solvers was developed recently in
[28, 26]. It has been shown in [31, 19] for instance, that the method approximates the
analytical solution with an energy error of the order � even in the pre-asymptotic
regime if the localization parameter ℓ is chosen of the order ℓ ≈ | log� | as in
Proposition 2. Hence, the Localized Orthogonal Decomposition can efficiently treat
general multiscale problems. Besides the abovementionedGalerkin-type ansatz with
modified ansatz and test functions, Petrov-Galerkin formulations of the method [9]
may have computational advantages [10] and even meshless methods are possible
[21].

The Localized Orthogonal Decomposition is not restricted to elliptic diffusion
problems and has underlined its potential in various applications and with respect to
different (computational) challenges. Starting from the already mentioned applica-
tion in the geosciences, we underline that the material coefficients are often charac-
terized not only by rapid oscillations but also by a high contrast, i.e., the ratio V/U is
large. Many error estimates, also for the standard LOD, are contrast-dependent, but
a careful choice of the interpolation operator, see [17, 40], can overcome this effect.
Apart from simple diffusion problems, porous media [7], elasticity problems [22]
or coupling of those such as in poroelasticity [4] play important roles in these (and
many other) applications. For instance in elasticity theory, not only heterogeneous
materials are treated, but also the effect of locking can be reduced by the multiscale
method in [22].

Another important area of research are acoustic and electromagnetic wave propa-
gation problems, where the considered prototypical equations are the Helmholtz and
Maxwell’s equations. It is well known that standard finite element discretizations
of the (indefinite) Helmholtz equation are only well-posed and converging under a
rather restrictive resolution condition between the mesh size and the wavenumber.
In a series of paper [6, 13, 38], it was analysed that the LOD can relax this resolution
condition if the localization parameter grows logarithmically with the wavenumber.
For large wavenumbers, this is a great computational gain in comparison to stan-
dard numerical methods that even allows the simulation of physical phenomena in
high contrast regimes [41]. Maxwell’s equations, studied in [12, 42], on the other
hand, pose a challenge as the involved curl-operator has a large kernel. Moreover,
the natural finite element space are Nédélec’s edge elements, for which stable in-
terpolation operators are much less developed than for Lagrange finite elements.
In the context of problems not based on standard Lagrange spaces, we also men-
tion the mixed problem utilizing Raviart-Thomas spaces in [16]. Considering wave
problems, the time-dependent wave equation with different time discretizations was
studied in [1, 30]. Concerning time-dependency, an important question for the LOD
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construction is how to deal with time-dependent diffusion tensors. [18] presents an a
posteriori error estimator in order to adaptively decidewhich correction to recompute
in the next time step.

Apart from the treatment of multiscale coefficients in a variety of partial differen-
tial equations, the methodology can also be seen as a stabilization scheme similar as
its origin the variational multiscale methods. This has been exploited to deal with the
pollution effect in Helmholtz problems mentioned above, for convection dominated
diffusion problems [29] and, more importantly, to bypass CFL conditions in the
context of explicit wave propagation on adaptive meshes [39].

Further unexpected applications are linear and nonlinear eigenvalue problems
[32, 33], in particular the quantum-physical simulation based on the Gross-Pitaevskii
equation. While the LOD can be employed to speed-up ground state computations
for rather rough potentials [20], the underlying technique of localization by domain
decomposition turned out to be of great value to provide (analytical) insight into the
phenomenon of Anderson localization in this context. The recent paper [5] predicts
and quantifies the emergence of localized eigenstates and might inspire progress
regarding the understanding of localization effects which are observed for many
other problems as well.

The present contribution aimed at unifying the view of the LOD and classical ho-
mogenization and domain decomposition. As already mentioned, close connections
exist with [14] and its extension to stochastic homogenization [15]. Further appli-
cations involve a multilevel generalization of LOD named gamblets [36] (due to
a possible game-theoretic interpretation). This multilevel variant allows surprising
results such as a sparse representation of the expected solution operator for ran-
dom elliptic boundary value problems [11] which may inspire new computational
strategies for uncertainty quantification in the future.
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Robust Model Reduction Discretizations
Based on Adaptive BDDC Techniques

Alexandre Madureira and Marcus Sarkis

1 Introduction

Consider the problem of finding the weak solution D : Ω→ R of

− divA∇D = 5 in Ω,
D = 0 on mΩ.

(1)

Here Ω ⊂ R2 is an open bounded domain with polygonal boundary mΩ, the sym-
metric tensor A ∈ [!∞ (Ω)]2×2

sym is uniformly positive definite and bounded.
For almost all x ∈ Ω let the positive constants 21 and 22 be such that

21 |v |2 ≤ 0min (x) |v |2 ≤ A(x) v·v ≤ 0max (x) |v |2 ≤ 22 |v |2 for all v ∈ R2, a.e. x ∈ Ω.

The associated variational formulation is given by: Find D ∈ �1
0 (Ω) such that

0(D, E) :=
∫
Ω

A∇D · ∇E 3x =
∫
Ω

5 E 3x =: ( 5 , E) ∀E ∈ �1
0 (Ω).

Recently, methods that do not rely on the regularity of the solution were intro-
duced: generalized finite element methods [1], the rough polyharmonic splines [22],
the variational multiscale method (VMS) [13], and the Localized Orthogonal De-
composition (LOD) [16, 10]. These methods are based on splitting approximation
spaces into fine andmultiscale subspaces, and the numerical solution of (1) is sought
in the latter. We note that these works were designed for the low-contrast case, that
is, 22/21 not large. We note that for a class of coefficients A, that is, when local
Poincaré inequality constants are not large, the LOD methodology works [24].
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On the other side, there exist several domain decomposition solvers which are
optimal with respect to mesh and contrast. All of them are based on extracting coarse
basis functions from local generalized eigenvalue problems. For non-overlapping
domain decomposition based on the technique named adaptive choice of primal
constraints was introduced in [19], revisited in [23, 15]; see also [6, 21] and
references therein. We note that earlier ideas were also introduced in [3]. This
robustness also was developed for overlapping domain decomposition methods and
we refer the earlier works in [7, 20].

In this paper we consider Approximate Component Mode Synthesis–ACMSmeth-
ods [5, 4, 2, 9, 12, 11, 14]; these methods require extra solution regularity and do not
work for high contrast. The goal here is to develop a discretization that has optimal
energy a priori error approximation, assuming no regularity on the solution and on
A. To do that we combine adaptive BDDC and LOD techniques; see also [17] for a
similar combination however for mixed finite element discretizations.

The remainder of the this paper is organized as follows. Section 2 describes the
substructuring decomposition into interior and interface unknowns and in Section 3
we present the goal of the paper. In Section 4 the model reduction method via
adaptive BDDC is proposed and the results are discussed. In Section 5 we consider
how to deal with elementwise problems. In Section 6 numerical results are presented.

2 Discrete Substructuring Formulation

We start by defining a partition of Ω by a triangular finite element regular mesh T�
with elements of characteristic length � > 0. Let mTℎ be the mesh skeleton, and
N� the set of nodes on mTℎ\mΩ. Consider Tℎ , a refinement of T� , in the sense that
every (coarse) edge of the elements in T� can be written as a union of edges of Tℎ .
We assume that ℎ < �. Let Nℎ be the set of nodes of Tℎ on the skeleton mTℎ\mΩ;
thus all nodes in Nℎ belong to edges of elements in T� .

For E ∈ �1 (Ω) let

|E |2
� 1
A (Ω)

= ‖A1/2
∇E‖2

!2 (Ω) , |E |2
� 1
A (T)

=
∑
g∈T
‖A1/2

∇E‖2
!2 (g) ,

where T ⊂ T� denotes a given set of elements. Let +ℎ ⊂ �1
0 (Ω) be the space of

continuous piecewise linear functions related to Tℎ . Let Dℎ ∈ +ℎ such that

0(Dℎ , Eℎ) = ( 5 , Eℎ) for all Eℎ ∈ +ℎ .

We assume that Dℎ approximates D well, but we remark that Dℎ is never computed;
the goal here is to develop numerical schemes which yield good approximations for
Dℎ , therefore, the schemes proposed can be viewed as a model reduction method.

We can decompose Dℎ = DBℎ ⊕ DHℎ in its bubble (belonging to +B
ℎ
) and 0-discrete

harmonic components (belonging to +H
ℎ
), respectively, where
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+Bℎ = {Eℎ ∈ +ℎ : Eℎ = 0 on mg, g ∈ T� },
+Hℎ = {DHℎ ∈ +ℎ : 0(DHℎ , EBℎ ) = 0 for all EBℎ ∈ +Bℎ },

i.e., +H
ℎ
= (+B

ℎ
)⊥0 . It follows immediately from the definitions that

0(DHℎ , EHℎ ) = ( 5 , EHℎ ) for all EHℎ ∈ +Hℎ , 0(DBℎ , EBℎ ) = ( 5 , EBℎ ) for all EBℎ ∈ +Bℎ .

Although the problem related to DB
ℎ
is global, it can be decomposed in local uncoupled

problems, as discussed in Section 5.
Note that any function in +H

ℎ
is uniquely determined by its trace on the boundary

of elements in T� . Let us define

Λℎ = {Eℎ |mTℎ : Eℎ ∈ +Hℎ } ⊂ �1/2 (mTℎ),

and ) : Λℎ → +H
ℎ
be the local discrete-harmonic extension operator given by

()`ℎ) |mTℎ = `ℎ , and 0()`ℎ , EBℎ ) = 0 for all EBℎ ∈ +Bℎ .

For g ∈ T� , let Λgℎ = Λℎ |mg , that is, the restriction of functions on Λℎ to mg. Define
the bilinear forms B : Λℎ × Λℎ → R and Bg : Λg

ℎ
× Λg

ℎ
→ R such that, for `ℎ ,

aℎ ∈ Λℎ ,

B(`ℎ , aℎ) =
∑
g∈T�

Bg (`gℎ , agℎ ) where Bg (`gℎ , agℎ ) =
∫
g

A∇) g`gℎ · ∇) gagℎ 3x

where ) g is the restriction of ) to g. Let _ℎ = Dℎ |mTℎ . Then DHℎ = )_ℎ and

B(_ℎ , `ℎ) = ( 5 , ) `ℎ) for all `ℎ ∈ Λℎ . (2)

3 Main Goal of the Paper

Let us introduce d ∈ !∞ (Ω) such that d(x) ∈ [dmin, dmax] almost everywhere for
some positive constants dmin and dmax, and define 6 = 5 /d and the spaces for 6 or
5 such that

‖6‖!2
d (Ω) = ‖d1/26‖!2 (Ω) = ‖ 5 ‖!2

1/d (Ω) < ∞
The main goal of this paper is the following: Given a threshold X, construct a lower-
dimensional subspace Λ<B

ℎ
⊂ Λℎ , such that for any 6 ∈ !2

d (Ω) (or equivalently
5 ∈ !2

1/d (Ω)) the multiscale solution _<B
ℎ
(6) ∈ Λ<B

ℎ
of

B(_<Bℎ , `<Bℎ ) = (d6, )`<Bℎ ) for all `<Bℎ ∈ Λ<Bℎ
satisfies
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|DHℎ − )_<Bℎ |2� 1
A (Ω)

= B(_ℎ − _<Bℎ , _ℎ − _<Bℎ ) ≤ �X2‖6‖2
!d (Ω) . (3)

where the constant � does not depend on 6, A or d.
The reason for introducing the weight function d is to normalize the equation

(1). For example, assume that A(x) = 10−6. Then the solution of (1) satisfies
−ΔD = 5 /10−6. This means that if we want to obtain an approximation like (3) with
d = 1 and with � independently of A, it would require a large space Λ<B

ℎ
, maybe

as large as the fine space Λℎ . So, it is natural for this case to choose d = 10−6. And
vice-versa, ifA(x) = 106, an estimate like (3) with d = 1 would be too easy, it would
not give a good relative energy approximation. We think that a judicious choice is
d(x) = 0min (x) since the approximation also will capture the anisotropy of A(x).
Another reason is that similarly as discussed in [8], the dimension of the space Λ<B

ℎ

is related to the number of highly conductive fingerings crossing the edges of the
coarse triangulation T� .

4 Model Reduction via BDDC

We now propose a scheme to approximate _ℎ in (2) based on LOD and BDDC
techniques. Decompose Λ = Λ0 ⊕ Λ̃ℎ by

Λ̃ℎ = {_ ∈ Λℎ : _(x8) = 0 for all x8 ∈ N� },
Λ0 = {_ ∈ Λℎ : _(x8) = 0 for all x8 ∈ Nℎ\N� }.

Let 4 be an edge of mT� \mΩ shared by the elements g and g′ of T� , and denote
Λ̃4
ℎ
= Λ̃ℎ |4, that is, the restriction of functions on Λ̃ℎ to 4. Note that a function˜̀4

ℎ
∈ Λ̃4

ℎ
vanishes at the end-points of 4; it is thus possible to extend continuously

by zero to either mg or mg′. Let us denote this extension by ')4,g : Λ̃4
ℎ
→ Λg

ℎ
.

Let us define (g44 : Λ̃4
ℎ
→ (Λ̃4

ℎ
) ′, where (Λ̃4

ℎ
) ′ is the dual space of Λ̃4

ℎ
, by

(˜̀4ℎ , (g44 ã4ℎ)4 = (')4,g ˜̀4ℎ , (g')4,g ã4ℎ)mg for all ˜̀4ℎ , ã4ℎ ∈ Λ̃4ℎ ,
where (·, ·)4 is the !2 (4) inner product and

(`gℎ , (gagℎ )mg =
∫
g

A∇) g`gℎ · ∇) gagℎ 3x for all `gℎ , a
g
ℎ ∈ Λgℎ .

In a similar fashion, define (g424, (
g
442 and (

g
4242 , related to the degrees of freedom

on 42 = mg\4. We remind that 4 is an open edge, not containing its endpoints.
Let us introduce " g

44 by

( ˜̀4ℎ , "
g
44 ã

4
ℎ)4 =

∫
g

d () g')4,g ˜̀4ℎ) () g')4,g ã4ℎ) 3x
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and define (̂g44 = X−2 " g
44 + (g44, where X is the target precision of the method, that

can be set by the user.
Define also

(̃g44 = (
g
44 − (g442 ((g4242 )−1(g424,

and it is easy to show that

(ã4ℎ , (̃g44 ã4ℎ) ≤ (aℎ , (gaℎ) for all aℎ ∈ Λgℎ so that '4,gaℎ = ã4ℎ , (4)

where the restriction operator '4,g : Λℎ → Λ̃4
ℎ
is so that '4,gaℎ (x8) = ã4ℎ (x8) for

all nodes x8 ∈ N4 := (Nℎ\N� ) ∩ 4.
In what follows, to take into account high contrast coefficients, we consider the

following generalized eigenvalue problem: Find eigenpairs (U4
8
, ˜̀4
ℎ,8
) ∈ (R, Λ̃4

ℎ
),

where U41 ≥ U42 ≥ U43 ≥ · · · ≥ U4N4 > 1, such that if the edge 4 of mT� \mΩ is shared
by elements g and g′ of T� , we solve

((̂g44 + (̂g
′
44) ˜̀4ℎ,8 = U

4
8 ((̃g44 + (̃g

′
44) ˜̀4ℎ,8 . (5)

The eigenfunctions ˜̀4
ℎ,8

are chosen to be orthonormal with respect to the norm
(·, ((̂g44 + (̂g

′
44)·)4.

Now we decompose Λ̃4
ℎ

:= Λ̃4,4
ℎ
⊕ Λ̃4,Π

ℎ
where for a given Ustab > 1,

Λ̃
4,4
ℎ

:= span{ ˜̀4ℎ,8 : U48 < Ustab}, Λ̃
4,Π

ℎ
:= span{ ˜̀4ℎ,8 : U48 ≥ Ustab}.

The value of Ustab is tuned with A(x) = d(x) = 1 so that the dimension of Λ̃4,Π
ℎ

is small. Hence, for general A(x) and d(x), the space Λ̃4,Π
ℎ

will consist mostly of
eigenvectors associated to the heterogeneities of A(x) with respect to d(x).

For adaptive BDDC preconditioners, in general the generalized eigenvalue prob-
lem is defined by

((g44 + (g
′
44) ˜̀4ℎ,8 = U

4
8 ((̃g44 + (̃g

′
44) ˜̀4ℎ,8 (6)

We note that this generalized eigenvalue problem would be enough for establishing
exponential decay for the multiscale basis functions. In (5), the term X−2" g

44 was
added to (g44. This is needed when dealing with approximation results such as
Theorem 4 since in the proof it is required that ‖E‖!2

d (Ω) ≤ X |E |� 1
A (Ω) for E ∈ )Λ̃

4
ℎ

defined below.
To define our ACMS–NLSD (Approximate Component Mode Synthesis Non-

Localized Spectral Decomposition ) method for high-contrast coefficients, let

Λ̃Πℎ = { ˜̀ℎ ∈ Λ̃ℎ : ˜̀ℎ |4 ∈ Λ̃4,Πℎ for all 4 ∈ mT� },
Λ̃4ℎ = { ˜̀ℎ ∈ Λ̃ℎ : ˜̀ℎ |4 ∈ Λ̃4,4ℎ for all 4 ∈ mT� }.

Note that Λℎ = ΛΠℎ ⊕ Λ̃4ℎ , where

ΛΠℎ = Λ
0
ℎ ⊕ Λ̃Πℎ
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and Λ0
ℎ
is the set of functions on Λℎ which vanish on all nodes of Nℎ\N� . Denote

(aℎ , (`ℎ)mTℎ =
∑
g∈T�
(agℎ , (g`gℎ)mg .

We now introduce the ACMS–NLSD multiscale functions. For g ∈ T� , consider
the operator %g,4 : Λℎ → Λ̃4

ℎ
as follows: Given `ℎ ∈ Λℎ , find %g,4`ℎ ∈ Λ̃4ℎ solving

(ã4ℎ , (%g,4`ℎ)mTℎ = (ã4ℎ , (g`ℎ)mg for all ã4ℎ ∈ Λ̃4ℎ (7)

and define %4 : Λℎ → Λ̃4
ℎ
given by %4 =

∑
g∈T� %

g,4. It is easy to see that %4 is
an orthogonal projection on Λ̃4

ℎ
with respect to (.

ConsiderΛms
ℎ
= (�−%4)ΛΠ

ℎ
. We note that (�−%4)ΛΠ

ℎ
≠ ΛΠ

ℎ
sinceΛΠ

ℎ
and Λ̃4

ℎ
are

not orthogonal with respect to (. What we have is that Λ̃4,4
ℎ

and Λ̃4,Π
ℎ

are orthogonal
with respect to (̃g44 + (̃g

′
44. If `Πℎ ∈ ΛΠℎ is a local function, (� − %4)`Π

ℎ
will not be

necessarily local. However, we can show its exponential decay.
The ACMS–NLSD method is defined by: Find _ms

ℎ
∈ Λms

ℎ
such that

(ams
ℎ , (_

ms
ℎ )mTℎ = (d6, )ams

ℎ ) for all ams
ℎ ∈ Λms

ℎ . (8)

Note that

(ams
ℎ , (_

ms
ℎ )mTℎ =

∫
Ω

A∇)ams
ℎ · ∇)_ms

ℎ 3x =

∫
Ω

d6)ams
ℎ 3x.

Remark 1 In [12, 11], different but still local eigenvalue problems are introduced,
aiming to build approximation spaces. Their analysis however requires extra regu-
larity of the coefficients, and the error estimate is not robust with respect to contrast.

Below we present several results where proofs will be published in [18].
Using local arguments, the next lemma states that a weighted Poincaré inequality

can be obtained on the space Λ̃4
ℎ
.

Lemma [18] Let ˜̀4
ℎ
∈ Λ̃4

ℎ
. Then

‖) ˜̀4ℎ ‖!2
d (Ω) ≤ (!2Ustab)1/2X |) ˜̀4ℎ |� 1

A (Ω) , (9)

where ! is the maximum number of edges that an element of T� can have. �

The next lemma states that the energy stability of the interpolation onto the primal
space ΛΠ.

Lemma [18] Let `ℎ ∈ Λℎ and let `ℎ = `Πℎ + ˜̀4
ℎ
. Then

|)`Πℎ |� 1
A (Ω) ≤ (2 + 2!2Ustab)1/2 |)`ℎ |� 1

A (Ω) .

The next lemma follows directly from the definition of the generalized eigenvalue
problem and properties of Λ̃4,4

ℎ
and (4).
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Lemma [18] Let 4 be a common edge of g, g′ ∈ T� , and ˜̀4
ℎ
∈ Λ̃4

ℎ
. Then, defining˜̀4,4

ℎ
= ˜̀4

ℎ
|4 and ˜̀g,4

ℎ
= ˜̀4

ℎ
|mg it follows that

|) g')4,g ˜̀4,4ℎ |2� 1
A (g)
+ |) g')4,g′ ˜̀4,4ℎ |2� 1

A (g′)
≤ Ustab

( |) g ˜̀g,4
ℎ
|2
� 1
A (g)
+ |) g ˜̀g′,4

ℎ
|2
� 1
A (g′)

)
Our main theorem follows.

Theorem [18] Let _ℎ = Dℎ |mTℎ , and _<Bℎ solution of (8). Then _ℎ − _<Bℎ ∈ Λ̃4ℎ and

|DHℎ − )_<Bℎ |2� 1
A (Ω)

≤ !2UstabX
2‖6‖2

!2
d (Ω) .

4.1 Decaying for the High-Contrast Case

In the next two lemmas, we show first that we can control the energy on the exterior
region outside the patch of j-neighbor elements T9+1 (g) by the energy on the strip
T9+2 (g)\T9 (g). Next, we state the exponential decay of %g,4aℎ .

Lemma [18] Let `ℎ ∈ Λℎ and let q̃4
ℎ
= %g,4`ℎ for some fixed element g ∈ T� .

Then, for any integer 9 ≥ 1,

|)q̃4ℎ |2� 1
A (T� \T9+1 (g))

≤ !2Ustab |)q̃4ℎ |2� 1
A (T9+2 (g)\T9 (g))

.

The next lemma states the exponential decay of %g,4aℎ .

Corollary [18] Assume that g ∈ T� and aℎ ∈ Λℎ and let q̃4
ℎ
= %g,4aℎ ∈ Λ̃4ℎ . For

any integer 9 ≥ 1,

|)q̃4ℎ |2� 1
A (T� \T9+1 (g))

≤ 4−
[ ( 9+1)/2]

1+!2Ustab |)q̃4ℎ |2� 1
A (T� )

.

where [B] is the integer part of B. �

Inspired by the exponential decay stated in Corollary 6, we define the operator %4, 9
as follows. First, for a fixed g ∈ T� , let

Λ̃
4,g, 9
ℎ

= {˜̀ℎ ∈ Λ̃4ℎ : ) ˜̀ℎ = 0 on T� \T9 (g)},

i.e., the support of Λ̃4,g, 9
ℎ

is just a patch of size 9 elements around the element g.
For `ℎ ∈ Λℎ , define %4,g, 9`ℎ ∈ Λ̃g, 9ℎ such that

B(%4,g, 9`ℎ , ˜̀ℎ) = Bg (`ℎ , ˜̀ℎ) for all ˜̀ℎ ∈ Λ̃4,g, 9ℎ
,

and let
%4, 9`ℎ =

∑
g∈T�

%4,g, 9`ℎ . (10)
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Finally, define the approximation _Π, 9
�
∈ ΛΠ

�
such that

B
((� − %4, 9 )_Π, 9

�
, (� − %4, 9 )`Π�

)
= (d6, ) (� − %4, 9 )`Π� ) for all `Π� ∈ ΛΠ� , (11)

and then let _<B, 9
ℎ

= (� − %4, 9 )_Π, 9
�

. We name as ACMS–LSD (Approximate Com-
ponent Mode Synthesis Localized Spectral Decomposition) method.

We now state the approximation error of the method, starting by a technical result
essential to obtain the final estimate.

Lemma [18] Consider aℎ ∈ Λℎ and the operators %4 defined by (7) and %4, 9
by (10) for 9 > 1. Then

|) (%4 − %4, 9 )aℎ |2� 1
A (T� )

≤ (2W 9)2 (!2Ustab)24
− [ ( 9−1)/2]

1+!2Ustab |)aℎ |2� 1
A (T� )

,

where 2W is a constant depending only on the shape of T� such that∑
g∈T�

|E |2
� 1 (T9 (g)) ≤ (2W 9)

2 |E |2
� 1 (T� ) ∀E ∈ �

1 (T� ). (12)

Theorem [18] Define DH
ℎ
by (2) and let _<B, 9

ℎ
= (� − %4, 9 )_Π, 9

�
, where _Π, 9

�
is as

in (11). Then

|DHℎ −)_<B, 9 |� 1
A (T� ) ≤ X! (2Ustab)1/2‖6‖!2

d (Ω) + 2W 9 !2Ustab4
− [ ( 9−1)/2]

2(1+!2Ustab ) |DHℎ |� 1
A (T� ) .

5 Spectral Multiscale Problems inside Substructures

To approximate DB
ℎ
on an element g ∈ T� , we introduce a multiscale method by

first building the approximation space +B,ms (g) := Span{kg
ℎ,1, k

g
ℎ,2, · · · , kgℎ,#g }

generated by the following generalized eigenvalue problem: Find the eigenpairs
(Ug
8
, kg
ℎ,8
) ∈ (R, +B

ℎ
(g)) such that

0g (Eℎ , kgℎ,8) = Ug8 (dEℎ , kgℎ,8) for all Eℎ ∈ +Bℎ (g)

where

0g (Eℎ , kgℎ,8) =
∫
g

A∇Eℎ · ∇kgℎ,8 3x and (dEℎ , kgℎ,8)g =
∫
g

dEℎk
g
ℎ,8 3x,

and 0 < Ug1 ≤ Ug2 ≤ · · · ≤ Ug#g < 1/X2 and Ug
#g+1 ≥ 1/X2. The local multiscale

problem is defined by: Find DB,ms
ℎ
∈ +B,ms

ℎ
such that

0(DB,ms
ℎ

, Eℎ) = (d6, Eℎ) for all Eℎ ∈ +B,ms
ℎ

.



Robust Model Reduction Discretizations Based on Adaptive BDDC Techniques 49

We obtain

|DBℎ − DB,ms
ℎ
|2
� 1
A (Ω)

= (d6, DBℎ − DB,ms
ℎ
) ≤ X |DBℎ − DB,ms

ℎ
|� 1
A (Ω) ‖6‖!2

d (Ω) ,

and therefore,
|DBℎ − DB,ms |� 1

A (Ω) ≤ X‖6‖!2
d (Ω) .

6 Numerical Experiments

Let Ω = (0, 1) × (0, 1). We consider a Cartesian coarse mesh made of 2" × 2"
squares subdomains. We next subdivide each square subdomain into 2#−" × 2#−"
equal fine squares and then subdivide further into two 45-45-90 triangular elements.
Denote � = 2−" and ℎ = 2−# as the sizes of the subdomains and the fine elements,
respectively.

The first numerical test is to examine the exponential decay of the multiscale basis
functions.We assume thatA(x) is scalar and d(x) = A(x). The distribution of d(x)
is shown in the left Figure 1. The coefficient d = 100 inside the H-shape region and
d = 1 outside.We assume that # = 6 and" = 3, that is, 8×8 subdomain distribution
and 8 × 8 local mesh inside each subdomain. This distribution of the coefficients
A(x) and subdomains has the property that A(x) = 100 at the subdomain corner
node at x = (1/2, 1/2) and A = 1 at the remaining subdomains corners nodes.
Figure 1 on the right shows the decay of the multiscale basis function associated
to the coarse node x = (1/2, 1/2) when ΛΠ

ℎ
= Λ0

ℎ
(equivalently Λ̃4

ℎ
= Λ̃ℎ), that

is, with UBC01 = ∞ (without edges eigenfunctions). We can see that this multiscale
basis function does not decay exponentially away from x = (1/2, 1/2). The white
holes you see in the picture occurs because the value of the function is closed to
zero. The reason for the non-decay is because this basis function wants to have small
energy, that is, this basis function wants to have value near one on the H-shape region
since A is large there. We now consider the adaptive case with UBC01 = 1.5. On the
left and right of Figure 2 we show the exponential decay (in the log-normal scale)
when X = ∞ and X = �, respectively. As expected from the theory, the eigenvalue
problem (6) is enough to obtain the exponential decay, however, it is not enough for
approximation.

In the second numerical test we keep the same distribution of coefficients in
Figure 1 again choose # = 6 and " = 3. To make the problem a little more
complicated, we multiply A and d in each element by independently uniformly
random distributions between zero and one. Similarly, we let 5 to be constant in each
element given by another independently uniformly random distributions between
zero and one. In Table 1 we show the energy errors for different values of X. We also
include the total number of edges functions required by the ACMS–NLSD method
(without localization) for a X tolerance. We take UBC01 = 1.5. Just as a reference,
there are 112 interior subdomain edges; see that we can obtain a 0.22% relative
energy error using an average of one eigenvector per subdomain edge.
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Fig. 1: On left, the distribution of the coefficient for a 8 × 8 subdomain decomposition. On the
right, the plot of a multiscale basis functions without adaptivity. Note that there is no exponential
decay whatsoever.

Fig. 2: Log-normal plot showing the decay of a multiscale basis functions with adaptivity, for
X = ∞ (left figure) and X = � (right figure)

X |D − D<B |� 1
0

|D−D<B |
�1
0

|D |
�1
0

|D−D<B |
�1
0

‖ 5 ‖
!2
d

Neigs

1/8 0.0095 0.0083 0.0079 78
1/16 0.0064 0.0056 0.0053 92
1/32 0.0025 0.0022 0.0021 112
1/64 0.0014 0.0012 0.0011 226

Table 1: The energy errors for different target accuracies X. The last column shows Neigs (the total
number of multiscale edges functions).

The last numerical test we investigate the dependence of the energy error |D −
D<B, 9 |� 1

0
with respect to the localization 9 , that is, the ACMS–LSD method with

localization 9 . We can see in Table 2 that the localization works really well.
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X\ 9 -1 0 1 2
1/8 0.43870 0.0095 0.0095 0.0095
1/16 0.0977 0.0064 0.0064 0.0064
1/32 0.1702 0.0025 0.0025 0.0025
1/64 0.0795 0.0014 0.0014 0.0014

Table 2: The energy errors for different target accuracies X and localization 9.
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Analysis of Double Sweep Optimized Schwarz
Methods: the Positive Definite Case

Martin J. Gander and Hui Zhang

1 Introduction

Over the last decade, substantial research efforts have gone into developing precon-
ditioners for time harmonic wave propagation problems, like the Helmholtz and the
time harmonic Maxwell’s equations. Such equations are much harder to solve than
diffusive problems like Laplace’s equation, because of two main reasons: first, the
pollution effect [1] requires much finer meshes than would be necessary just to re-
solve the signal computed, and second, classical iterative methods all exhibit severe
convergence problems when trying to solve the very large discrete linear systems
obtained [9]. These research efforts have led to innovative new preconditioners, like
optimized Schwarz methods (OSM) [5, 11], Analytic Incomplete LU (AILU) [12],
the sweeping preconditioner [7, 8], the source transfer domain decomposition [3, 4],
the method based on single layer potentials [14], and the method of polarized traces
[15], for a more complete treatment, see [13] and references therein. In [13], it was
shown that all these methods can be written as alternating optimized Schwarz meth-
ods called Double Sweep Optimized Schwarz Methods (DOSMs). We study here
analytically the contraction properties of DOSMs for the model problem

[D − DGG − DHH = 5 in Ω := (− !2 , 1 + !
2 ) × (0, c),

D = 0 at H ∈ {0, c}, B;1D = 0 at G = − !2 , BA# D = 0 at G = 1 + !
2 ,

(1)
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where ! ≥ 0 is a parameter which will be related to the overlap, B;1 and BA
#

are
linear trace operators, and # ≥ 2 is an integer number to be defined below. While
in our derivations in Section 2 and 3 we consider [ ∈ C, and we thus also include
the Helmholtz case of interest, we will focus for our results then in Section 4 on the
positive definite case [ > 0.

2 Iteration Matrix of DOSM

Using a Fourier sine expansion of D solution to (1) in the H direction with Fourier
parameter : , we obtain for the Fourier coefficients 1 for : = 1, 2, . . . the problem

(:2 + [)D − DGG = 5 in (− !2 , 1 + !
2 ), : ∈ N+,

B;1D = 0 at G = − !2 , BA# D = 0 at G = 1 + !
2 .

(2)

We decompose the domain (− !2 , 1 + !
2 ) into # overlapping subdomains of equal

width � + ! := 1
#
+ !, denoted by Ω 9 := (( 9 − 1)� − !

2 , 9� + !
2 ), and we denote

the restricted solution by D 9 := D |Ω 9 , 9 = 1, .., # . In DOSM, (2) is reformulated as
transmission problems on the Ω 9 for 9 = 1, .., # ,

(:2 + [)D 9 − (D 9 )GG = 5 in Ω 9 ,
B;9 (D 9 − D 9−1) = 0 at G = ( 9 − 1)� − !

2 ,BA9 (D 9 − D 9+1) = 0 at G = 9� + !
2 ,

(3)

where B;
9
and BA

9
are linear trace operators and D0, D#+1 are identically zero. Let

6;
9

:= B;
9
D 9 at G = G;

9
:= ( 9 − 1)� − !

2 and 6A
9

:= BA
9
D 9 at G = GA

9
:= 9� + !

2 .
To rewrite (3) in terms of the interface data [6;2; ..; 6;

#
; 6A1 ; ..; 6A

#−1], we define the
trace-to-trace operators (see also Figure 1)

0 9 :
(
ℓ 9 at G = G;9

)
→

(
B;9+1E 9 at G = G;9+1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = ℓ 9 at G = G;9 , BA9 E 9 = 0 at G = GA
9
,

1 9 :
(
W 9 at G = GA9

)
→

(
B;9+1E 9 at G = G;9+1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = 0 at G = G;
9
, BA9 E 9 = W 9 at G = GA9 ,

2 9 :
(
W 9 at G = GA9

)
→

(
BA9−1E 9 at G = G

A
9−1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = 0 at G = G;
9
, BA9 E 9 = W 9 at G = GA9 ,

3 9 :
(
ℓ 9 at G = G;9

)
→

(
BA9−1E 9 at G = G

A
9−1

)
with E 9 solving

(:2 + [)E 9 − (E 9 )GG = 0 in Ω 9 , B;9E 9 = ℓ 9 at G = G;9 , BA9 E 9 = 0 at G = GA
9
.

1 We still denote the Fourier transformed quantities for simplicity by the same symbols D, B;1 and
BA
#

to avoid a more complicated notation.
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Fig. 1: Illustration of the interface-to-interface operators.

In the Fourier basis, the operators 0 9 , 1 9 , 2 9 , 3 9 reduce to scalars which we compute
now explicitly. To simplify the notation, let B :=

√
:2 + [ with Re B > 0 if :2 + [

is not exactly on the negative real axis, B := 2sgni
√
−:2 − [ if :2 + [ < 0 with

2sgn ∈ {1,−1} a conventional sign-value from the time-dependence e2sgni√−[C . For
typical OSM transmission conditions (not just DOSM) of the form B;

9
= −@;

9
mG + ?;9

and BA
9
= @A

9
mG + ?A9 , we define

';9 :=
?;
9
− @;

9
B

?;
9
+ @;

9
B

e−!B , ';A9 :=
?A
9−1 − @A9−1B

?;
9
+ @;

9
B

e−!B , &;A9 :=
?A
9−1 + @A9−1B

?;
9
+ @;

9
B
,

'A9 :=
?A
9
− @A

9
B

?A
9
+ @A

9
B

e−!B , 'A;9 :=
?;
9+1 − @;9+1B
?A
9
+ @A

9
B

e−!B , &A;9 :=
?;
9+1 + @;9+1B
?A
9
+ @A

9
B
,

';;9 :=
?;
9+1 − @;9+1B
?;
9
+ @;

9
B

e−!B , 'AA9 :=
?A
9−1 − @A9−1B

?A
9
+ @A

9
B

e−!B , &
;; (AA )
9

:=
?
; (A )
9±1 + @

; (A )
9±1 B

?
; (A )
9
+ @; (A )

9
B
,

and we have for ! ≥ 0

0 9 =
(&;;

9
− 'A

9
';;
9
)e−�B

1 − ';
9
'A
9
e−2�B

, 1 9 =
'A;
9
− ';

9
&A;
9

e−2�B

1 − ';
9
'A
9
e−2�B

,

2 9 =
(&AA

9
− ';

9
'AA
9
)e−�B

1 − 'A
9
';
9
e−2�B

, 3 9 =
';A
9
− 'A

9
&;A
9

e−2�B

1 − 'A
9
';
9
e−2�B

.

When B;
9
= BA

9
= 1, i.e. the classical alternating Schwarz case, we have

0 9 = 2 9 =
(1 − e−2!B)e−�B
1 − e−2�B−2!B , 1 9 = 3 9 =

(1 − e−2�B)e−!B
1 − e−2�B−2!B .

Using the operators 0 9 , 1 9 , 2 9 and 3 9 , we can rewrite (3) as the linear system(
� − � −�
−� � − �

) (
6;

6A

)
=

(
g;

gA

)
. (4)

where � (�) has all its non-zero entries on the subdiagonal (superdiagonal) as
(02, . . . , 0#−1) ((22, . . . , 2#−1)), � = diag(11, . . . , 1#−1), � = diag(32, . . . , 3# ),
and g;

9
:= B;

9
E 9 , gA9 := BA

9
E 9 with E 9 satisfying
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(:2 + [)E 9 − (E 9 )GG = 5 in Ω 9 ,
B;9E 9 = 0 at G = G;

9
, BA9 E 9 = 0 at G = GA

9
.

The DOSM, which comprises a class of the many recently invented preconditioners
for time harmonic wave propagation [13], amounts to a block Gauss-Seidel iteration
for (4): given an initial guess 6A ,0 of 6A , we compute for iteration index < = 0, 1, . . .

6A ,<+1 := (� − �)−1 [
gA + � (� − �)−1 (g; + �6A ,<)] . (5)

We denote by nA ,< := 6A ,< − 6A the error, which then by (5) satisfies a recurrence
relation with iteration matrix ) ,

nA ,<+1 = )nA ,< := (� − �)−1� (� − �)−1�nA ,<. (6)

3 Eigenvalues of the iteration matrix Z

To understand the convergence properties of these methods, we need to study the
spectral radius of ) . We first compute the inverse of ) if � and � are invertible.
For simplicity, we assume from now on that B;

9
= B; , 9 = 2, .., # are the same and

BA
9
= BA , 9 = 1, .., # − 1 are the same. Therefore, 1 9 , 3 9 , 9 = 2, .., # have the same

value and we denote them by 1 and 3. In addition 0 9 = 2 9 , 9 = 2, .., # − 1 which
also have the same value denoted by 0. We thus obtain

)−1 = �−1 (� − �)�−1 (� − �)

= 1−13−1

©«

1−1
1 1 −1−1

1 10

−0 02 + 1 −0
. . .

. . .
. . .

. . . 02 + 1 −0
−0 02 + 3−1

#
3

ª®®®®®®®¬
=: 1−13−1)̃ .

(7)

Let _max (·) and _min (·) denote the largest and smallest eigenvalue in modulus, and
d := _max ()). From (7), we have d = 13_−1

min ()̃). Let _ be an eigenvalue of )̃ and
v = (E 9 )#−1

9=1 ∈ C#−1 the associated eigenvector. It follows that

−0E 9−1 + (02 + 1 − _)E 9 − 0E 9+1 = 0, (8a)
(1−1

1 1 − _)E1 − 1−1
1 10E2 = 0, (8b)

−0E#−2 +
(
02 + 3−1

# 3 − _
)
E#−1 = 0. (8c)

Note that E 9 = b1`
9 + b2`

− 9 , 9 ∈ Z is the general solution of (8a) if ` ≠ ±1 satisfies

−0 + (02 + 1 − _)` − 0`2 = 0, or _ = 1 + 02 − 0(` + `−1). (9)
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Subtracting (8a) at 9 = 1 and 9 = # − 1 from (8b) and (8c) gives the equivalent
boundary conditions

−0E0 + (02 + 1 − 1−1
1 1)E1 − 0(1 − 1−1

1 1)E2 = 0,
(1 − 3−1

# 3)E#−1 − 0E# = 0.

Further substituting E 9 = b1`
9 + b2`

− 9 into the above equations leads to[−0 + (02 + 1 − 1−1
1 1)` − 0(1 − 1−1

1 1)`2] b1+[−0 + (02 + 1 − 1−1
1 1)`−1 − 0(1 − 1−1

1 1)`−2] b2 = 0,[(1 − 3−1
# 3) − 0`

]
`#−1b1 +

[(1 − 3−1
# 3) − 0`−1] `1−# b2 = 0.

Since v ≠ 0, the determinant of the above linear system for [b1; b2] must vanish, i.e.[−0 + (02 + 1 − 1−1
1 1)` − 0(1 − 1−1

1 1)`2] [(1 − 3−1
# 3) − 0`−1] `1−#

=
[−0 + (02 + 1 − 1−1

1 1)`−1 − 0(1 − 1−1
1 1)`−2] [(1 − 3−1

# 3) − 0`
]
`#−1.

(10)

Assume 0 ≠ 0 and let V1 := 0−1 (1 − 1−1
1 1), V# := 0−1 (1 − 3−1

#
3). We can rewrite

(10) as
`2# =

(1 − 0`) (1 − V1`) (1 − V# `)
(1 − 0`−1) (1 − V1`−1) (1 − V# `−1) . (11)

In the special case when B;1 = B; and BA# = BA , we have V1 = V# = 0 so that

`2# =
1 − 0`

1 − 0`−1 . (12)

Remark 1 The value _ = (1∓ 0)2 corresponding to ` = ±1 in (9) is an eigenvalue of
)−1 if and only if E 9 = (b1 + b2 9) (±1) 9 is a non-zero solution of (8) or equivalently

(1 ∓ 0) (±1 ∓ 1−1
1 1 − 0) [(1 − 3−1

# 3) (# − 1) ∓ 0#]
= [±02 + (±1 − 20) (1 − 1−1

1 1)] [1 − 3−1
# 3 ∓ 0] .

In the special case ofB;1 = B; andBA# = BA , the above condition becomes±02# (1∓
0) = −03, that is, 0 = 0 or ± #

#−1 .

4 Roots of the Polynomial Equation for -

We first observe the following facts: ` = ±1 are two roots of (11), and the other
roots appear in pairs as `, `−1. Our goal in this section is to locate all the roots in
the complex plane. We assume from now on that [ ≥ 0 and thus 0, V1, V# ∈ R.
Hence complex roots of (11) appear in conjugate pairs. We begin with the simplest



58 Martin J. Gander and Hui Zhang

Fig. 2: Image of 1 − 0ei\ . Left: 0 < 0 < 1. Right: 0 > 1.

case (12). We assume the argument arg I of a complex number I to take values in
(−c, c].
Lemma 1 If 0 ∈ [−1, 1]\{0}, then the roots of (12) are ±1 and (sign 0) e±i \ 9 for
some \ 9 ∈

[( 9 − 1
2 )c/#, 9c/#

)
, 9 = 1, .., # − 1.

Proof Since (12) is invariant under the transform 0 → −0, `→ −`, we can assume
0 > 0. Substituting the ansatz ` = ei\ , \ ∈ (−c, c] into (12), we obtain for \ the
equation

F(\) := ei2# \ =
1 − 0ei\

1 − 0e−i\ =: I(\). (13)

Since (13) is invariant under the transform \ → −\, we need only to show that
F(\) = I(\) has #−1 roots for \ ∈ (0, c). On the one hand,we note that 1−0ei\ turns
around 1 with radius 0, see Figure 2. It follows that I(\) moves on the unit circle: first
from I(0) = 1 clockwise to the extremal point I(arccos 0) with arg I = −2 arcsin 0,
and then back counter-clockwise to I(c) = 1. On the other hand, F(\) starts from
F(0) = 1 and turns counter-clockwise along the unit circle # times. Hence, in each
lower semi-cycle \ ∈ [( 9 − 1

2 )c/#, 9c/#
)
, 9 = 1, .., # − 1 there must exist a value

of \ such that F(\) = I(\). �

5 Numerical Study of the Convergence Factor

As before, we focus on the regime :2 + [ > 0, and therefore B =
√
:2 + [ varies in

[Bmin, Bmax]. Typically, Bmax is linked to # , for example, if � is proportional to the
mesh size and a second-order discretization is used, we have Bmax = O(#). On the
other hand, Bmin is in this case a constant, which for our sine expansion has the value
Bmin =

√
1 + [ stemming from the lowest Fourier mode : = 1.

In the special case of the classical alternating Schwarz methods,B;
9
= BA

9
= 1, we

have 0 ∈ (0, 1), 1 ∈ (0, 1). By (9) and Lemma 1, we get _min = 1+02−20 cos \1 > 0
for some \1 ∈

[
c

2# ,
c
#

)
. Therefore, the convergence factor d = 12_−1

min becomes
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Fig. 3: Convergence factor of alternating Schwarz with # = 10, ! = 1
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Fig. 4: Scaling of alternating Schwarz with ! = 1
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5# (right) and B ∈ [
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100# 2 + 1].
The dashed lines correspond to the upper and lower bounds of 1 − ‖d ‖∞.

0 < d =
e−2!B (1 − e−2�B)2
A2

1 + A2
2 − 2A1A2 cos \1

, A1 := 1 − e−2�B−2!B , A2 := (1 − e−2!B)e−�B .

Substituting \1 with its lower (upper) bound into the above expression yields an
upper (lower) bound of d. In Figure 3, we compare these bounds with the exact value
of d computed numerically. We see that the bounds are quite sharp. Then using these
bounds we get the scaling of ‖d‖∞ := maxB |d(B) | with the number of subdomains
# , and the convergence deteriorates, see Figure 4.

For optimized Schwarz, since [ ≥ 0, it is natural to use positive ?;
9
, ?A

9
[10]. In

the special case of ?;
9
= ?A

9
= ?(:2) > 0, we find that ' ∈ (−1, 1), 0 ∈ (0, 1), 1 =

3 ∈ (−1, 1). Again, by (9) and Lemma 1, we have _min = 1 + 02 − 20 cos \1 > 0 for
some \1 ∈

[
c

2# ,
c
#

)
. Therefore, the convergence factor d = 12_−1

min becomes

0 < d =
'2 (1 − e−2�B)2

A2
1 + A2

2 − 2A1A2 cos \1
, A1 := 1 − '2e−2�B , A2 := (1 − '2)e−�B .

We first take ? > 0 a constant. In Figure 5, we show how good the bounds of d are,
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Fig. 5: Convergence factor of DOSM with ? a constant obtained by numerically minimizing the
upper bound of ‖d ‖∞, # = 10, ! = 1
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Fig. 6: Scaling of DOSM with ? a constant obtained by numerically minimizing the upper bound
of ‖d ‖∞, ! = 1

5# (left), ! = 0 (right) and B ∈ [
√

2,
√

100# 2 + 1]. The dashed lines correspond
to the upper and lower bounds of 1 − ‖d ‖∞ which are too close to be distinguished.

and also the results of minimizing the upper bound of ‖d‖∞. Given ? optimized in
this way (dependent on #), we find that ‖d‖∞ ≈ 1 − O(#−2/3), both with minimal
overlap andwithout overlap; see Figure 6. Next, we take ? = ?̃0+ ?̃2:

2 corresponding
to the second-order boundary condition B;,A = ∓?̃0mG − ?̃2mHH . We show the upper
and lower bounds of d in Figure 7. Using numerically optimized parameters ?̃0 and
?̃2 (dependent on #), we find that ‖d‖∞ ≈ 1 − O(#−1/3) with minimal overlap and
‖d‖∞ ≈ 1 − O(#−2/5) without overlap; see Figure 8.

We can also choose ?(:2) to be a more accurate approximation of B =
√
:2 + [

to obtain an even smaller reflection coefficient ' = exp (−!B) (? − B)/(? + B). In
the recently invented methods [13], Perfectly Matched Layers (PMLs; see [2, 6]) are
most commonly used. Starting from a boundary G = G0, a PML [G0, G0 +�] is added
outside a domain, and a new variable

G̃ :=

{
G +

∫ G−G0
0 f( |C |) dC, G ∈ [G0, G0 + �],

G, inside the domain,
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Fig. 7: Convergence factor of DOSM with ? = ?̃0 + ?̃2:
2 obtained by numerically minimizing the

upper bound of ‖d ‖∞, # = 10, ! = 1
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is used for the model on the augmented domain (:2 + [)D − D G̃ G̃ = 5̃ , where 5̃ is the
zero extension of 5 and a homogeneous Dirichlet condition is put on the augmented
boundary G = G0 + �. This model amounts to imposing on G = G0 the boundary
condition sign(�)mGD + DtN�D = 0, where DtN� is the Dirichlet-to-Neumann
operator defined by

DtN� : (W at G = G0) → (−sign(�)mGE at G = G0) with E solving
(:2 + [)E − E G̃ G̃ = 0 for G ∈ [G0, G0 + �],
E = 0 at G = G0 + �, E = W at G = G0.

In our case, DtN� reduces to a scalar. Note that G̃(G = G0) = G0, G̃(G = G0 + �) =
G0 + � +

∫ �
0 f( |C |) dC =: G0 + � + f̄. From the above definition, we have

E = b1e−B ( G̃−G0) + b2eB ( G̃−G0) , E(G̃ = G0 + � + f̄) = 0, E(G̃ = G0) = W.

Hence, we obtain in our case
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Fig. 9: Convergence factor of DOSM with ? = DtN� from PMLs, # = 10, ! = 0, f̄ = 5�,
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DtN� = B · 1 + e−2(�+f̄)B

1 − e−2(�+f̄)B .

Typically, one chooses f̄ linearly dependent on �. Using ? = DtN� , we show
in Figure 9 how good our upper and lower bounds of d are. It is impressive that
doubling � decreases ‖d‖∞ by a factor of about six. Then, for � proportional to the
subdomain size � = 1/# , we look at their scaling with # in Figure 10. We see that
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Fig. 10: Scaling of DOSM with ? = DtN� from PMLs, ! = 0, f̄ = 5�, � = 1
2# (left), � = 1

#

(right) and B ∈ [
√
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100# 2 + 1]. The dashed lines correspond to the upper and lower bounds of
1 − ‖d ‖∞.

the improvement by doubling � is only on the constant factor, and the deterioration
‖d‖∞ ≈ 1 − O(#−2) is the same as for the alternating Schwarz method. Hence, to
have convergence independent of # , we must let the relative PML width �/� grow
with # . To see how big a � is necessary, we test a range of � in Figure 11, where we
can read for which size � and which # the bounds of ‖d‖∞ equal to 0.2.We then plot
these pairs in Figure 12, which indicates that a constant PML size �, independent of
the number of subdomains # , is necessary and sufficient. The sufficiency is further
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shown in Figure 13. Note that in our setting a fixed physical PML size independent
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From top to bottom each pair of lines correspond to the lower and upper bounds of ‖d ‖∞ for
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of the number of subdomains # means a linear growth of mesh points in the PMLs,
not a logarithmic one.
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Dirichlet-Neumann Preconditioning for
Stabilised Unfitted Discretization of High
Contrast Problems

B. Ayuso de Dios, K. Dunn, M. Sarkis, and S. Scacchi

1 Introduction

LetΩ ⊂ R2 be a polygonal domain with an immersed simple closed smooth interface
Γ ∈ C2, such that Ω = Ω

− ∪ Ω+, and Γ := Ω
− ∩ Ω+ is far away from mΩ (i.e, either

Ω+ or Ω− is a floating subdomain; i.e., one of them does not touch mΩ). Given
5 ∈ !2 (Ω) we set 5 ± = 5 |Ω± and consider the problem of finding D∗ such that{

−∇ · (d±∇D±∗ ) = 5 ± in Ω±, D±∗ = 0 on mΩ±\Γ
[D∗] = 0 on Γ, [d∇D∗] = 0 on Γ,

(1)

where D±∗ = D∗ |Ω± and n± denote the unit normal outward toΩ±. The jump conditions
on Γ enforce the continuity of the solution and its flux across the interface. The jump
operators are defined by

[d∇D∗] = d+∇D+∗ · n+ + d−∇D−∗ · n− and [D∗] = D+∗ − D−∗ . (2)

We also assume that the diffusion coefficients d± > 0 are constant and satisfy
d− ≤ d+. Note that D±∗ ∈ �2 (Ω±), but D∗ ∈ �1+n (Ω) with n > 0. To approximate
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(1) we consider the stabilised unfitted FE approximation from [3].

A class of unfitted finite element methods were introduced in the seminal
works of [1] and in recent years there has been a renewed interest in these type
of approaches, giving rise to numerous novel methods; the immersed boundary
method [2], XFEM [5], the finite cell method (FCM) [6], and CutFEM [4, 8]. The
use of unfitted meshes is particularly relevant for interface problems. However, in
spite of the upsurge in research for unfitted approaches, the design and analysis of
robust solvers for the resulting linear and nonlinear systems still seem elusive. Sim-
ple preconditioning strategies are explored for finite cell discretizations in [10] and
multigrid-type method are proposed in [9]. In the present contribution we focus on
the construction of a simple Dirichlet-Neumann (DN) domain decomposition pre-
conditioner for the CutFEMmethod introduced in [3] and demonstrate its robustness
also in the hard inclusion case. Due to space restrictions, we focus on a very simple
version and stick to the algebraic description of the solver. Details on the analysis as
well as further tailored preconditioners will be found in [7].

2 Basic Notation and Unfitted Stabilized Discretization

Let {Tℎ}ℎ>0 be a family of uniform partitions of Ω into squares ) of diameter ℎ. We
assume that for each ) , Γ ∩ m) , is either empty or occurs at exactly two different
edges of m) 1. We also define:

T ±ℎ := {) ∈ Tℎ : ) ∩Ω± ≠ ∅}, T Γℎ := {) ∈ Tℎ : ) ∩ Γ ≠ ∅}.

For ) ∈ T Γ
ℎ

we denote )Γ = ) ∩ Γ. We also introduce the discrete domains

Ω±ℎ := Int ©«
⋃
) ∈T±

ℎ

)
ª®¬ ΩΓℎ := Int ©«

⋃
) ∈TΓ

ℎ

)
ª®®¬ , and Ω±ℎ,0 = Ω

±
ℎ\Ω

Γ

ℎ ,

where Int( ) denotes the interior of the set  . Note that Ω+
ℎ
∪ Ω−

ℎ
= Ω is an

overlapping partition of Ω while a non-overlapping partition is given by Ω = Ω+
ℎ,0 ∪

Ω
Γ

ℎ ∪ Ω−ℎ,0 (see Figure 1.) Finally we introduce the following subsets of edges of
elements in T Γ

ℎ
:

EΓ,±
ℎ

:= {4 = Int(m)1 ∩ m)2) : )1 ≠ )2 ∈ T ±ℎ , and )1 ∈ T Γℎ or/and )2 ∈ T Γℎ }.

Note that EΓ,+
ℎ

(resp. EΓ,−
ℎ

) does not contain any edges on mΩ+
ℎ
(resp. mΩ−

ℎ
).

• Finite Element Spaces: We consider FE spaces of piecewise bilinear polynomials
whose support is contained in Ω±

ℎ
, Ω±

ℎ,0 and Ω
Γ
ℎ
, respectively:

1 This assumption is only needed in the stability and error analysis of the method.
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Fig. 1: Domain
configurations:
Soft inclusion
(leftmost),
Hard inclusion
(center) cases

+± = {E ∈ C(Ω±ℎ) : E |) ∈ Q1 ()),∀) ∈ T ±ℎ , and E |mΩ±ℎ∩mΩ ≡ 0},
+±0 = {E ∈ +± : E |) ≡ 0 ∀ ) ∈ ΩΓℎ}, ,± = {E restricted to ΩΓℎ , E ∈ +±} .

With a small abuse of notation, we set +ℎ = ++ ×+− where it is understood

Dℎ ∈ +ℎ = ++ ×+− Dℎ = (D+, D−) with D+ ∈ ++ , D− ∈ +− .

That is, the FE space +ℎ is defined by a copy of two FE piecewise functions: one
from ++ defined on Ω+

ℎ
and another from +− defined over Ω−

ℎ
.

• The stabilised unfitted Nitsche approximation: the method reads: find Dℎ =

(D+, D−) ∈ +ℎ = ++ ×+−, such that:

0ℎ (Dℎ , Eℎ) = ( 5 +, E+)Ω+ + ( 5 −, E−)Ω− , for all Eℎ = (E+, E−) ∈ ++ ×+− , (3)

where (·, ·)Ω± denotes the !2 (Ω±) inner product and 0ℎ : +ℎ ×+ℎ −→ R is given as:

0ℎ (Dℎ , Eℎ) =
∫
Ω−
d−∇D− · ∇E−3G +

∫
Ω+
d+∇D+ · ∇E+3G (4)

+
∫
Γ

({d∇Eℎ}F · n− [Dℎ] + {d∇Dℎ}F · n− [Eℎ]) 3B + ∑
) ∈TΓ

ℎ

WΓ

ℎ)
{d}�

∫
)Γ

[Dℎ] [Eℎ] 3B

+
∑
4∈EΓ,−

ℎ

W− |4 |
∫
4

d− [∇D−] [∇E−] 3B +
∑
4∈EΓ,+

ℎ

W+ |4 |
∫
4

d+ [∇D+] [∇E+] 3B,

where WΓ, W−, and W+ are positive (moderate) constants and |4 | is the diameter of the
edge 4. Here, [·] refers to the jump operator as in (2) while {·}� and {·}l denote
the harmonic and weighted averages defined by:

{d}� =
2d+d−

d+ + d− , {d∇Eℎ}l := (l− d−∇E− + l+ d+∇E+), l∓ =
d±

d+ + d− .

Continuity and coercivity of 0ℎ (·, ·) in (4) can be shown with respect to the norm:
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‖Eℎ ‖2+ℎ := |E+ |2+ + + |E− |2+ − +
∑
) ∈TΓ

ℎ

WΓ

ℎ)
{d}�

∫
)Γ

[Eℎ]2 3B ∀ Eℎ ∈ +ℎ , with

|E± |2+ ± :=
∫
Ω±
d± |∇E± |2 3G +

∑
4∈EΓ,±

ℎ

W± |4 |
∫
4

d± [∇E±]2 3B, ∀ E± ∈ +± . (5)

We remark that the semi-norm | · |+ + is a norm if Ω+ is non floating. We will denote
by (·, ·)+ + to its originating inner product. Optimal and robust error estimates are
proved in [3].

3 Dirchlet-Neumann preconditioner

We describe now a preconditioner for the linear system resulting from (3) based
on the non-overlapping decomposition Ω+

ℎ,0 ∪ Ω
Γ

ℎ ∪ Ω−ℎ,0. Associated with such a
decomposition, and owing to the fat interface we consider the somehow asymmetric
splitting of the space +ℎ = (++0 ,,+) × +−, we first introduce some notation. We
denote by R± : +ℎ −→ +± the restriction operators to Ω±

ℎ
such that R±Dℎ = D±. The

corresponding prolongation operators R)± : +± −→ +ℎ are defined as the extension
to +ℎ by zero, i.e., R)+ D+ = (D+, 0) and R)− D− = (0, D−). Similarly, we introduce the
restriction and prolongation operators

R, ± : +ℎ −→ ,± R0± : +ℎ −→ +±0 R, : +ℎ −→ ,ℎ

R), ± : ,± −→ +ℎ R)0± : +±0 −→ +ℎ R), : ,ℎ −→ +ℎ

We define the bilinear forms 0+0 : ++0 ×++0 −→ R and 0− : +− ×+− −→ R

0+0 : ++0 ×++0 −→ R 0+0 (D+0 , E+0) := 0ℎ (R)0+D+0 ,R)0+E+0) ∀D+0 , E+0 ∈ ++0
0− : +− ×+− −→ R 0− (D−, E−) := 0ℎ (R)− D−,R)− E−) ∀D− , E− ∈ +−

Wenow introduce the local solvers. Let D+
5 ,0 ∈ ++0 and D−

5
∈ +− be the local solutions

with support in Ω+
ℎ,0 and Ω

−
ℎ
, respectively, defined by:

0+0 (D+5 ,0, E+0) = ( 5 +, E+0)Ω+ ∀ E+0 ∈ ++0 0− (D−5 , E−) = ( 5 −, E−)Ω− E− ∈ +− .

We set PℎDℎ = R)0+D+5 ,0 + R)− D−5 and note that Dℎ − PℎDℎ lies in the orthogonal
complement of R)0+++0 + R)−+− in +ℎ with respect to the inner product 0ℎ (·, ·). This
suggests the splitting Dℎ = PℎDℎ + HℎDℎ , with HℎDℎ = (H+Dℎ ,H−Dℎ) ∈ +ℎ a
suitable discrete harmonic extension of (D+

ℎ
) |ΩΓ

ℎ
that we briefly sketch next. Recall

that ,+ is the restriction of the space ++ to ΩΓ
ℎ
. Given [+ ∈ ,+, we define H± :

,+ −→ +± to be the discrete harmonic extension of [+ such that

0ℎ (R)+H+[+,R)0+E+0) = 0 ∀ E+0 ∈ ++0 and R, +R)+H+[+ = [+
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and
0ℎ

((R+R), +[+,H−[+),R)− E−) = 0 ∀ E+ ∈ +−.
Finally, we setHℎ[+ = (H+[+,H−[+) and introduce the Schur complement operator
S : ,+ −→ ,+:

< S[, F >:= 0ℎ (Hℎ[+,HℎF+) ∀[+, F+ ∈ ,+ . (6)

From the definition of PℎDℎ it follows

0ℎ (HℎDℎ ,HℎEℎ) = ( 5 , Eℎ)Ω − 0ℎ (PℎDℎ , Eℎ) ∀ Eℎ ∈ +ℎ . (7)

We focus now on constructing preconditioners B−1 for the operator S and hence for
the system (7). The basic guide to ensure robustness will be to use, when possible,
the local Schur complement corresponding to the largest coefficient, d+:

< S+[, F >:= (H+[,H+F+)+ + ∀[, F ∈ ,+ , (8)

where (·, ·)+ + is the originating inner-product for the norm | · |+ + in (5). We need to
distinguish two cases:

• Ω+ is not floating subdomain and we set B−1 = S−1+ .
• Ω+ is a floating subdomain; since S+ is not invertible, we define B−1 as a suitable

regularisation of S+. We propose one level and two level methods.

4 Algebraic formulation of the DN preconditioner

After choosing standard Lagrangian basis for +±, problem (3) reduces to a linear
algebraic system AU = F. We consider the block structure of A that results from
splitting the degrees of freedom (dofs) of the discrete space +ℎ into three sets:

• dofs associated with ++0 (in the interior of Ω+) are indicated by �+;
• dofs related to,+, indicated by,+;
• dofs associated with +−(dofs related to +−0 and,−), indicated by +−.

A� +� + A� +, + 0
A, +� + A

+
, +, + + A−, +, + A, ++ −

0 A+ −, + A+ −+ −



U� +

U, +

U+ −

 =

F� +

F, +

F+ −

 .
Here, we have highlighted that the stiffness block with dofs from ,+ in the fat
interface has contributions from Ω+

ℎ
and Ω−

ℎ
. Performing static condensation of the

interior variables �+ and +− we obtain the Schur complement system

SU, + = G, + , S = S+ + S− ,

where G, + = F, + − A, +� +A−1
� +� +F� + − A, ++ −A−1

+ −+ −F+ − , and S is given by
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S = S+ + S− with
{
S+ = A+, +, + − A, +� +A−1

� +� +A� +, +

S− = A−, +, + − A, ++ −A−1
+ −+ −A+ −, + ,

Soft inclusion: Ω+
ℎ
in Non-Floating Subdomain Case: In this case we set

B−1 = S−1+ since the operator is invertible. At the algebraic level we arrive at
S−1+ SU, + = S−1+ G, + . The action of the DN preconditioner S−1+ on a generic residual
vector R, + consists of solving the linear system[

A�+�+ A�+, +

A, +�+ A
+
, +, +

] [
V�+

V, +

]
=

[ 0
R, +

]
.

and letting V, + := S−1+ R, + .

Hard inclusion: Ω+
ℎ
is the Floating Subdomain: Since S+ is not invertible we

consider two different strategies: a regularisation and the use of a one dimensional
coarse solver to account for the kernel of S+.

• One-Level DN: The action of the preconditioner amounts to solving( [
A� +� + A� +, +

A, +� + A
+
, +, +

]
+ {d}�

�2+

[
M+
� +� + M

+
� +, +

M+
, +� + M

+
, +, +

] ) [
V� +

V, +

]
=

[
0
R, +

]
,

and setting S−1+,>=4R, + = V, + . Here,M+ stands for the mass matrix associated with
++ (i.e., defined over Ω+

ℎ
), and �+ :=diam(Ω+

ℎ
) and is used to regularise S+.

• Two Level DN preconditioner: The idea is to first solve in the space orthogonal
to the (one-dimensional) kernel of S+ and then correct with a coarse solver that
accounts for the contribution in ker(S+). Hence, the practical implementation of the
two level solver S−1

+,CF> amounts to first solving[
A� +� + A� +, +

A, +� + A
+
, +, +

] [
V� +

V, +

]
+

[
M+
� +� + M

+
� +, +

M+
, +� + M

+
, +, +

] [
1� +
1, +

]
_ =

[
0
R, +

]
,

with the constraint [
1� +
1, +

]) [
M+
� +� + M

+
� +, +

M+
, +� + M

+
, +, +

] [
V� +

V, +

]
= 0

and then define S†+R, + = V, + . Here 1+
� + and 1+

, + are vectors of ones in ++0
and ,+, respectively. The matrix representation of the two level preconditioner
(with coarse space) is defined via S−1

+,CF> = S
†
+ + 1, + (1, + , S1, + )−11)

, + . Note that
S1, + = S−1, + .
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5 Numerical Results

We consider the domain Ω = (0, 1)2 and study the performance of the Dirichlet-
Neumann (DN) preconditioner for the CutFEM approximation (3) to (1) with Ω∓

a disk of radius 0.15 and Ω± = (0, 1)2 \Ω∓ and always d− ≤ d+. We use CG
and PCG as a solver with zero initial guess and tolerance 10−6 for the relative
residual. In the tables we report the estimated (via Lanzcos algorithm) condition
numbers (denoted by ^2) and the number of iterations (denoted by it) required by
CG and PCG for convergence. Table 1 reports the results in the case where Ω+ is

d− full CG schur NO precond. schur DN preconditioned
^2 it ^2 it ^2 it

1 3.32e+3 (218) 388.40 (75) 1.95 (14)
10−2 2.06e+4 (575) 362.15 (91) 1.01 (15)
10−4 2.01e+6 (2828) 361.71 (93) 1.00 (4)
10−6 2.01e+8 (5418) 361.70 (93) 1.00 (3)

Table 1: Robustness with respect to d: Ω− is the floating subdomain. Here, d+ = 1 and ℎ = 1/64.

non-floating, therefore using S−1+ as a preconditioner. S−1+ performs robustly when
the ratio d+/d− increases. In the case where Ω+ is the floating subdomain, we
use one level and two level DN preconditioners. The results regarding optimality
and robustness of these preconditioners are reported in Table 2 and 3, respectively.
Notice that both preconditioners perform optimally and show robustness with respect
to the jumping coefficient. In particular, the one-level DN preconditioner seems to
be enough effective for the considered setting.

1/ℎ full CG schur NO precond. DN Two-Level DN one-level
^2 it ^2 it ^2 it ^2 it

8 6.38e+3 252 4.09e+2 79 6.76 11 3.51 14
16 1.77e+4 520 8.60e+3 224 6.39 15 2.11 14
32 5.83e+4 863 1.09e+4 423 6.29 16 2.09 14
64 2.14e+4 1625 1.86e+4 551 6.34 16 2.08 14
128 8.19e+5 3163 3.79e+4 832 6.37 16 2.13 14
256 3.20e+6 6140 7.43e+4 1148 6.39 16 2.19 14

Table 2: Optimality with respect to ℎ: floating circle Ω+ embedded in [0, 1]2. d+ = d− = 1.



d+ full CG schur NO precond. DN Two-Level DN one-level
^2 it ^2 it ^2 it ^2 it

1 2.14e+5 1625 1.86e+4 539 6.37 16 2.13 14
102 2.00e+7 12906 1.81e+6 765 6.33 6 1.83 5
104 2.00e+9 >100000 1.81e+8 897 6.33 4 1.83 4
106 5.70e+10 >100000 1.81e+10 1026 6.33 3 1.83 3
108 4.20e+12 >100000 1.83e+12 1326 6.33 3 1.83 3

Table 3: Robustness with respect to d. Floating Ω+ with jumping coefficients. Here, d− = 1,
1/ℎ = 64.
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Virtual Coarse Spaces for Irregular Subdomain
Decompositions

Juan G. Calvo

1 Introduction

Consider the model problem: Find D ∈ �1 (Ω) such that

−∇ · (d(G)∇D) = 5 (G), G ∈ Ω, (1)

for a given polygonal domain Ω ⊂ R2 and d(G) > 0, along with homogeneous
boundary conditions. A standard approach to solve (1) is to discretize with Finite
Element Methods (FEM) for which there is vast literature on the construction of
Domain Decomposition (DD) algorithms; see, e.g., [11] for a complete study. As
usual, wewill decompose the domainΩ into # non-overlapping subdomains {Ω8}#8=1,
each of which is the union of elements of the triangulation Tℎ of Ω. Each Ω8 will
be simply connected and will have a connected boundary mΩ8 . We then construct
overlapping subdomains Ω′

8
by adding layers of elements to Ω8 .

One of the simplest DD algorithms consists in splitting the finite dimensional
space +ℎ (associated with the fine triangulation of the domain) as

+ℎ = '
)
0 +0 +

#∑
8=1

')8 +8 ,

where +1, . . . , +# represent local spaces related to Ω′1, . . . ,Ω
′
#
, respectively, with

corresponding extension operators ')
8

: +8 → +ℎ , and +0 is a coarse space which
is related to +ℎ by the operator ')0 : +0 → +ℎ . Originally, these methods arose in
the presence of regular decompositions where usual Finite Element spaces can be
defined. In the past few years, there has been some efforts to study how to define
coarse spaces if irregular subdomains as the ones obtained by mesh partitioners

J. G. Calvo
Centro de Investigación en Matemática Pura y Aplicada – Escuela de Matemática, Universidad de
Costa Rica, San José, Costa Rica, e-mail: juan.calvo@ucr.ac.cr

75
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are considered; see, e.g., [5, 14, 6], where a complete theory is developed for Jones
subdomains and nodal elliptic problems. For Raviart-Thomas and Nédélec elements,
see [9, 2]. These studies are based on energy minization, and require to obtain local
discrete harmonic functions by solving Dirichlet problems on the subdomains. In a
more general setting, adaptive coarse spaces can be defined as in [7, 10, 8].

On the other hand, Virtual Element Methods (VEM) [1, 12, 13] allow to handle
general polygonal elements. In the case of triangular elements, VEM reduces to the
usual FEM. Thus, VEM is a natural choice for constructing space of functions on
irregular subdomains. As studied in [3, 4], considering a virtual space on an irregular
decomposition allows us to avoid the computation of discrete harmonic functions,
while we keep the typical bound for the condition number of the preconditioned
system; see Theorem 1 below. In this setting, we can define general virtual functions
for such irregular decompositions. However, virtual functions cannot be evaluated
at interior nodes, and the operator ')0 plays an essential role into approximating
functions in +0. Two different approaches have been studied so far: we can construct
+0 based on linear interpolants [4], or we can use projections onto polynomial spaces
of degree of at least two [3], which we will discuss in this manuscript.

Instead of having a triangular mesh and a FEM discretization for problem (1),
we could also consider a discretization based on VEM. There is a lack of literature
on DD methods for such type of problems. At the DD25 Conference, held in Saint
John’s, Canada on July 2018, interesting talks by Yunrong Zhu (Auxiliary Space
Preconditioners for Virtual Element Discretization) and Daniele Prada (FETI-DP
for Three Dimensional VEM) addressed this problem with different approaches as
ours. We note that the theory developed in [3, 4] is also useful for designing Schwarz
operators for discretizations obtained by VEM, and it is possible to obtain similar
bounds for the condition number of the preconditioned system.

2 Description of the preconditioner

In this section we describe the discretizacion of the model problem and the construc-
tion of the additive preconditioner. We refer [13] for general details on VEM, [3, 4]
for a detailed explanation on the coarse space definition, and [11, Chapter 3] for a
complete study of overlapping preconditioners.

The usual weak form for problem (1) is: Find D ∈ �1
0 (Ω) such that

0(D, E) :=
∫
Ω

∇D · ∇E 3x = ( 5 , E) ∀ E ∈ �1
0 (Ω), (2)

where (·, ·) is the usual inner product in !2 (Ω). When using nodal Lagrange tri-
angular elements, we consider the lowest-order finite-dimensional Lagrange space
+ℎ , which consists of continuous piecewise-linear functions on each element, and
Problem (2) becomes: Find Dℎ ∈ +ℎ such that
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0(Dℎ , Eℎ) = ( 5 , Eℎ) ∀ Eℎ ∈ +ℎ . (3)

When using VEM, we can consider a general triangulation Tℎ composed by
general polygons as in Figure 1 (not necessarily similar or with the same number of
edges), and +ℎ now contains piecewise-linear continuous functions on the boundary
of each element that are harmonic in its interior. We omit further details on how to
modify the bilinear form 0(·, ·) and the right-hand side in Equation (3) when VEM
are used; see, e.g., [13]. We then obtain a linear system �D = 5 , for which we will
describe the construction of an additive preconditioner.

2.1 Virtual coarse space

We present the coarse spaces considered in [3, 4]. We first define the lowest-order
virtual element space on the polygonal decomposition {Ω8}#8=1 of Ω. For each Ω8 ,
consider the set

B(mΩ8) :=
{
E ∈ �0 (mΩ8) : E |4 ∈ P1 (4) ∀ 4 ⊂ mΩ8

}
,

where 4 represents any straight segment of the boundary of the polygon Ω8 . The
local virtual space is then defined as

+Ω8 :=
{
E ∈ �1 (Ω8) : E |mΩ8 ∈ B(mΩ8), ΔE = 0

}
.

A natural choice for the coarse space of the two-level algorithm is the global
virtual space

+0 :=
{
E ∈ �1 (Ω) : E |Ω8 ∈ +Ω8

}
.

Fig. 1: General polygonal mesh for VEM with
irregular subdomains.

Fig. 2: Decomposition {Ω8 }. The coarse space
+0 has one degree of freedom per polygonal ver-
tex (black dots). The reduced coarse space + '0
has only one degree of freedom per subdomain
vertex (black circles)
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Hence, a function in +0 is continuous, piecewise-linear on the boundary of each Ω8 ,
and harmonic in the interior of each subdomain. Thus, it is completely determined
by its values at the vertices of the polygonal domain Ω8 and the dimension of +0 can
be quite large; see Figure 2 for an example with an hexagonal mesh. Therefore, we
define a reduced coarse space as follows.

For each subdomain vertex x0 we define a coarse function k�x0 ∈ +0 by choosing
appropriately its degrees of freedom, a construction modified from [5]. First, we
set k�x0 (x) = 0 for all the subdomain vertices x, except at x0 where k�x0 (x0) = 1.
Second, we set the degrees of freedom related to the nodal values on each subdomain
edge. If x0 is not an endpoint of E, then k�x0 vanishes on that edge. If E has endpoints
x0 and x1, let dE be the unit vector with direction from x1 to x0. For any node x̃ ∈ E
set

k�x0 (x̃) =


0, if (x̃ − x1) · dE < 0
(x̃ − x1) · dE
|x0 − x1 | , if 0 ≤ (x̃ − x1) · dE ≤ |x0 − x1 |

1, if (x̃ − x1) · dE > |x0 − x1 |
It is clear that k�x0 (x0) = 1, k�x0 (x1) = 0, and that the function varies linearly in the
direction of dE for such nodes. In this way, we define all the degrees of freedom of
k�x0 ∈ +0. By construction, 0 ≤ k�x0 ≤ 1 and

∑
x0 k

�
x0 ≡ 1.

We then define the reduced coarse space as the span of {k�x0 }, i.e.,

+'0 :=
{
E ∈ �1

0 (Ω) : E =
∑
x0

Ux0k
�
x0

}
⊂ +0

for some real coefficients Ux0 ; see [4, Section 6]. We point out that in the case where
the partition {Ω8} is composed by triangles or squares, +0 = +

'
0 and they reduce to

the usual linear or bilinear finite element space, respectively. We can naturally define
a linear interpolant �� : +ℎ → +'0 by

��D :=
∑
x0

D(x0)k�x0 ,

and it is easy to deduce that �� reproduces linear polynomials. We can prove
the following lemma, where we present an upper bound for the energy of coarse
functions:

Lemma 1 Given D ∈ +ℎ , let D0 := ��D ∈ +'0 . Then, there exists a constant � such
that

|D0 |2� 1 (Ω8) ≤ �
(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

where �8 is the diameter of Ω8 and ℎ8 is the smallest element diameter of the
triangulation of Ω8 . Here, � depends only on the aspect ratio of Ω8 and the number
of subdomain vertices on mΩ8 .

Proof See [3, Lemma 4.4 and Theorem 6.1], [4, Lemma 5.6]. �
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Since virtual coarse functions cannot be evaluated at internal nodes of the sub-
domains, we still need to define an appropriate operator ')0 : +'0 → +ℎ , such that
each function in +'0 is well-approximated in +ℎ . We could:

(1) Solve a Dirichlet problem on each subdomain in order to compute the discrete
harmonic extension of the values on the boundary of each Ω8 , as it is done in
[5, 14, 6].

(2) Triangulate each subdomain Ω8 and define ')0 as a piecewise-linear interpolant
onto such triangulations; see [4, Section 3.1] for further details and assumptions
that are required.

(3) Construct a projection Π∇
Ω8 ,:

D0 for a given function D0 in +Ω8 , onto the polyno-
mial space defined on Ω8 of degree : ≥ 2, and this operator can be constructed
by knowing only the degrees of freedom of the virtual functions; see [3, Section
6.1] for implementation details. The main advantage in this approach is that in
order to compute all the internal degrees of freedom, we only need to solve a
linear systemwith : (:−1)/2 unknowns. Thus, in the interior of each subdomain
we approximate D0 by Π∇Ω8 ,:D0, avoiding discrete harmonic extensions.

It can be shown that the following estimates hold:

Lemma 2 Given D ∈ +ℎ , let D0 := ��D ∈ +'0 . Then there exists a constant � such
that

‖D − ')0 D0‖2!2 (Ω8) ≤ ��
2
8

(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

|')0 D0 |2� 1 (Ω8) ≤ �
(
1 + log

�8

ℎ8

)
|D |2
� 1 (Ω8) ,

where � is independent of �8 and ℎ8 .

Proof See [4, Lemma 3, Lemma 4] and [3, Lemma 5.7] for cases (2) and (3),
respectively. For case (1), similar estimates holds; see the proof in [5, Theorem 3.1],
[6, Theorem 3.1] �

2.2 Local spaces and preconditioner

For each subdomainΩ8 , we construct the overlapping subdomainΩ′
8
by adding layers

of elements to Ω8 and denote by X8 the size of the overlap. The local virtual space is
then defined by

+8 :=
{
E ∈ �1

0 (Ω′8) : E | ∈ B(m ), ΔE | = 0 in  , ∀  ⊂ Ω′8
}
.

Thus, the degrees of freedom are the values at all the nodes in the interior ofΩ′
8
, and

it is straightforward to define zero extension operators ')
8

: +8 → +ℎ . Consider the
matrix representation of the operators ')

8
denoted again by ')

8
. We use exact local

solvers and define �̃8 = '8�')8 , 0 ≤ 8 ≤ # . Schwarz projections are given by
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%8 = '
)
8 �̃
−1
8 '8�, 0 ≤ 8 ≤ #.

The additive preconditioned operator is defined by

%03 :=
#∑
8=0

%8 = �
−1
03�, with �

−1
03 =

#∑
8=0

')8 �̃
−1
8 '8 . (4)

Multiplicative and hybrid preconditioners can be considered as well; see [11, Section
2.2]. We can then prove the following result:

Theorem 1 There exists a constant �, independent of �, ℎ and d, such that the
condition number of the preconditioned system ^(�−1

03
�) satisfies

^(�−1
03�) ≤ �

(
1 + log

�

ℎ

) (
1 + �

X

)
,

where the ratios �/ℎ and �/X denote their maximum value over all the subdomains.

Proof See [4, Theorem 6.1], [3, Theorem 4.1]. �

3 Some numerical results

We first provide a comparison of the running time when assembling ')0 by discrete
harmonic extensions and by quadratic and cubic polynomial approximations; see
Figure 3 where we have used a serial implementation in MATLAB with # = 4 METIS
subdomains and triangular elements.

We also include an experiment with a different application of the virtual coarse
spaces. We approximate accurately harmonic functions with given Dirichlet bound-
ary conditions in a domain Ω, by using the projector Π∇

Ω,:
for sufficiently large : .

Instead of solving the resulting ill-conditioned linear system �D = 5 that arises from
FEM or VEM, we can approximate the nodal values in the interior nodes of Tℎ by
evaluating Dℎ := Π∇

Ω,:
D. In order to do so, we just need to solve a linear system with

: (: − 1)/2 unknowns. We remark that in the construction of the preconditioner (4),

500 1000 1500 2000
0

50

100

150
Discrete harmonic

Cubic

Quadratic

Fig. 3: Time (in seconds) required for computing ')0 with discrete harmonic extensions, quadratic
and cubic projections, as a function of �/ℎ, with # = 4 irregular subdomains.
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a competitive number of iterations can be obtained with just : = 2 or : = 3, since
they provide good-enough approximations for functions in the virtual coarse space.
Here instead, we construct the projection onto the domain Ω, obtaining directly Dℎ .

For simplicity, we consider the unit square Ω = [0, 1]2 with boundary conditions
such that the exact solution is D(G, H) = (42G+4−2G) sin(2H).We consider a triangular
partition for Ω; the inf-norm of the error in the approximation is shown in Figure
4, for different values of : and mesh size ℎ. As we observe, for a fixed : , the error
decreases quadratically as a function of ℎ, and it reaches a minimum value that
depends on : , for which Π∇

Ω,:
cannot improve the approximation. We remark that

further exploration is required, and this approach is being studied for problems in
two and three dimensions.

For further experiments on the performance of the preconditioner (4), we refer to
the numerical experiments shown in [3, 4].

10
-3

10
-2

10
-1

10
-8

10
-5

10
-2

Fig. 4: Inf-norm of the error, ‖D−Dℎ ‖∞, as a function of ℎ, in the approximation of the solution of
Laplace’s equation in the unit square by computing Π∇

Ω,:
D . Convergence is quadratic as a function

of ℎ.

4 Conclusions

We note that the main advantage of our approach with respect to previous stud-
ies is that no discrete harmonic extensions are required in the algorithm, saving
computational time. We also aim to contribute and enrich the literature related to
iterative solvers for VEM discretizations, since there is a lack of theoretical analysis
for such problems. Even though theory does not include the case of a discontinuous
coefficient in the interior of each subdomain, a reasonable number of iterations is
obtained even for extreme cases of discontinuities and high-contrast jumps across the
elements; see [3, Section 6.2.4]. For higher values of : , we can directly obtain more
accurate approximations of harmonic functions, as shown in Figure 4. For precondi-
tioning, experimentally we have found that using quadratic or cubic polynomials is
sufficient, but we can use higher degree spaces in order to improve accuracy in the
approximation of harmonic functions.
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A Local Coarse Space Correction Leading to a
Well-Posed Continuous Neumann-Neumann
Method in the Presence of Cross Points

Faycal Chaouqui, Martin J. Gander, and Kévin Santugini-Repiquet

1 Introduction

Neumann-Neumann methods (NNMs) are among the best parallel solvers for dis-
cretized partial differential equations, see [12] and references therein. Their common
polylogarithmic condition number estimate shows their effectiveness for many dis-
cretized elliptic problems, see [9, 10, 5]. However, NNM was originally described
in [1] as an iteration at the continuous level like the classical Schwarz method, but
only for two subdomains, see also [11]. This is because in contrast to the Schwarz
method, it does not converge for general decompositions into many subdomains
when used as a stationary iteration [4, 3]. Furthermore, for decompositions present-
ing cross points, NNM is not well-posed in �1 and has as a stationary iteration a
convergence factor that deteriorates polylogarithmically in the mesh size ℎ, see [4].
The iterates being discontinuous at the cross points also prevents NNM from being
well-posed in �2. We propose here a very specific local coarse space that leads to a
well posed NNM at the continuous level for the model problem

−ΔD = 5 in Ω, D = 0 on mΩ, (1)

where 5 ∈ !2 (Ω), and Ω can be decomposed as in Fig. 1, i.e. the decomposition
can contain cross points. In Section 2 we present NNM at the continuous level for
a 2 × 1 decomposition and show why it is always well-posed in �1. In Section 3
we show why NNM for a 2 × 2 decomposition containing a cross point is not in
general well-posed in �1. To make it well-posed in �2, we introduce a very specific
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Ω1 Ω2

0 1−1

0

−1

Ω1 Ω2

Ω3Ω4

0 1−1

0

−1

1

Fig. 1: Decomposition without a cross point (left) and with a cross point (right)

Algorithm 1: NNM for a 2 × 1 decomposition
1. Set 60

12 to zero or any inexpensive initial guess.
2. For = = 0, 1, . . . until convergence

a. Solve the Dirichlet problems

−ΔD=1 = 5 in Ω1,

D=1 = 6
=
12 on Γ,

D=1 = 0 on mΩ1 ∩ mΩ,

−ΔD=2 = 5 in Ω2,

D=2 = 6
=
12 on Γ,

D=2 = 0 on mΩ2 ∩ mΩ.

b. Solve the Neumann problems

−Δk=1 = 0 in Ω1,

mk=1
m=1

=
1
2
( mD

=
1

m=1
+ mD

=
2

m=2
) on Γ,

k=1 = 0 on mΩ1 ∩ mΩ,

−Δk=2 = 0 in Ω2,

mk=2
m=2

=
1
2
( mD

=
1

m=1
+ mD

=
2

m=2
) on Γ,

k=2 = 0 on mΩ2 ∩ mΩ,

where =8 is the outward pointing normal on mΩ8 , 8 = 1, 2.
c. Update the trace 6=+112 = 6=12 − 1

2 (k=1 + k=2 ) on Γ.

local coarse space correction. Our new NNM then converges as a stationary iterative
solver, also in the presence of cross points, and we show numerically that it is a better
preconditioner than the classical NNM in the case of many cross points.

2 Existence of iterates for a 2 × 1 decomposition

For a decomposition as shown in Fig. 1 (left), let Γ := {0} × (0, 1) be the interface
between Ω1 and Ω2. The NNM in Algorithm 1 is well-posed with iterates in �1:
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Theorem 1 If 60
12 ∈ �

1
2
00 (Γ) (the Lions-Magenes space defined in [7, Chapter 1]),

then Algorithm 1 is well-posed and for all = ≥ 0 we have D=
8
∈ +8 , where +8 :={

E ∈ �1 (Ω8) : E = 0 on mΩ8 ∩ mΩ
}
for 8 = 1, 2.

To prove Theorem 1, we first need to prove

Lemma 1 Denote by W : +1 ↦→ �
1
2
00 (Γ) the restrictionmap onΩ1. There exists�1 > 0

such that for all E1 ∈ +1
‖WE1‖

�
1
2

00 (Γ)
≤ �1‖E1‖+1 . (2)

Moreover, there exists �2 > 0 such that for all 6 ∈ �
1
2
00 (Γ), there exists Ẽ2 such that

W̃Ẽ2 = 6, and
‖Ẽ2‖+2 ≤ �2‖6‖

�
1
2

00 (Γ)
, (3)

where W̃ : +2 ↦→ �
1
2
00 (Γ) denotes the restriction map on Ω2.

Proof The continuity and surjectivity of W : +1 ↦→ �
1
2
00 (Γ) comes from [8, Chap-

ter 4,Th 2.3] and the definition of �
1
2
00 (Γ). Let 6 ∈ �

1
2
00 (Γ). The surjectivity of

W̃ : +2 ↦→ �
1
2
00 (Γ) ensures the existence of Ẽ2 ∈ +2 such that the equality W̃Ẽ2 = 6

holds. Using then the open mapping theorem for W̃; see e.g. [2, Chapter 2,Th 2.6], we
know that there exists �2 > 0 such that Eq. (3) holds, which concludes the proof. �

Proof (of Theorem 1) Since 60
12 satisfies the �1-compatibility relations, we know

by the Lax-Millgram Lemma that D0
1 ∈ +1 and D0

2 ∈ +2. Now it suffices to show that
k0

1 and k0
2 are also in +1 and +2. We know that k0

1 and k0
2 satisfy∫

Ω1

∇k0
1∇E1 =

∫
Γ

1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
E1, for all E1 ∈ +1,∫

Ω2

∇k0
1∇E2 =

∫
Γ

1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
E2, for all E2 ∈ +2.

In order to apply the Lax-Milgram Lemma, it suffices to show that 11 (E1) :=∫
Γ

1
2 (
mD0

1
m=1
+ mD

0
2

m=2
)E1 and 12 (E2) :=

∫
Γ

1
2 (
mD0

1
m=1
+ mD

0
2

m=2
)E2, define a continuous map on +1

and +2. It suffices to prove this for 11, and the same then holds for 12. Indeed, we
have for all E1 ∈ +1
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11 (E1) =
〈
mD0

1
m=1

, E1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)
+

〈
mD0

2
m=2

, E1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)

=

〈
mD0

1
m=1

, WE1

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)
+

〈
mD0

2
m=2

, W̃Ẽ2

〉
�
− 1

2 (Γ) ,�
1
2

00 (Γ)

= −
∫
Ω1

5 E1 +
∫
Ω1

∇D0
1∇E1 −

∫
Ω2

5 Ẽ2 +
∫
Ω2

∇D0
2∇Ẽ2.

Hence, |11 (E1) | ≤ � (‖E1‖+1 + ‖Ẽ2‖+2 ) ≤ � (1 + �1�2)‖E1‖+1 . We deduce then that
11 is a continuous map on +1. In the same manner, we prove that 12 is continuous
on+2, and by applying the Lax-Milgram Lemma, we obtain that k0

1 and k
0
2 are in +1

and+2. Finally, we conclude that 61
12 ∈ �

1
2
00 (Γ). Repeating then the same arguments,

we conclude that 6=12 ∈ �
1
2
00 (Γ) for all = ≥ 0. �

3 Existence of iterates for a 2 × 2 decomposition

We now study the well-posedness of NNM for a 2 × 2 decomposition, see Fig. 1
(right). The well-posedness in this case cannot be treated as in Section 2. In fact, let
Γ12 := {0} × (−1, 0), Γ23 := (0, 1) × {0}, Γ34 := {0} × (0, 1), Γ41 := (−1, 0) × {0}
be the shared interfaces. Then 60

12 ∈ �
1
2 (Γ12), 60

23 ∈ �
1
2 (Γ23), 60

34 ∈ �
1
2 (Γ34),

60
41 ∈ �

1
2 (Γ41) is not sufficient for the first iterates to exist: the traces need to satisfy

additional assumptions which are known as the �1-compatibility relations (CR1)
which are∫ Y

0

��60
12 (−f) − 60

41 (−f)
��2 df
f

< ∞,
∫ Y

0

��60
12 (−f) − 60

23 (f)
��2 df
f

< ∞,∫ Y

0

��60
23 (−f) − 60

34 (−f)
��2 df
f

< ∞,
∫ Y

0

��60
34 (−f) − 60

41 (f)
��2 df
f

< ∞,

for Y > 0 small enough; see [8, chapter 4,Th 2.3]. However, even if the initial iterates
satisfy CR1, this does in general not hold for the following iterates. This explains
why NNM is in general not well-defined for a 2 × 2 decomposition with a cross
point. This is also the reason why NNM does not converge iteratively and has a
convergence factor that grows logarithmically with respect to the mesh size after
discretization as we mentioned in Section 1. We propose here to add a very specific
local coarse space correction such that NNM becomes well-posed. Since the CR1
are global, it is not clear how to define a coarse space such that NNM with the
additional coarse correction satisfies these conditions systematically. We thus look
for a coarse space correction such the iterates are not in�1 but rather in�2. However,
even the condition 60

12 ∈ �
3
2 (Γ12), 60

23 ∈ �
3
2 (Γ23), 60

34 ∈ �
3
2 (Γ34), 60

41 ∈ �
3
2 (Γ41)

does not ensure the existence of �2 iterates, and one needs to satisfy the so-called
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Fig. 2: Iterates 1,2,3 of NNM for the solution of Eq. (1) (note the different scale).

Algorithm 2: NNM for a 2 × 2 decomposition
1. Initialize 60

12, 6
0
23, 6

0
34, 6

0
41.

2. For = = 0, 1, . . . until convergence

• Compute 6=+
1
2

12 , 6=+
1
2

23 , 6=+
1
2

34 , 6=+
1
2

41 using NNM (which used superscript = + 1).

• Find i12, i23, i34, i41 ∈ � 3
2 in a given local coarse space, e.g. in (4), s.t.

6=+112 := 6=+
1
2

12 + i12, 6
=+1
23 := 6=+

1
2

23 + i23,

6=+134 := 6=+
1
2

34 + i34, 6
=+1
41 := 6=+

1
2

41 + i41,

satisfiy by solving (5) the compatibility conditions

6=+112 (0) = 6=+123 (0) = 6=+134 (0) = 6=+141 (0).

�2-compatibility relations (CR2). This can also be illustrated numerically: we show
in Fig. 2 the first iterates of NNM for Eq. (1) with 5 = 1 discretized by %1 finite
elements with a mesh size ℎ = 0.1, and starting with smooth traces along the shared
edges. The iterates in Fig. 2 show that NNM does not converge iteratively and has a
discontinuity that forms at the origin. This discontinuity cannot happen if the iterates
are in �2 since their traces are in � 3

2 , hence continuous at the cross point. One can
show that this is the only problem that needs to be fixed in order to have a well-posed
method. We thus propose to add a coarse space correction consisting of functions
that are in � 3

2 on the common edges such that we enforce the continuity of the
iterates at the origin. The NNM with this local coarse space correction is given in
Algorithm 2. The next theorem ensures the well-posedness of Algorithm 2.

Theorem 2 If (60
12, 6

0
23, 6

0
34, 6

0
41) ∈ �

3
2 (Γ12)×� 3

2 (Γ23)×� 3
2 (Γ34)×� 3

2 (Γ41) satisfy
60

12 (0) = 60
23 (0) = 60

34 (0) = 60
41 (0), then Algorithm 2 is well-posed and for all = ≥ 0

we have D=
8
∈ �2 (Ω8) ∩ +8 , where +8 :=

{
E ∈ �1 (Ω8) : E = 0 on mΩ8 ∩ mΩ

}
for

8 = 1, . . . , 4.

We first state a result for the �2 compatibility relations (CR2) which can be found
in [8, chapter 4,Th 2.3].

Theorem 3 Define the trace mapping
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W : �2 (Ω1) ∩+1 ↦→ �
3
2 (Γ12) × �

1
2 (Γ12) × �

3
2 (Γ41) × �

1
2 (Γ41)

D ↦→ (
D(0, ·), mGD(0, ·), D(·, 0), mHD(·, 0)

)
.

Then (612, ℎ12, 641, ℎ41) ∈ Im (W) iff 6G (0) = 6H (0) and∫ Y

0

��6′12 (−f) − ℎ41 (−f)
��2 df
f

< ∞,
∫ Y

0

��6′41 (−f) − ℎ12 (−f)
��2 df
f

< ∞,

for Y > 0 sufficiently small.

From Theorem 3, we obtain the corollaries

Corollary 1 Define the mapping

W� : �2 (Ω1) ∩+1 ↦→ �
3
2 (Γ12) × �

3
2 (Γ41)

D ↦→ (D(0, ·), D(·, 0)) .

Then (612, 641) ∈ Im (W�) iff 612 (0) = 641 (0).

Proof In fact, it suffices to define ℎ41 := 6′12 (f) ∈ �
1
2 (Γ41) and ℎ12 := 6′41 (f) ∈

�
1
2 (Γ12) and apply Theorem 3 to (612, ℎ12, 641, ℎ41). �

Corollary 2 Define the mapping

W# : �2 (Ω1) ∩+1 ↦→ �
1
2 (Γ12) × �

1
2 (Γ41)

D ↦→ (
mGD(0, ·), mHD(·, 0)

)
.

Then W# is onto.

Proof Here again, it suffices to define 612 := −k(f)
∫ 0
f
ℎ41 (f′) 3f′ and 641 :=

−k(f)
∫ 0
f
ℎ12 (f′) 3f′, where k(f) ∈ �∞ [−1, 0] such that k(f) = 1 on (−Y, 0]

and k(f) = 0 on [−1,−2n), and apply Theorem 3 to (612, ℎ12, 641, ℎ41). �

Proof (of Theorem 2) We start by showing that D0
8
∈ �2 (Ω8) ∩ +8 for 8 = 1, . . . , 4.

We prove it for D0
1 and the proof for the remaining D0

8
is exactly the same. We

have that 60
12 ∈ �

3
2 (Γ12) and 60

14 ∈ �
3
2 (Γ14) and they satisfy 60

12 (0) = 60
14 (0),

hence using Corollary 1 we know that there exists F1 ∈ �2 (Ω1) ∩ +1 such that
D̃1 := D0

1 − F1 ∈ �1
0 (Ω1) is the solution of the variational problem∫
Ω1

∇D̃1∇E =
∫
Ω1

( 5 + ΔF1)E, for all E ∈ �1
0 (Ω1),

which using the result in [6, Chapter 3, p 147] has a unique solution in �2 (Ω1) ∩
�1

0 (Ω1), and it follows that D0
1 = D̃1 +F1 ∈ �2 (Ω1) ∩+1. In the same manner we can

show that D0
2, D

0
3, D

0
4 are in �

2 (Ω2) ∩+2, �2 (Ω3) ∩+3 and �2 (Ω4) ∩+4. Now, since
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mk0
1

m=1 |Γ12

=
1
2

(
mD0

1
m=1
+ mD

0
2

m=2

)
∈ � 1

2 (Γ12),
mk0

1
m=1 |Γ14

=
1
2

(
mD0

1
m=1
+ mD

0
4

m=4

)
∈ � 1

2 (Γ14),

we know by Corollary 2 that there exists again a function F̃1 ∈ �2 (Ω1) ∩ +1 such
that k̃1 := k0

1 − F̃1 ∈ �2 (Ω1) ∩+1 is the solution of the variational problem∫
Ω1

∇k̃1∇E =
∫
Ω1

ΔF̃1E for all E ∈ +1,

which has a solution k̃1 ∈ �2 (Ω1) ∩ +1, hence k0
1 = k̃1 + F̃1 ∈ �2 (Ω1) ∩ +1.

The same conclusion can be drawn for k0
2 , k

0
3 , k

0
4 using the same reasoning. It

follows then that 61
12, 6

1
23, 6

1
34, 6

1
41 are in �

3
2 (Γ12), � 3

2 (Γ23), � 3
2 (Γ34) and � 3

2 (Γ41)
respectively. Since the coarse functions q12, q23, q34, q41 in Algorithm 2 are chosen
such that 61

12 (0) = 61
23 (0) = 61

34 (0) = 61
41 (0), we can apply again Corollary 1. We

proceed again as before to prove that the next iterates are well defined, and so on.
Finally, we conclude that Algorithm 2 is well defined with iterates D=

8
∈ �2 (Ω8) ∩+8

for 8 = 1, . . . , 4. This finishes the proof. �

It remains to choose the coarse basis, and a first idea is to use linear functions,

i12 := U12 (1 + H), i23 := U23 (1 − G),
i34 := U34 (1 − H), i41 := U41 (1 + G),

(4)

where the coefficients U are determined using the pseudo inverse,
U12
U23
U34
U41

 =

1 −1 0 0
0 1 −1 0
0 0 1 −1


† 
6
=+ 1

2
23 (0) − 6

=+ 1
2

12 (0)
6
=+ 1

2
34 (0) − 6

=+ 1
2

23 (0)
6
=+ 1

2
41 (0) − 6

=+ 1
2

34 (0)

 , (5)

i.e. we compute the smallest correction to obtain continuous traces at the cross point.
The plots in Fig. 3 (top) show that this local linear coarse correction is sufficient
to obtain a convergent iterative method which does not form a singularity at the
cross point any more. To investigate how the convergence depends on the basis
chosen, we now use exponentially decaying functions of the form 4−`G and 4−`H .
Choosing ` := 3, we obtain the results shown in Fig. 3 (bottom): convergence is
much faster than with the linear coarse basis; see also Fig. 4 (left) for a comparison.
The number of iterations required for NNMwith our local coarse correction to reach
a tolerance of 10−6 for mesh size ℎ = 0.4, 0.2, 0.1, 0.05, 0.03 is 9, 15, 19, 23, 26 with
the linear coarse functions, and 7, 7, 7, 7, 10with the exponential ones.We finally test
Algorithm 2 with Krylov acceleration (GMRES), for the case of nine cross points
and the exponential coarse basis functions: the result is shown in Figure 3 (right),
and we see that the fact to be well posed in function space leads to a more effective
preconditioner.

We thus answered an interesting question in this short manuscript, namely why
NNM only appears in the literature for two subdomains at the continuous level, and
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Fig. 3: Iterates 1,2,3 of Algorithm 2 for Eq. (1) using a linear coarse basis (top) and an exponentially
decaying coarse basis (bottom)
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Fig. 4: Error curves of NNMwith and without coarse correction for one cross point (left), and with
Krylov acceleration for nine cross points (right)

otherwise only at the discrete level as a preconditioner: it is because it is not well
posed at the continuous level in the many subdomain case with cross points. We
then showed that a specific local coarse space can make NNM well posed at the
continuous level, which both leads to a convergent iterative NNM algorithm, and a
better preconditioner in the presence of cross points. We are currently investigating
if coarse basis functions exist for which we can prove that the convergence factor of
NNM becomes independent of the mesh size ℎ like for 2 subdomains.
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Happy 25th Anniversary DDM! ... But How Fast
Can the Schwarz Method Solve Your Logo?

Gabriele Ciaramella and Martin J. Gander

1 The ddm logo problem and the Schwarz method

“Vous n’avez vraiment rien à faire”!1 This was the smiling reaction of Laurence
Halpern when the first author told her about our wish to accurately estimate the
convergence rate of the Schwarz method for the solution of the ddm logo2, see
Figure 1 (left). Anyway, here we are: to honor the 25Cℎ anniversary of the domain
decomposition conference, we study the convergence rate of the alternating Schwarz
method for the solution of Laplace’s equation defined on the ddm logo. This method
was invented by H.A. Schwarz in 1870 [12] for the solution of the Laplace problem

ΔD = 0 in Ω, D = 6 on mΩ. (1)

H

G

X !

U
U

mΩ

Γ1 Ω2
Γ2Ω1

Fig. 1: Left: ddm logo. Center: Original drawing of Schwarz from 1870 [12]. Right: Geometric
parametrization of the ddm logo.

G. Ciaramella
Universität Konstanz, Germany, e-mail: gabriele.ciaramella@uni-konstanz.de

M. J. Gander
Université de Genève, Switzerland, e-mail: Martin.Gander@unige.ch

1 “You have really nothing to do”!
2 This logo was created by Benjamin Stocker, a friend for over 30 years of the second author and a
computer scientist and web designer for SolNet.
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Here 6 is a sufficiently regular function and Ω is the ddm logo, obtained from the
union of a discΩ1 and a rectangleΩ2, as historically considered by Schwarz [12]; see
Figure 1 (center). In this paper, we assume that Ω1 is a unit disc, and Ω2 has length
X + ! and height 2 cosU. Here, X, ! and U are used to parametrize Ω; see Figure 1
(right). In particular, X and ! measure the overlapping and non-overlapping parts of
Ω2, and U is the angle that parametrizes the interface Γ1 := mΩ1 ∩Ω2. The other
interface Γ2 := mΩ2 ∩Ω1 is clearly parametrized by X and U, and it is composed
by three segments whose vertices are (X, 0), (0, 0), (0, 2 sinU), and (X, 2 sinU). To
avoid meaningless geometries (e.g., Ω2 \Ω1 becomes a disjoint set), we assume that
X and U are non-negative and satisfy X < 2 cosU.

In error form, the classical alternating Schwarz method for the solution to (1) is

Δ4=1 = 0 in Ω1,

4=1 = 0 on mΩ ∩Ω1,

4=1 = 4
=−1
2 on Γ1,

Δ4=2 = 0 in Ω2,

4=2 = 0 on mΩ ∩Ω2,

4=2 = 4
=
1 on Γ2,

(2)

where the left subproblem is a Laplace problem on the disc and the right one on the
rectangle. Assuming that one begins with a sufficiently regular initial guess 40, then
solving iteratively (2) one obtains the sequence (4=1 )=∈N+ of errors on the discΩ1 and
the sequence (4=2 )=∈N+ of errors on the rectangle Ω2. The functions 4=1 and 4=2 are
continuous in their (open) domain, but can have jumps at the two points where mΩ1
and mΩ2 intersect, except if the initial guess satisfies the boundary conditions. How
fast do these two sequences converge to zero? The estimate of the convergence rate
of the Schwarz method for this particular geometry is not easy. Over the course of
time, different analysis techniques have been proposed to study the classical Schwarz
method: maximum principle analysis, see, e.g., [12, 10, 3], Fourier analysis, see, e.g.,
[6, 2], variational analysis, see, e.g., [9, 4], and stochastic analysis [10]. In the spirit
of this historical manuscript, we estimate the convergence rate by using tools that
are considered “classical” in domain decomposition methods: maximum principle,
the Riemann mapping theorem, the Poisson kernel, and the Schwarz-Christoffel
mapping3. However, we wish to remark that, to the best of our knowledge the results
presented in this work are new, and that the techniques used to prove them can
be in principle used to study other domains with complicated geometries, whose
subdomains can be mapped into circles and (semi-)infinite rectangles.

2 Convergence analysis

We begin our analysis noticing that maximum principle arguments, as done in [3,
Theorem 7], allow us to obtain the following convergence result; see also [8].

3 The Schwarz-Christoffel mapping was discovered independently by Christoffel in 1867 [1] and
Schwarz in 1869 [11]; see [5] for a review.
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Ω1

F = 0
F = 1

Γ1
A Ũ

Ω1

Ũ
U

%

A Ũ

Fig. 2: Left: Level sets of F . Right: Geometric parametrization of a level set of F .

Theorem 1 (Convergence of the Schwarz method) The Schwarz method (2) con-
verges geometrically to the solution of (1) in the sense that there exists a convergence
factor d < 1 such that4

max
9=1,2
‖4=9 ‖∞,Ω 9 ≤ d

= max
9=1,2
‖40
9 ‖∞,Ω 9 , (3)

where d =
(
supΓ1 E2

) (
supΓ2 E1

)
, with E 9 solving for 9 = 1, 2 the problem

ΔE 9 = 0 in Ω 9 , E 9 = 1 on Γ 9 , E 9 = 0 on mΩ ∩Ω 9 . (4)

We thus have to study the two functions E1 and E2. Notice also the two sup in the
definition of d could be replaced by max, as we see in what follows. We begin by
studying E1 and recalling the following result, which is proved in [3] by the Riemann
mapping theorem and the Poisson kernel formula.

Lemma 1 Problem (4) for 9 = 1 has a unique solution F which is harmonic in Ω1
and constant on arcs of circles A Ũ passing through the two extrema of Γ1 (see Fig.
2, left) and parametrized by angles Ũ between the horizontal line and the line that
connects the center of the arc A Ũ to the point % (see Fig. 2, right), i.e.

F(G, H) = Ũ − U
c

∀(G, H) ∈ A Ũ, (5)

with 0 < F(G, H) < 1 for any (G, H) ∈ Ω1 and U ≤ Ũ < c. Moreover, it holds that
F(G, H) = o/c for all (G, H) ∈ A Ũ, where o is the angle between the tangent to A Ũ

in % and the tangent of mΩ2 in %; see Fig. 3 (left).

Lemma 1 allows us to identify the sup of E1 on Γ2 with the max, that we estimate:

Lemma 2 (Estimated convergence factor on the disc) Consider the function E1
solving (4) for 9 = 1. It holds that

max
Γ2

E1 =

{ 1
2 − U

c
if X ≥ sinU,

1 − 1
c

[
U + arcsin

( 2X sin U
X2+sin2 U

) ]
if X < sinU.

(6)

4 The convergence rate is − log d, see [7, Section 11.2.5].
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Proof Lemma 1 implies that E1 decays monotonically in Ω1, in the sense that,
according to formula (5) as Ũ decreases, the arc A Ũ is closer to mΩ1 \ Γ1, and
E1 |A Ũ decreases monotonically. Therefore, to estimate the maximum of E1 on Γ2 we
must find the arc that intersects Γ2 on which E1 has the highest value. To do so, we
distinguish two cases: X ≥ sinU and X < sinU.

If X ≥ sinU, then there exists an arcA (a semi-circle) that lies in the closure of the
overlapping domain Ω1 ∩Ω2 and that is tangent to Γ2 in the two points mΩ1 ∩ mΩ2.
Notice that if X = sinU, then A intersects Γ2 also in the midpoint of its vertical
segment. By the monotonicity of E1,A is the arc intersecting Γ2 on which E1 attains
the highest value. Since A is tangent to Γ2 in both the points in mΩ1 ∩ mΩ2, a
simple geometric argument and the formula E1 (G, H) = o/c allow us to obtain that
maxΓ2 E1 = maxmΩ1∩mΩ2 E1 =

1
2 − U

c
.

Consider now that X < sinU. In this case, the monotonicity of E1 implies that
the arc that intersects Γ2 on which E1 attains the highest value is the one that passes
through the two points in mΩ1 ∩ mΩ2 and the midpoint of the vertical segment of Γ2.
Once this arc is found, direct calculations using simple geometric arguments and the
formula E1 (G, H) = o/c allow us to obtain the claim. �

Next, we focus on the function E2 defined on the rectangleΩ2. We begin recalling
the following result proved in [3].

Lemma 3 Let < denote the Möbius transformation that maps the half-plane P :=
R × R+ onto the unit disc Ω1. Recall the function F defined in Lemma 1. Then the
function F̂(b, [) := F(<(b, [)) for all (b, [) ∈ P is harmonic in P, it satisfies the
boundary conditions F̂(b, [) = 1, for all (b, [) on the segment <−1 (Γ1) that lies on
the horizontal line, and F̂(b, [) = 0, for all (b, [) ∈ (R×{0})\<−1 (Γ1). Moreover F̂
is constant on arcs of circles passing through the extrema of <−1 (Γ1). Let & be one
of the two extrema of <−1 (Γ1) and let o be the external angle between the tangent to
one of these arcs, denoted by Ao , in & and the horizontal axis, then F̂ |Ao = o/c.

Notice that Lemma 3 allows us to identify the sup of E2 on Γ1 with the max. We
can then prove the following lemmas.

Lemma 4 Consider a semi-infinite stripΩ∞2 obtained by extendingΩ2 from the right
to infinity and recall the half-plane P from Lemma 3.

(a)The Schwarz-Christoffel function that maps the semi-infinite strip onto the half-
plane, denoted as 6 : Ω∞2 → P, is given by

6(G, H) =
[
cosh(G c

2 sin U ) cos(H c
2 sin U )

sinh(G c
2 sin U ) sin(H c

2 sin U )
]
.

Moreover, 6 maps the interface Γ2 onto the set [6(X, 0), 6(X, 2 sinU)] × {0}.
(b)Let E∞2 be a harmonic function in Ω∞2 such that E∞2 = 1 on Γ2, E∞2 = 0 on
mΩ∞2 \ Γ2 and E∞2 (G, H) → 0 as G → ∞. Let E2 be the solution of (4) for 9 = 2.
Then E2 (G, H) < E∞2 (G, H) for all (G, H) ∈ Ω2.
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Proof Part (a): Recall the Schwarz-Christoffel function 5 (Z) = � +  arcosh(Z)
for Z ∈ C, where � and  are two constants in C. It is well known that 5 maps
the half-plane into any semi-infinite strip. Therefore, it is sufficient to determine the
constants � and  by requiring that 5 (1) = 0 and 5 (−1) = 82 sinU, where 8 is the
imaginary unit. These conditions imply that the two corners of Γ2 are mapped onto
the points {−1, 1} that lie on the real line in C. We get � = 0 and  = 2(sinU)/c.
Hence, 5 (Z) = (2(sinU)/c) arcosh(Z). Now, for any I = G + 8H = 5 (Z), we have that
Z = cosh((G + 8H)c/(2 sinU)). The function 6 is then obtained by using the formula
cosh(0(G + 8H)) = cosh(0G) cos(0H) + 8 sinh(0G) sin(0H), with 0 = c/(2 sinU). The
last claim follows by the fact that (6(G, 0))2 = (6(G, 2 sinU))2 = 0 for any G and
(6(0, H))2 = 0 for any H and the properties of cosh and cos.

Part (b): Consider the function ? := E∞2 |Ω2
. Clearly ? is harmonic in Ω2 and it

satisfies ? = E2 on Γ2, ? = 0 on mΩ2 ∩ Ω∞2 . However, by the maximum principle
?(G, H) > 0 for all (G, H) ∈ mΩ2 \ Ω∞2 . We can then decompose ? as ? = E2 + ?̃,
where ?̃ is harmonic in Ω2, ?̃ = 0 on mΩ2 \ Ω∞2 and ?̃ = ? on mΩ2 ∩ Ω∞2 . By the
maximum principle ?̃(G, H) > 0 for all (G, H) ∈ Ω2. Hence, E∞2 |Ω2

(G, H) = ?(G, H) =
E2 (G, H) + ?̃(G, H) > E2 (G, H) for all (G, H) ∈ Ω2 and the claim follows. �

Next, we parametrize the arc Γ1 by an angle i ∈ [0, c] such that every point %
on Γ1 can be obtained as

%(i) =
[
G% (i)
H% (i)

]
:=

[
X + A (i) sin i

sinU − A (i) cos i

]
,

where A (i) = − cosU sin i +
√

sin2 U + cos2 U sin2 i. Using the function 6 in
Lemma 4, we can map the arc Γ1 into the half-plane and define Γ̂1 := 6(Γ1) =
{(b, [) ∈ P : (b, [) = 6(G% (i), H% (i)) for i ∈ [0, c]}. Notice that Γ̂1 is a curve
in the half-plane P and intersects the horizontal axis in the two points 6(X, 0) and
6(X, 2 sinU). We consider the following conjecture.

Conjecture Consider the arc Γ of the circle passing through the points 6(X, 0) and
6(X, 2 sinU) and that intersects Γ̂1 in 6(G% (c/2), H% (c/2)). Then for any X ≥ 0 and
U ≥ 0 such that X < 2 cosU, Γ is contained in the closure of the domain whose
boundary is Γ̂1 ∪ ([6(X, 0), 6(X, 2 sinU)] × {0}). �

A pictorial representation of Conjecture 1 is given in Fig. 3 (right). Notice that
we have observed by direct numerical evaluation that Conjecture 1 always holds. We
can then prove the following result.

Lemma 5 (Estimated convergence factor on the rectangle) Let Conjecture 1 hold
and recall the function E∞2 in Lemma 4. Then

max
Γ1

E2 ≤ E∞2 (G% (c/2), H% (c/2)) =
1
2
− 1
c

arcsin(^(X, U)), (7)

where
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mΩ1 Γ1
F = 0 F = 1

A Ũo

% 6(X, 0) 6(Γ2) 6(X, 2 sinU)

6(G% ( c2 ), H% ( c2 ))

Γ̂1 = 6(Γ1)Γ

o

Fig. 3:Left: Geometry used in Lemma 1. Right: Geometric representation of Conjecture 1: the black
solid curve represents Γ̂1 = 6 (Γ1) and the black dashed arc of circle is Γ that passes through the
points 6 (X, 0) , 6 (G% ( c2 ) , H% ( c2 )) and 6 (X, 2 sin U) . The set 6 (Γ2) is [6 (X, 0) , 6 (X, 2 sin U) ]×
{0} and is marked in grey.

^(X, U) =
sinh2

(
c (1+X−cos U)

2 sin U

)
− cosh2

(
c X

2 sin U

)
sinh2

(
c (1+X−cos U)

2 sin U

)
+ cosh2

(
c X

2 sin U

) . (8)

Proof Lemma 4 (b) implies that E2 (G, H) ≤ E∞2 (G, H) for all (G, H) ∈ Γ1. Using the
function 6 in Lemma 4 (a), we define F∞ (b, [) := E∞2 (G, H) for all (G, H) ∈ Ω∞2 and
(b, [) = 6(G, H). Notice that maxΓ1 E

∞
2 = max

Γ̂1
F∞. The function F∞ is harmonic

in P and satisfies the conditions F∞ (b, 0) = 1 for b ∈ [6(X, 0), 6(X, 2 sinU)] and
F∞ (b, 0) = 0 for b ∈ R \ [6(X, 0), 6(X, 2 sinU)]. Hence, by using Lemma 3 we
obtain that the function F∞ is constant on arcs of circles Ao passing through the
two points 6(X, 0) and 6(X, 2 sinU). Moreover, the value of F∞ on these arcs is given
by F̂ |Ao = o/c, where o is defined in Lemma 3. This means that as o decreases,
the arcAo becomes larger and the value F̂ |Ao decreases monotonically. Therefore,
the value max

Γ̂1
F∞ is given by the value of F∞ on the arc Γ of the circle that

passes through the two points 6(X, 0) and 6(X, 2 sinU), that intersects Γ̂1, and that
corresponds to the largest o; see Fig. 3 (right). By Conjecture 1, Γ is the arc of the
circle that passes through the point 6(G% ( c2 ), H% ( c2 )). Notice that Γ is represented
by a dashed line in Fig. 3 (right). Hence, max

Γ̂1
F∞ = F∞ (6(G% (c/2), H% (c/2))).

The result follows by the formula F̂ |Ao = o/c and a direct calculation based on
geometric arguments to obtain the angle o characterizing Γ (see Fig. 3, right). �

We are now ready to prove our estimate of the convergence rate of the Schwarz
method for the ddm logo.

Theorem 2 (Estimated convergence factor on the ddm logo) The Schwarz method
(2) converges in the sense of (3), where

d ≤
{( 1

2 − 1
c

arcsin(^(X, U))) ( 1
2 − U

c

)
if X ≥ sinU,( 1

2 − 1
c

arcsin(^(X, U))) [1 − 1
c

(
U + arcsin

( 2X sin U
X2+sin2 U

) )]
if X < sinU,

(9)

with ^(X, U) given in (8).

Proof Recalling Theorem 1 and the formula d =
(
maxΓ1 E2

) (
maxΓ2 E1

)
, the estimate

(9) follows using Lemmas 2 and 5. �
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The estimated convergence factors obtained in Lemmas 2 and 5 and Theorem 2 are
shown in Fig. 4. In particular, in Fig. 4 (left) the function (6) is shown. Fig. 4 (center)
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Fig. 4: Left: Values of maxΓ2 E1 as function of U and X given in (6). Center: Estimate of maxΓ1 E2
given in (7). Right: Estimated convergence factor for the ddm logo given in (9).

represents the upper bound (7). Fig. 4 (right) shows the estimated convergence factor
(9) for the ddm logo. The black curves in Fig. 4 (left and right) represent the function
sinU separating two regions according to (6) and (9).

3 Numerical experiments

We now compare our theoretical estimates with the numerical convergence behavior.
We discretize the ddm logo by linear finite elements using Freefem5. Two finite
element discretizations of the ddm logo are shown in Fig. 5. In order to accurately
describe the behavior of the (continuous) Schwarz method, we used however in our
experiments much finer meshes than the ones shown in Fig. 5. We solve problem
(1) for a fixed ! = 2 and different values of the parameters U and X. Our results are
shown in Fig. 6, where the decay of the error with respect to the number of iterations
is represented. In particular, our theoretical estimates (solid lines) are compared with

Fig. 5: Examples of finite element discretizations of the ddm logo obtained by Freefem. Left:
U = 0.5, X = 0.5 and ! = 2. Right: U = 0.5, X = 0 and ! = 2.

5 This finite-element code was designed by the first author and Felix Kwok for the DD Summer
school organized by the second author at the University of Nice, June 19-21, 2018, and it was also
used by the second author in his plenary lecture at the 25Cℎ domain decomposition conference.
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Fig. 6: Theoretical (solid line) and numerical (dashed line) convergences.

the numerical errors (dashed lines). The first two pictures in Fig. 6 (left and center)
correspond to U = 0.1 and U = 0.5 and different values of X > 0. Notice that, even
though our theoretical estimate is an upper bound for the true convergence rate, it
describes very well the behavior of the method for different parameters. To study the
sharpness of our results, we consider also the case with X = 0 and different values of
U. The results of these experiments are shown in Fig. 6 (right), where one can clearly
see that our results are very sharp for X = 0 and small values of U. The reason for this
behavior is that our results are based on Theorem 1, where few estimates are present
in the proof; see [3]. These are sharper when the dominating error is localized near
the two points in mΩ1 ∩ mΩ2 and the overlap is small.
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Additive Schwarz Preconditioners for a State
Constrained Elliptic Distributed Optimal
Control Problem Discretized by a Partition of
Unity Method

Susanne C. Brenner, Christopher B. Davis, and Li-yeng Sung

1 Introduction

In this work, we are interested in solving a model elliptic optimal control problem
of the following form: Find (H, D) ∈ �1

0 (Ω) × !2 (Ω) that minimize the functional

� (H, D) = 1
2

∫
Ω

(H − 5 )23G + V
2

∫
Ω

D23G

subject to
−ΔH = D in Ω, H = 0 in mΩ, (1)

and H ≤ k inΩ, whereΩ is a convex polygon in R2 and 5 ∈ !2 (Ω).We also assume
k ∈ �2 (Ω) ∩ �3 (Ω) and k > 0 on mΩ.

Using elliptic regularity (cf. [7]) for (1), we can reformulate the model problem
as follows: Find H ∈  such that

H = argmin
E∈ 

[
1
2
0(E, E) − ( 5 , E)

]
, (2)

where  = {E ∈ �2 (Ω) ∩ �1
0 (Ω) : E ≤ k in Ω},

0(F, E) = V
∫
Ω

ΔFΔE3G +
∫
Ω

FE3G and ( 5 , E) =
∫
Ω

5 E3G.

Once H is calculated, then D can be determined by D = −ΔH.
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The minimization problem (2) is discretized in [4] by a partition of unity method
(PUM). The goal of this paper is to use the ideas in [5] for an obstacle problem
of clamped Kirchhoff plates to develop preconditioners for the discrete problems in
[4]. We refer to these references for technical details and only present the important
results here.

2 The Discrete Problem

We will use a variant of the PUM (cf. [11, 8, 1, 12]) to construct a conforming
approximation space +ℎ ⊂ �2 (Ω) ∩ �1

0 (Ω). Below we present an overview of the
construction of +ℎ .

Let {Ω8}=8=1 be an open cover of Ω̄ such that there exists a collection of nonnegative
functions {q8}=8=1 ∈ ,2∞ (R2) with the following properties:

supp q8 ⊂ Ω8 for 1 ≤ 8 ≤ =,
=∑
8=1

q8 = 1 on Ω,

|q8 |,<∞ (R2) ≤
�

(diamΩ8)< for 0 ≤ < ≤ 2, 1 ≤ 8 ≤ =.

For 1 ≤ 8 ≤ =, the local approximation space +8 consists of biquadratic polyno-
mials satisfying the Dirichlet boundary conditions of (1), i.e. E = 0 on mΩ for all
E ∈ +8 . Basis functions for +8 are tensor product Lagrange polynomials. Figure 1
(b) shows an illustration that depicts the interpolation nodes corresponding to the
interior degrees of freedom for a given discretization.

In this work the patches {Ω8}=8=1 are open rectangles and {q8}=8=1 are�
1 piecewise

polynomial tensor product flat-top partition of unity functions. Ωflat
8

= {G ∈ Ω8 :
q8 (G) = 1}. The interpolation nodes associated with +8 are distributed uniformly
throughout Ωflat

8
, this is the reason the global basis functions have the Kronecker

delta property. We will assume that the diameters of the patches are comparable to
a mesh size ℎ.We now define

+ℎ =

=∑
8=1

q8+8 .

Let Nℎ be the set of all interior interpolation nodes used in the construction of
+ℎ . The discrete problem is to find Hℎ ∈  ℎ such that

Hℎ = argmin
E∈ ℎ

[
1
2
0(E, E) − ( 5 , E)

]
, (3)

where  ℎ = {E ∈ +ℎ : E(?) ≤ k(?) ∀? ∈ Nℎ}.
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Fig. 1: (a) Ω8 (bounded by dotted lines) and Ωflat
8

(shaded in grey)
(b) nodes for the interior DOFs

By introducing a Lagrange multiplier _ℎ : Nℎ → R, the minimization problem
(3) can be rewritten in the following form: Find Hℎ ∈  ℎ such that

0(Hℎ , E) − ( 5 , E) = −
∑
?∈Nℎ

_ℎ (?)E(?) ∀ E ∈ +ℎ ,

_ℎ (?) = max(0, _ℎ (?) + 2(Hℎ (?) − k(?))) ∀ ? ∈ Nℎ ,

where 2 is a (large) positive number (2 = 108 in our numerical experiments).
This system can then be solved by a primal-dual active set (PDAS) algorithm (cf.
[2, 3, 9, 10]). Given the :-th approximation (H: , _: ), the (: + 1)-st iteration of the
PDAS algorithm is to find (H:+1, _:+1) such that

0(H:+1, E) − ( 5 , E) = −
∑
?∈Nℎ

_:+1 (?)E(?) ∀E ∈ +ℎ ,

H:+1 (?) = k(?) ∀? ∈ A: , (4)
_:+1 (?) = 0 ∀? ∈ Nℎ\A: ,

where A: = {? ∈ Nℎ : _: (?) + 2(H: (?) − k(?)) > 0} is the set of active nodes
determined from the approximations (H: , _: ). Below we present preconditioners for
the linear systems encountered in (4).

3 The Preconditioners

The additive Schwarz preconditioners (cf. [6]) will be applied to a system associated
with a subset Ñℎ of Nℎ . Let )̃ℎ : +ℎ → +ℎ be defined by
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()̃ℎE) (?) =
{
E(?) if ? ∈ Ñℎ

0 if ? ∉ Ñℎ .

The approximation space for the subproblem is +̃ℎ = )̃ℎ+ℎ . The associated stiffness
matrix is a symmetric positive definite operator �̃ℎ : +̃ℎ → +̃ ′

ℎ
defined by

〈�̃ℎE, F〉 = 0(E, F) ∀ E, F ∈ +̃ℎ ,

where 〈·, ·〉 is the canonical bilinear form on +̃ ′
ℎ
× +̃ℎ .

AOne-LevelMethod Here we introduce a collection of shape regular subdomains
{� 9 }�9=1 with diam � 9 ≈ � that overlap with each other by at most X. Associated
with each subdomain is a function space + 9 ⊂ +̃ℎ whose members vanish at the
nodes outside � 9 . Let � 9 : + 9 → + ′

9
be defined by

〈� 9E, F〉 = 0(E, F) ∀E, F ∈ + 9 .

The one-level additive Schwarz preconditioner �OL : + ′
ℎ
→ +ℎ is defined by

�OL =

�∑
9=1

� 9�
−1
9 �

C
9 ,

where � 9 : + 9 → +̃ℎ is the natural injection.
Following the arguments in [5], we can obtain the following theorem.

Theorem 1 There exists a positive constant �OL independent of �, ℎ, �, X and #̃ℎ
such that

^(�OL �̃ℎ) ≤ �OLX
−3�−1.

Remark 1 The estimate given in Theorem 1 is identical to the one for the plate
bending problem without an obstacle, i.e., the obstacle is invisible to the one-level
additive Schwarz preconditioner.

ATwo-LevelMethod Let+� ⊂ �2 (Ω)∩�1
0 (Ω) be a coarse approximation space

based on the construction in Section 2 where � > ℎ.We assume the patches of +�
are of comparable size to the subdomains {� 9 }�9=1. Let Πℎ : �2 (Ω) ∩�1

0 (Ω) → +ℎ

be the nodal interpolation operator. We define +0 ⊂ +̃ℎ by +0 = )ℎΠℎ+� , and
�0 : +0 → + ′0 by

〈�0E, F〉 = 0(E, F) ∀ E, F ∈ +0.

The two-level additive Schwarz preconditioner �TL : + ′
ℎ
→ +ℎ is given by

�TL =

�∑
9=0

� 9�
−1
9 �

C
9 ,
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where �0 : +0 → +̃ℎ is the natural injection. Using the arguments in [5], we can
obtain the following theorem.

Theorem 2 There exists a positive constant �TL independent of �, ℎ, �, X and #̃ℎ
such that

^(�TL�ℎ) ≤ �TL min
((�/ℎ)4, X−3�−1).

Remark 2 The two-level method is scalable as long as �/ℎ remains bounded.

Remark 3 The estimate given in Theorem 2 is different from the estimate for the
plate bending problem without obstacles that reads

^ (�) !�ℎ) ≤ �
(
�

X

)3
.

This difference is caused by the necessity of truncation in the construction of +̃0
when the obstacle is present.

4 A Numerical Example

We consider Example 4.2 in [4], where Ω = (−0.5, 0.5)2, V = 0.1, k = 0.01,
and 5 = 10(sin(2c(G1 + 0.5)) + (G2 + 0.5)). We discretize (3) by the PUM with
uniform rectangular patches so that ℎ ≈ 2−ℓ , where ℓ is the refinement level. As ℓ
increases from 1 to 8, the number of degrees of freedom increases from 16 to 586756.
The discrete variational inequalities are solved by the PDAS algorithm presented in
Section 2, with 2 = 108.

For the purpose of comparison, we first solve the auxiliary systems in each
iteration of the PDAS algorithm by the conjugate gradient (CG) method without a
preconditioner. The average condition number during the PDAS iteration and the
time to solve the variational inequality are presented in Table 1. The PDAS iterations
fail to stop (DNC) within 48 hours beyond level 6.

Table 1: Average condition number (^) and time to solve (Csolve) in seconds by the CG algorithm

ℓ ^ Csolve
1 3.1305×10+2 2.6111×10−2

2 9.1118×10+3 1.0793×10−1

3 2.0215×10+5 9.7842×10−1

4 3.3705×10+6 3.3911×10+1
5 6.4346×10+7 6.2173×10+2
6 1.0537×10+9 8.8975×10+3
7 DNC DNC
8 DNC DNC
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We then solve the auxiliary systems by the preconditioned conjugate gradient
(PCG) method, using the additive Schwarz preconditioners associated with � sub-
domains. The mesh size � for the coarse space +� is ≈ 1/√�. We say the PCG
method has converged if ‖�A ‖2 ≤ 10−15‖1‖2, where � is the preconditioner, A is
the residual, and 1 is the load vector. The initial guess for the PDAS algorithm is
taken to be the solution at the previous level, or 0 if 22ℓ = �. To obtain a good initial
guess for the two-level method, the one-level method is used when 22ℓ = �. The
subdomain problems and the coarse problem are solved by a direct method based on
the Cholesky factorization on independent processors.

Small Overlap Here we apply the preconditioners in such a way that X ≈ ℎ.
The average condition numbers of the linear systems over the PDAS iterations are
presented in Table 2. We can see that these condition numbers are significantly
smaller than those for the unpreconditioned case and the condition numbers for the
two-level method are smaller than those for the one-level method. For each ℓ, as
� increases the condition numbers for the two-level method are decreasing, which
demonstrates the scalability of the two-level method (cf. Remark 2).

Table 2: Average condition number for small overlap: one-level (left) and two-level (right)

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.00×10+0 - - - 1.00×10+0 - - -
2 4.94×10+0 7.40×10+0 - - 5.46×10+0 7.40×10+0 - -
3 1.51×10+1 4.41×10+1 6.61×10+1 - 1.22×10+1 1.14×10+1 6.61×10+1 -
4 7.82×10+1 1.90×10+2 5.35×10+2 8.19×10+2 2.85×10+1 2.79×10+1 1.26×10+1 8.19×10+2
5 6.47×10+2 1.64×10+3 3.17×10+3 9.50×10+3 6.29×10+1 9.19×10+1 4.61×10+1 1.98×10+1
6 5.07×10+3 1.31×10+4 2.58×10+4 5.04×10+4 3.67×10+2 3.48×10+2 1.31×10+2 5.77×10+1
7 4.07×10+4 1.06×10+5 2.10×10+5 4.15×10+5 2.74×10+3 2.11×10+3 1.03×10+3 2.86×10+2
8 3.26×10+5 8.55×10+5 1.70×10+6 3.38×10+6 2.16×10+4 1.48×10+4 9.19×10+3 1.87×10+3

The times to solve the problem for each method are presented in Table 3. By
comparing them with the results in Table 1, we can see that both of the two methods
represents progress. For comparison purposes, the faster time of the two methods is
highlighted in red for each ℓ and �. As ℎ decreases and � increases, the two-level
method performs better than the one-level method. These results are consistent with
Theorems 1 and 2.

Generous Overlap Here we apply the preconditioners in such a way that X ≈ �.
When � = 4 and � = 16 both methods fail to converge at ℓ = 8 within 48 hours
due to the large size of the local problems. The average condition numbers of the
linear systems over the PDAS iterations are presented in Table 4. They agree with
Theorems 1 and 2. We can also see that these condition numbers are smaller than
those in the case of small overlap.

The times to solve the problem for each method are presented in Table 5. Again
both methods are superior to the unpreconditioned method and the scalability of the
two-level method is observed.
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Table 3: Time to solve in seconds for small overlap: one-level (left) and two-level (right). Times
highlighted in red are the fastest between the two methods.

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.78×10+0 - - - 1.78×10+0 - - -
2 3.04×10−1 1.55×10+1 - - 1.06×10+0 1.55×10+1 - -
3 3.84×10−1 1.07×10+1 6.08×10+1 - 1.08×10+0 1.42×10+1 6.08×10+1 -
4 2.60×10+0 4.18×10+1 9.18×10+1 3.55×10+2 5.51×10+0 5.83×10+1 7.09×10+1 3.55×10+2
5 2.57×10+1 1.11×10+2 1.53×10+2 3.54×10+2 3.09×10+1 1.14×10+2 1.42×10+2 1.46×10+2
6 2.82×10+2 2.69×10+2 4.00×10+2 4.63×10+2 2.81×10+2 2.06×10+2 1.63×10+2 1.50×10+2
7 5.25×10+3 1.91×10+3 1.48×10+3 1.58×10+3 4.43×10+3 1.18×10+3 4.68×10+2 2.98×10+2
8 1.09×10+5 2.90×10+4 1.16×10+4 6.85×10+3 9.05×10+4 2.04×10+4 3.12×10+3 8.80×10+2

Table 4: Average condition number for generous overlap: one-level (left) and two-level (right)

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.00×10+0 - - - 1.00×10+0 - - -
2 1.00×10+0 7.40×10+0 - - 1.25×10+0 7.40×10+0 - -
3 1.00×10+0 7.84×10+0 6.61×10+1 - 1.25×10+0 6.27×10+0 6.61×10+1 -
4 1.00×10+0 7.56×10+0 8.47×10+1 8.19×10+2 1.25×10+0 6.47×10+0 1.32×10+1 8.19×10+2
5 1.00×10+0 8.29×10+0 9.67×10+1 1.48×10+3 1.25×10+0 7.15×10+0 1.75×10+1 1.73×10+1
6 1.00×10+0 8.36×10+0 9.86×10+1 1.47×10+3 1.25×10+0 7.45×10+0 2.06×10+1 2.03×10+1
7 1.00×10+0 8.43×10+0 1.00×10+2 1.49×10+3 1.25×10+0 7.63×10+0 2.22×10+1 2.59×10+1
8 DNC DNC 1.01×10+2 1.51×10+3 DNC DNC 2.44×10+1 2.82×10+1

We now compare the generous overlap methods with the small overlap methods.
In Table 5, the times in red are the ones where the method with generous overlap
outperforms the method with small overlap. It is evident from Table 5 that the
performance of the two-level method with generous overlap suffers from a high
communication cost for small ℎ and large �.

Table 5: Time to solve in seconds for generous overlap: one-level (left) and two-level (right). Times
highlighted in red are faster than the corresponding method with small overlap.

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.33×10−1 - - - 1.33×10−1 - - -
2 1.90×10−1 1.66×10+1 - - 4.71×10−1 1.66×10+1 - -
3 2.88×10−1 7.17×10+0 6.14×10+1 - 6.47×10−1 1.03×10+1 6.14×10+1 -
4 5.86×10+0 2.54×10+1 4.57×10+1 3.55×10+2 6.73×10+0 3.45×10+1 6.33×10+1 3.55×10+2
5 1.02×10+2 7.34×10+1 6.88×10+1 1.57×10+2 1.06×10+2 8.17×10+1 8.70×10+1 1.48×10+2
6 1.32×10+3 5.21×10+2 1.09×10+2 1.50×10+2 1.32×10+3 5.46×10+2 1.15×10+2 1.12×10+2
7 2.41×10+4 8.12×10+3 7.74×10+2 3.00×10+2 2.31×10+4 8.41×10+3 7.51×10+2 1.97×10+2
8 DNC DNC 1.16×10+4 1.64×10+3 DNC DNC 1.19×10+4 1.13×10+3
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5 Conclusion

In this paper we present additive Schwarz preconditioners for the linear systems that
arise from the PDAS algorithm applied to an elliptic distributed optimal control
problem with pointwise state constraints discretized by a PUM. Based on the con-
dition number estimates and the numerical results, the two-level method with small
overlap appears to be the best choice for small ℎ and large �.
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A Parallel Solver for a Preconditioned
Space-Time Boundary Element Method
for the Heat Equation

Stefan Dohr, Michal Merta, Günther Of, Olaf Steinbach, and Jan Zapletal

1 Introduction

In this note we describe a parallel solver for the discretized weakly singular space-
time boundary integral equation of the spatially two-dimensional heat equation. The
global space-time nature of the systemmatrices leads to improved parallel scalability
in distributed memory systems in contrast to time-stepping methods where the
parallelization is usually limited to spatial dimensions. We present a parallelization
technique which is based on a decomposition of the input mesh into submeshes and
a distribution of the corresponding blocks of the system matrices among processors.
To ensure load balancing, the distribution is based on a cyclic decomposition of
complete graphs [8, 9]. In addition, the solution of the global linear system requires
an efficient preconditioner. We present a robust preconditioning strategy which is
based on boundary integral operators of opposite order [6, 14].

The parallelization of the discretized space–time integral equation in distributed
and shared memory is discussed in [5]. Here, we extend the parallel solver to the
preconditioned system.We demonstrate themethod for the spatially two-dimensional
case. However, the presented results, particularly the parallelization in distributed
memory and the stability results for the preconditioner, can be used to extend the
method to the three-dimensional problem.

Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary Γ := mΩ and ) > 0.
As a model problem we consider the initial Dirichlet boundary value problem for
the heat equation
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UmCD − ΔGD = 0 in & := Ω × (0, )), D = 6 on Σ := Γ × (0, )), D = D0 in Ω (1)

with a heat capacity constant U > 0, the given initial datum D0 ∈ !2 (Ω), and the
boundary datum 6 ∈ �1/2,1/4 (Σ). An explicit formula for the solution of (1) is given
by the representation formula for the heat equation [1], i.e. for (G, C) ∈ & we have

D(G, C) = ("̃0D0) (G, C) + (+̃F) (G, C) − (,6) (G, C)

=

∫
Ω

*★(G − H, C)D0 (H) dH + 1
U

∫
Σ

*★(G − H, C − g)F(H, g) dBH dg

− 1
U

∫
Σ

m

m=H
*★(G − H, C − g)6(H, g) dBH dg,

(2)

with F := m=D and *★ denoting the fundamental solution of the two-dimensional
heat equation given by

*★(G − H, C − g) =


U

4c(C − g) exp
(−U |G − H |2

4(C − g)

)
for g < C,

0 otherwise.

The yet unknown Neumann datum F ∈ �−1/2,−1/4 (Σ) can be found by applying
the interior Dirichlet trace operator to (2) and solving the resulting weakly singular
boundary integral equation

6(G, C) = ("0D0) (G, C) + (+F) (G, C) + (( 12 � −  )6) (G, C) for (G, C) ∈ Σ. (3)

The operators in (3) are obtained by composition of the heat potentials in (2) with
the Dirichlet trace operator. The ellipticity [2] and boundedness of the single-layer
operator + : �−1/2,−1/4 (Σ) → �1/2,1/4 (Σ) together with the boundedness of the
double-layer operator  : �1/2,1/4 (Σ) → �1/2,1/4 (Σ) and the initial Dirichlet oper-
ator "0 : !2 (Ω) → �1/2,1/4 (Σ) ensure unique solvability of (3).

We consider a space-time tensor product decomposition of Σ [2, 10, 11] and use
the Galerkin method for the discretization of (3). For a triangulation Γℎ = {W8}#Γ8=1
of the boundary Γ and a decomposition �ℎ = {g: }#�:=1 of the time interval � := (0, ))
we define Σℎ := {f = W8 × g: : 8 = 1, ..., #Γ; : = 1, ..., #� }, i.e. Σℎ = {fℓ }#ℓ=1 with
# = #Γ#� . In the two-dimensional case the space-time boundary elements f are
rectangular. A sample decomposition of the space-time boundary of & = (0, 1)3 is
shown in Fig. 1a.

We use the space -0,0
ℎ
(Σℎ) := span

{
i0
ℓ

}#
ℓ=1 of piecewise constant basis functions

and the space -1,0
ℎ
(Σℎ) := span

{
i10
8

}#
8=1 of functions that are piecewise linear and

globally continuous in space and piecewise constant in time for the approximations of
the Cauchy dataF and 6, respectively. The initial datum D0 is discretized by using the
space of piecewise linear and globally continuous functions (1

ℎ
(Ωℎ) := span

{
i1
9

}"Ω

9=1,

which is definedwith respect to a given triangulationΩℎ :=
{
l8

}#Ω
8=1 of the domainΩ.
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(a) Tensor product decomposition. (b) Submeshes.

Fig. 1: Sample space-time boundary decompositions for & = (0, 1)3 [5].

This leads to the system of linear equations

+ℎw = ( 1
2
"ℎ +  ℎ)g − "0

ℎu0 (4)

with
+ℎ [ℓ, :] := 〈+i0

: , i
0
ℓ〉!2 (Σ) ,  ℎ [ℓ, 8] := 〈 i10

8 , i
0
ℓ〉!2 (Σ) ,

"0
ℎ [ℓ, 9] := 〈"0i

1
9 , i

0
ℓ〉!2 (Σ) , "ℎ [ℓ, 8] := 〈i10

8 , i
0
ℓ〉!2 (Σ) ,

for 8, :, ℓ = 1, . . . , # and 9 = 1, . . . , "Ω. Due to the ellipticity of the single-layer
operator + the matrix +ℎ is positive definite and therefore (4) is uniquely solvable.

2 Operator Preconditioning

The boundary element discretization is done with respect to the whole space-time
boundary Σ and since we want to solve (4) without an application of time-stepping
schemes to make use of parallelization in time, we need to develop an efficient
iterative solution technique. The linear system (4) with the positive definite but
non-symmetric matrix +ℎ can be solved by a preconditioned GMRES method. Here
we will apply a preconditioning technique based on boundary integral operators of
opposite order [14], also known as operator or Calderon preconditioning [6].

First, we introduce the hypersingular operator �, which is defined as the negative
Neumann trace of the double layer potential, in (2), i.e. (�E) (G, C) = −m= (,E) (G, C)
for (G, C) ∈ Σ. The single-layer operator + : �−1/2,−1/4 (Σ) → �1/2,1/4 (Σ) and the
hypersingular operator � : �1/2,1/4 (Σ) → �−1/2,−1/4 (Σ) are both elliptic [2] and the
composition �+ : �−1/2,−1/4 (Σ) → �−1/2,−1/4 (Σ) defines an operator of order zero.
Thus, following [6], the Galerkin discretization of � allows the construction of a
suitable preconditioner for+ℎ . While the discretization of the single-layer operator+
is done with respect to -0,0

ℎ
(Σℎ), for the Galerkin discretization of the hypersingular
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operator� we need to use a conforming trial space.ℎ = span {k8}#8=1 ⊂ �1/2,1/4 (Σ),
see also [4] for the spatially one-dimensional problem.

Theorem 1 ([6, 14]) Assume that the discrete stability condition

sup
0≠Eℎ ∈.ℎ

〈gℎ , Eℎ〉!2 (Σ)
‖Eℎ ‖� 1/2,1/4 (Σ)

≥ 2"1 ‖gℎ ‖�−1/2,−1/4 (Σ) for all gℎ ∈ -0,0
ℎ
(Σℎ) (5)

holds. Then there exists a constant 2^ > 1 such that ^
(
"−1
ℎ
�ℎ"

−>
ℎ
+ℎ

) ≤ 2^ where,
for :, ℓ = 1, . . . , # ,

�ℎ [ℓ, :] = 〈�k: , kℓ〉Σ , "ℎ [ℓ, :] = 〈i0
: , kℓ〉!2 (Σ) .

Thus we can use �−1
+
= "−1

ℎ
�ℎ"

−>
ℎ

as a preconditioner for the matrix +ℎ . For the
computation of the matrix �ℎ we use an alternative representation of the associated
bilinear form which is attained by applying integration by parts, see [2, Theorem
6.1]. Note that the boundary element space .ℎ is chosen to have the same dimension
as -0,0

ℎ
(Σℎ) and thus, "ℎ is a square matrix. It remains to define a suitable boundary

element space .ℎ such that the mass matrix "ℎ is invertible and that the stability
condition (5) is satisfied. In what follows we will discuss a possible choice.

We assume that the decompositions Γℎ and �ℎ are locally quasi-uniform. For the
given boundary element mesh Γℎ we construct a dual mesh Γ̃ℎ := {W̃ℓ }#Γℓ according
to [7, 13] and assume, that Γ̃ℎ is locally quasi-uniform as well. For the discretization
of the operator � we choose .ℎ = -1,0

ℎ
(Σ̃ℎ) ⊂ �1/2,1/4 (Σ), which denotes the space

of functions that are piecewise linear and globally continuous in space and piecewise
constant in time, defined with respect to the decomposition Γ̃ℎ and �ℎ , respectively.
In order to prove the stability condition (5) we establish the �1/2,1/4 (Σ)-stability of
the !2 (Σ)-projection &̃1,0

ℎ
: !2 (Σ) → .ℎ ⊂ !2 (Σ) defined by

〈&̃1,0
ℎ
E, gℎ〉!2 (Σ) = 〈E, gℎ〉!2 (Σ) for all gℎ ∈ -0,0

ℎ
(Σ). (6)

The Galerkin-Petrov variational problem (6) is uniquely solvable since the trial and
test spaces satisfy a related stability condition [3]. When assuming appropriate local
mesh conditions of Γℎ and Γ̃ℎ , see [12, 13], we are able to establish the stability
of &̃1,0

ℎ
: �1/2,1/4 (Σ) → �1/2,1/4 (Σ), see [3] for a detailed discussion. Hence, there

exists a constant 2( > 0 such that&̃1,0
ℎ
E


� 1/2,1/4 (Σ)

≤ 2( ‖E‖� 1/2,1/4 (Σ) for all E ∈ �1/2,1/4 (Σ). (7)

The stability estimate (7) immediately implies the stability condition (5). Hence the
condition number ^(�−1

+
+ℎ) with �−1

+
= "−1

ℎ
�ℎ"

−>
ℎ

is bounded.
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3 Distributed Memory Parallelization

Distributed memory parallelization of the solver is based on the scheme presented
in [8, 9] for spatial problems. In [5] we have extended the approach to support time-
dependent problems for the heat equation. Let us briefly describe the method and
refer the more interested readers to the above-mentioned papers.

To distribute the system among % processes the space-timemeshΣ is decomposed
into % slices in the temporal dimension (see Fig. 1b) which splits the matrices
� ∈ {+ℎ ,  ℎ , �ℎ} into % × % blocks

� =


�0,0 0 · · · 0
�1,0 �1,1 · · · 0
...

...
. . .

...

�%−1,0 �%−1,1 · · · �%−1,%−1


.

The matrices are block lower triangular with lower triangular blocks on the main
diagonal due to the properties of the fundamental solution and the selected discrete
spaces. We aim to distribute the blocks among processes such that the number of
shared mesh parts is minimal and each process owns a single diagonal block. For this
purpose we consider each block �8, 9 as an edge (8, 9) of a complete graph  % on %
vertices. The distribution problem corresponds to finding a suitable decomposition of
 % into % subgraphs�0, �1, . . . , �%−1. In [5, 8] we employ a cyclic decomposition
algorithm – first, a generator graph �0 on a minimal number of vertices (corre-
sponding to blocks to be assembled by the process 0) is constructed; the remaining
graphs �1, . . . , �%−1 are obtained by a clock-wise rotation of �0 along vertices of
 % placed on a circle. An example of the generating graph and the corresponding
matrix decomposition for four processes is depicted in Fig. 2. In the case of the initial
matrix "0

ℎ
we distribute block-rows of the matrix among processes. Similarly, since

the matrix "ℎ is block diagonal, each process owns exactly one block of the matrix.

0

1

2

3

(a) Generating graph.
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(b) Block distribution.

Fig. 2: Distribution of the system matrix blocks among four processes [5].

In addition to the distributed memory parallelization by MPI, the assembly of the
matrices is parallelized and vectorized in shared memory using OpenMP [5, 15].
Therefore, in our numerical experiments we usually employ hybrid parallelization
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using one MPI process per CPU socket and an appropriate number of OpenMP
threads per process.

4 Numerical Experiments

The presented examples refer to the initial Dirichlet boundary value problem (1) in
the space-time domain & := (0, 1)3. The heat capacity constant is set to U = 10. We
consider the exact solution

D(G, C) := exp
(
− C
U

)
sin

(
G1 cos

c

8
+ G2 sin

c

8

)
for (G, C) = (G1, G2, C) ∈ &

and determine the Dirichlet datum 6 and the initial datum D0 accordingly. The linear
system (4) is solved by the GMRES method with a relative precision of 10−8.

Operator Preconditioning

As a preconditioner we use the discretization�−1
+
= "−1

ℎ
�ℎ"

−>
ℎ

of the hypersingu-
lar operator � in the space -1,0

ℎ
(Σ̃ℎ), while the Galerkin discretization of the integral

equation (3) is done with respect to -0,0
ℎ
(Σℎ). Instead of using "ℎ in the precondi-

tioner we computed a lumped mass matrix. Thus, the matrix becomes diagonal and
the inverse can be applied efficiently.

The example corresponds to a globally uniform boundary element mesh with
the mesh size ℎ = O(2−!). Table 1 shows the iteration numbers of the non-
preconditioned and preconditionedGMRESmethod. As expected, the iteration num-
bers of the preconditioned version are bounded due to the boundedness of ^(�−1

+
+ℎ).

For numerical results in the case of an adaptive refinement we refer to [3].

Table 1: Iteration numbers of the non-preconditioned GMRES method (It.) and the preconditioned
GMRES method (It. prec.) in the case of uniform refinement. # denotes the number of boundary
elements on level !.

! # It. It. prec.

2 64 14 17
3 256 19 18
4 1 024 24 20
5 4 096 35 20
6 16 384 50 20
7 65 536 67 20
8 262 144 91 19
9 1 048 576 122 19
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Table 2: Assembly of �ℎ for 65 536, 262 144, and 1 048 576 space-time elements.

nodes ↓ �ℎ assembly [s] �ℎ speedup �ℎ efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 184.1 — — 1.0 — — 100.0 — —
2 92.0 — — 2.0 — — 100.1 — —
4 46.8 — — 3.9 — — 98.4 — —
8 23.8 373.6 — 7.7 1.0 — 96.7 100.0 —
16 11.8 186.1 — 15.6 2.0 — 97.3 100.4 —
32 5.9 91.9 — 31.0 4.1 — 96.7 101.7 —
64 3.0 47.0 747.0 60.5 7.9 1.0 94.6 99.3 100.0
128 — 24.0 376.9 — 15.6 2.0 — 97.3 99.1
256 — — 193.5 — — 3.9 — — 96.5

Scalability in Distributed Memory

The numerical experiments for the scalability were executed on the Salomon cluster
at IT4Innovations National Supercomputing Center in Ostrava, Czech Republic.
The cluster is equipped with 1008 nodes with two 12-core Intel Xeon E5-2680v3
Haswell processors and 128 GB of RAM. Nodes of the cluster are interconnected
by the InfiniBand 7D enhanced hypercube network.

We tested the assembly of the BEM matrix �ℎ . Computation times for the
assembly of the matrices +ℎ ,  ℎ , "0

ℎ
, the related matrix-vector multiplication, and

the evaluation of the solution in & can be found in [5]. Strong scaling of the parallel
solver was tested using a tensor product decomposition of Σ into 65 536, 262 144
and 1 048 576 space-time surface elements. We used up to 256 nodes (6 144 cores)
of the Salomon cluster for the computations and executed two MPI processes per
node. Each MPI process used 12 cores for the assembly of the matrix blocks.

In Table 2 the assembly times for �ℎ including the speedup and efficiency are
listed. We obtain almost optimal parallel scalability. Note that the number of nodes is
restricted by the number of elements of the temporal decomposition �ℎ . Conversely,
for fine meshes we need a certain number of nodes to store the matrices.

5 Conclusion

In this note we have described a parallel space-time boundary element solver for
the two-dimensional heat equation. The solver is parallelized using MPI in the dis-
tributed memory. The distribution of the system matrices is based on [5, 8, 9]. The
space-time boundary mesh is decomposed into time slices which define blocks in
the system matrices. These blocks are distributed among MPI processes using the
graph decomposition based scheme. For a detailed discussion on shared memory
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parallelization see [5]. Moreover, we have introduced an efficient preconditioning
strategy for the space-time system which is based on the use of boundary integral op-
erators of opposite order. The preconditioner was then distributed with the presented
parallelization technique.

The numerical experiments for the proposed preconditioning strategy confirm
the theoretical findings, i.e. the boundedness of the iteration number of the iterative
solver. We also tested the efficiency of the parallelization scheme for the precondi-
tioner. The results show almost optimal scalability.
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On Inexact Solvers for the Coarse Problem of
BDDC

Clark R. Dohrmann, Kendall H. Pierson, and Olof B. Widlund

1 Introduction

In this study, we present Balancing Domain Decomposition by Constraints (BDDC)
preconditioners for three-dimensional scalar elliptic and linear elasticity problems in
which the direct solution of the coarse problem is replaced by a preconditioner based
on a smaller vertex-based coarse space. By doing so, the computational and memory
requirements can be reduced significantly. Although the use of standard coarse
spaces based on subdomain vertices (corners) alone has similar memory benefits,
the associated rate of convergence is not attractive as the number of elements per
subdomain grows [10]. This point is illustrated by a simple motivating example in
the next section.

There exists a rich theory for Finite Element Tearing and Interconnecting Dual
Primal (FETI-DP) and BDDC algorithms for scalar elliptic and linear elasticity
problems in three dimensions (see, e.g., [10], [9] or §6.4.2 of [15]). In many cases,
theoretical results for either FETI-DP or BDDC apply directly to the other because
of the equivalence of eigenvalues of the preconditioned operators [13, 11, 1]. This
equivalence does not hold in the present study because the basic FETI-DP algorithm
[6] is not easily adapted to use a preconditioner instead of a direct solver for the
symmetric and positive definite coarse problem. In contrast, such a change is accom-
modated easily by BDDC in both theory and practice [4]. Nevertheless, we expect
that our approach could find use in the irFETI-DP algorithm described in [8].

The approach to preconditioning the BDDC coarse problem is motivated in part
by more recent developments of small coarse spaces for domain decomposition
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algorithms [5]. Although that study was focused on overlapping Schwarz methods,
similar ideas can be used to construct coarse spaces for preconditioning the BDDC
coarse problem. Compared with larger edge-based or face-based coarse spaces, we
find that similar condition number bounds can be achieved at much lower cost under
certain assumptions on material property jumps between adjacent subdomains.

We note that three-level and multi-level BDDC algorithms [17, 16, 14] can also
be viewed as using an inexact solver for the coarse problem, but such approaches
are fundamentally different from ours. Namely, these algorithms construct and apply
(recursively for multi-level approaches) a BDDC preconditioner for the original two-
level coarse problem. In contrast, we do not introduce additional coarse levels and
make use of standard two-level additive Schwarz concepts for preconditioning the
coarse problem. One important result of using smaller coarse spaces is that larger
numbers of subdomains are feasible before needing to use a three- or multi-level
approach. Consequently, the number of coarse levels can potentially be reduced and
result in fewer synchronization points for parallel implementations.We also note that
approximate solvers of the coarse problem were introduced in [8] as in the context
of a saddle-point formulation for FETI-DP.

Reducing the size of the coarse problem while retaining favorable convergence
rates was also the subject of Algorithm D in [10]. The basic idea there was to use a
coarse space based on a subset of subdomain edges and corners (vertices) rather than
all of them. The authors note that their recipe for selecting such edges and corners is
relatively complicated, but it can effectively reduce the coarse problem dimension.
In contrast to their approach, the present one uses all subdomain edges, but replaces
the direct solver for the coarse problem with a preconditioner.

A motivating example is presented in the next section for the proposed approach
which is summarized in §3. Theoretical results for scalar elliptic and linear elasticity
problems are presented in §4. Complete proofs are provided in the article, [2], that
has appeared since this paper was submitted; it also contains implementation details,
extensions to face-based coarse spaces, and additional numerical examples. The
final section of this paper contains numerical results, which confirm the theory and
demonstrate the computational advantages of our approach.

2 Motivation

To help motivate the proposed approach, consider a unit cube domain partitioned
into 27 smaller cubic subdomains. Each of these subdomains is discretized using
�/ℎ lowest order hexahedral elements in each coordinate direction for the Poisson
equation with constant material properties. Homogeneous essential boundary con-
ditions are applied to one side of the domain and a random load vector 1 is used for
the right-hand side of the linear system �G = 1. We note that our algorithm iterates
on the interface problem (D = 6 after eliminating residuals in subdomain interiors
(initial static condensation step). Here, ( is the Schur complement matrix for the
interface problem.
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We first consider coarse spaces based on subdomain vertices alone or edges
alone. Table 1 shows the condition number estimates for the preconditioned operator
along with the number of iterations needed to achieve a relative residual tolerance
of 10−8 using the conjugate gradient algorithm preconditioned using BDDC. The
fast growth of condition numbers in the third column is consistent with a condition
number bound proportional to (�/ℎ) (1 + log(�/ℎ))2 as given in Remark 2 of [10].
The shortcomings of using coarse spaces based on vertices alone were recognized
early in the history of FETI-DP [7]. Notice the results for the proposed approach
show significant improvements in comparison to the standard vertex (corner) based
coarse space.

Table 1: Poisson equation results. Number of iterations (iter) and condition number estimates
(cond) are shown for a unit cube domain constrained on one side and decomposed into 27 smaller
cubic subdomains. In this table and others, �/ℎ denotes the number of elements in each coordinate
direction for each subdomain. More generally, �/ℎ refers to the maximum ratio of subdomain
diameter �8 to smallest element diameter ℎ8 for any subdomain Ω8 .

standard approach proposed approach
vertices edges

�/ℎ iter cond iter cond iter cond
4 28 27.1 12 2.36 14 2.50
8 38 75.2 14 2.93 16 3.13
12 45 132 16 3.37 18 3.59
16 47 195 17 3.73 19 3.97

Results are shown in Table 2 for increasing numbers of subdomains # and fixed
�/ℎ = 8. Notice the dimensions =2 of the coarse space for edge-based coarse spaces
are significantly larger than those for the proposed approach. Again, the advantages
of the new approach are evident in the final three columns of the table where the
number of iterations and condition numbers are much smaller than those for the
standard vertex-based coarse space.

Table 2: Poisson equation results. Coarse space dimension =2 and convergence results are shown
for increasing numbers of subdomains # and fixed �/ℎ = 8.

standard approach proposed approach
vertices edges

# =2 iter cond =2 iter cond =2 iter cond
64 27 55 74.5 108 15 2.98 27 17 3.25
216 125 70 73.7 450 15 2.94 125 17 3.26
512 343 74 73.6 1176 15 2.95 343 17 3.30
1000 729 75 73.6 2430 15 2.95 729 17 3.32

A primary goal of this study is to present an approach that combines the best
of both worlds. That is, an approach that has the attractive convergence rates of
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edge-based coarse spaces and the more streamlined computational requirements of
a smaller vertex-based coarse space.

3 Overview of BDDC and Our Inexact Approach

The domain Ω for the problem is assumed to be partitioned into nonoverlapping
subdomains Ω1, . . . ,Ω# . The set of interface points that are common to two or
more subdomain boundaries is denoted by Γ, and the set of interface points for Ω8 is
denoted by Γ8 := Γ ∩ mΩ8 . Finite element nodes on Γ8 are partitioned into different
equivalence classes such as those of subdomain vertices, edges, or faces depending
on which subdomain boundaries contain them (see, e.g., [3] or [5] for more details).

A two-level BDDC preconditioner (see, e.g., [3] can be expressed concisely in
additive form as

"−1 = "−1
;>20; +Φ� −1

2 Φ
)
� , (1)

where  2 is the coarse matrix and Φ� is a weighted interpolation matrix. We note
that the application of the local component "−1

;>20;
requires solutions of problems

local to each subdomain, which can be done in parallel.
The coarse matrix is obtained from the assembly of coarse subdomain matrices

and given by

 2 =

#∑
8=1

')82 82'82 ,

where  82 is the coarse matrix for Ω8 and D82 = '82D2 is the restriction of a coarse
vector D2 to Ω8 . Let "−1

2 denote a preconditioner for  2 which satisfies the bounds

V1D
)
2  
−1
2 D2 ≤ D)2 "−1

2 D2 ≤ V2D
)
2  
−1
2 D2 ∀D2 , (2)

where 0 < V1 ≤ V2. Defining the approximate BDDC preconditioner "−1
0 as

"−1
0 := "−1

;>20; +Φ�"−1
2 Φ

)
� ,

we find from (1) and (2) that

?)"−1
0 ? = ?) ("−1 +Φ� ("−1

2 −  −1
2 )Φ)�)?

≤ ?) ("−1 + (V2 − 1)Φ� −1
2 Φ

)
�)?

≤ max(1, V2)?)"−1?. (3)

Similarly,
?)"−1

0 ? ≥ min(1, V1)?)"−1?. (4)

Let ^ denote the condition number of the original BDDC preconditioned operator.
It then follows from (3) and (4) that
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^0 ≤ max(1, V2)
min(1, V1) ^, (5)

where ^0 is the condition number of the approximate BDDCpreconditioned operator.
Here we only consider preconditioners for the coarse matrix  2 , but approximations
for other components of the BDDC preconditioner have also been studied [12, 4].

The construction of the preconditioner "−1
2 for  2 was inspired in part by our

recent work on small coarse spaces [5]. What we have called vertices thus far here
are generalized there and called coarse nodes. We recall that the coarse degrees
of freedom for BDDC or FETI-DP are often associated with average values over
the different equivalence classes. The basic idea of the coarse component of the
preconditioner "−1

2 is to approximate these averages using adjacent vertex values.
Using the notation of [5], let CN denote the set of ancestor vertices for a nodal

equivalence classN (e.g.N may be the nodes of a subdomain edge or face). Let DΨ
denote a vector of vertex values. We introduce the coarse interpolation D20 = ΨDΨ
between vertex values and nodal equivalence class averages such that each of these
averages equals the average of its ancestor vertex values. Thus, a row ofΨ associated
with an edge of the center subdomain in the motivating example has two entries
of 1/2 (one entry for each vertex at its ends), while all other entries are 0. Notice
that the number of rows in Ψ is the number of active coarse degrees of freedom for
the original BDDC preconditioner. For instance, if only edges are used this number
equals the total number of subdomain edges.

The reduced coarse matrix is defined as  2A := Ψ)  2Ψ. The number of rows
and columns in  2A is the number of vertices for scalar problems. We consider the
following preconditioner for  2 .

"−1
2 = Ψ −1

2AΨ
) + diag( 2)−1, (6)

where diag denotes the diagonal of the matrix (for elasticity problems the second
term on the right hand side of (6) is block diagonal). Notice "−1

2 is simply a
Jacobi preconditioner with an additive coarse correction. Thus, since the number
of subdomains incident to an edge is bounded, a uniform upper bound on V2 for
"−1
2 can be obtained using a standard coloring argument. Therefore, the analysis

focuses on obtaining lower bound estimates for V1. We comment that higher quality
local preconditioning can be used (e.g., replacing Jacobi smoothing by symmetric
Gauss-Seidel). Indeed, the numerical results in §5 were obtained using such an
approach.

4 Main Results

We presently restrict our attention to edge-based BDDC coarse spaces for both scalar
elliptic and linear elasticity problems (cf. §4 and §5 of [5] for problem specifica-
tions). For the scalar case, we assume quasi-monotone edge-connected paths as in
Assumptions 4.5 of [5]. For elasticity problems, we must make the stronger assump-
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tion of quasi-monotone face-connected paths as in Assumption 4.4 of [5]. We also
assume that material properties are constant within each subdomain and that the
ratio (� 9/ℎ 9 )/(�:/ℎ: ) is uniformly bounded for any two subdomains Ω 9 and Ω:
sharing any subdomain vertex.

Theorem 1 For edge-based BDDC coarse spaces and with quasi-monotone edge-
connected paths, the condition number of the preconditioned operator that is ob-
tained by replacing the direct solver for the coarse problem by the preconditioner
"−1
2 defined in (6) is bounded by

^0 ≤ � (1 + log(�/ℎ))2

for scalar elliptic problems.

Theorem 2 For edge-based BDDC coarse spaces and with quasi-monotone face-
connected paths, the condition number of the preconditioned operator that is ob-
tained by replacing the direct solver for the coarse problem by the preconditioner
"−1
2 defined in (6) is bounded by

^0 ≤ � (1 + log(�/ℎ))2

for compressible linear elasticity problems.

The proofs of these theorems use classical additive Schwarz theory, an estimate
in Lemma 4.2 of [17], and a variety of standard domain decomposition estimates.
Further, the analysis for linear elasticity relies on Korn inequalities and on rigid body
fits of subdomain face deformations (cf. [9] for a related approach).

5 Numerical Results

The results in Tables 1 and 2 are in good agreement with the theory for the scalar case,
and demonstrate that comparable performance to the standard edge-based BDDC
preconditioner can be obtained more efficiently. Notice in Table 2 that the coarse
space dimension =2 is approximately 3 times smaller for the proposed approach than
that of the standard edge-based approach for larger numbers of subdomains. Similar
results were obtained for linear elasticity (not shown), but the reductions in coarse
space dimension were more modest.

The next example deals with a cubic domain decomposed into 64 smaller cubic
subdomains and constrained on its left side. Three different distributions of material
properties are considered as shown in Figure 1. The leftmost one has quasi-monotone
face-connected paths, the middle one has quasi-monotone edge-connected paths, and
the rightmost one has a checkerboard arrangementwhich is not covered by our theory.

The material properties in the lighter colored regions are given by d = 1 for the
scalar case and � = 1, a = 0.3 for elasticity. Likewise, the other regions have d = 103,
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� = 103, and a = 0.3. Results for the scalar case and elasticity are shown in Table 3.
Consistent with the theory, condition numbers for the scalar case grow sublinearly
with respect to �/ℎ for both face-connected and edge-connected paths. As expected,
similar growth in condition numbers is observed for linear elasticity in the case of
face-connected paths. Recall that the case of edge-connected paths is not covered
by our theory for elasticity, and much larger condition numbers are apparent in the
table. Remarkably, very good results are obtained for the checkerboard arrangement
of material properties for both the scalar case and linear elasticity.

Fig. 1: Material property distributions for a cube decomposed into 64 smaller cubic subdomains.
The leftmost figure has quasi-monotone face-connected paths while the middle one only has
quasi-monotone edge-connected paths. The rightmost figure shows a checkerboard arrangement of
material properties.

Table 3: Results for the models in Figure 1.

scalar case
face-connected edge-connected checkerboard

�/ℎ iter cond iter cond iter cond
4 14 2.41 16 3.58 9 1.45
8 16 2.95 20 4.81 11 1.71
12 18 3.40 22 5.65 12 1.99
16 19 3.75 24 6.32 13 2.19

linear elasticity
�/ℎ face-connected edge-connected checkerboard

iter cond iter cond iter cond
4 25 6.10 40 72.9 24 6.55
8 33 11.1 53 113 31 11.1
12 38 14.8 61 137 35 14.4
16 42 17.8 68 154 38 16.9

Additional numerical results have been generated for face-based rather than edge-
based coarse spaces, for unstructured meshes, and performance tests are given which
show reduced compute times. They are reported in the article, [2],which has appeared
since this conference paper was submitted.



In closing, we expect that the approach presented here could be combined with
an adaptive coarse space to handle problems where material properties vary greatly
within a subdomain. The basic idea would be to use existing adaptive approaches
for challenging subdomains, while using the present approach for less problematic
ones.
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Simultaneous Approximation Terms for Elastic
Wave Equations on Nonuniform Grids

Longfei Gao and David Keyes

1 Introduction

Numerical simulation of wave phenomena is routinely used in seismic studies, where
simulated wave signals are compared against experimental ones to infer subterranean
information. Various wave systems can be used to model wave propagation in earth
media. Here, we consider the system of isotropic elastic wave equations described
in Section 2. Various numerical methods can be applied to discretize such a system,
amongwhich the finite differencemethods (FDMs) are still very popular, particularly
for seismic exploration applications, due to their simplicity and efficiency.

However, when discretized on uniform grids, heterogeneity of the earthmediawill
lead to oversampling in both space and time, undermining the efficiency of FDMs.
Specifically, since spatial grid spacing is usually decided on a point-per-wavelength
basis for wave simulations, uniform grid discretization will lead to oversampling in
space for regions with higher wave-speeds. On the other hand, temporal step length is
usually restricted by the Courant-Friedrichs-Lewy (CFL) stability condition for wave
simulations using explicit time stepping methods, which will lead to oversampling
in time for regions with lower wave-speeds.

For earth media, the wave-speeds tend to increase with depth due to sedimentation
and consolidation. Contrast between the smallest and largest wave-speeds in earth
media can be as high as fifty, cf. [1, p. 240], which entails significant oversampling for
discretizations on uniform grids. These observations motivate us to consider the grid
configuration illustrated in Figure 1, where two uniform grid regions are separated
by a horizontal interface. The staggered grid discretization approach, which dates
back to [12], is considered here, where different solution variables are discretized
on different subgrids. In Figure 1, ratio of the grid spacings of the two regions is
two. However, other ratios, not necessarily integers, can also be addressed with the
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methodology presented here. Furthermore, multiple grid layers can be combined
together in a cascading manner to account for larger wave-speed contrasts.

In this work, we recap one of the earliest motivations of domain decomposition
methods by demonstrating how to combine the two regions illustrated in Figure 1
without numerical artifacts. Specifically, we adopt the summation by parts (SBP) -
simultaneous approximation terms (SATs) approach, which utilizes discrete energy
analysis to guide the discretization. The overall semi-discretization is shown to be
discretely energy conserving, preserving the analogous property in the continuous
elastic wave system. The concept of SBP operators dates back to [7] while the
technique of SATs was introduced in [2]. The two review papers [11, 3] provide
comprehensive coverage of their developments. While the 2D elastic wave system is
considered here to demonstrate the methodology, we expect the presented procedure
to extend straightforwardly to the 3D case.

In the following, we describe the abstracted mathematical problem in Section 2,
present the interface treatment in Section 3, provide numerical examples in Section
4, and summarize in Section 5.

2 Problem Description

We consider the 2D isotropic elastic wave equations posed as the following first-order
dynamical system written in terms of velocity and stress:

mEG

mC
=

1
d

(
mfGG

mG
+ mfGH

mH

)
;

mEH

mC
=

1
d

(
mfGH

mG
+ mfHH

mH

)
;

mfGG

mC
= (_ + 2`) mEG

mG
+ _mEH

mH
+ S;

mfGH

mC
= `

mEH

mG
+ ` mEG

mH
;

mfHH

mC
= _

mEG

mG
+ (_ + 2`) mEH

mH
+ S,

(1)

where EG and EH are particle velocities; fGG , fGH and fHH are stress components;
d, _ and ` are density, first and second Lamé parameters that characterize the
medium; S is the source term that drives the wave propagation. Lamé parameters _
and ` are related with the compressional and shear wave-speeds 2? and 2B through
_ = d(22

? − 222
B) and ` = d22

B . For simplicity, the source term S is omitted in the
upcoming discussion. All solution variables and their derivatives are assumed to be
zero at the initial time. We consider periodic boundary condition for left and right
boundaries and free-surface boundary condition for top and bottom boundaries.

The above system is equivalent to system (2), which is more natural for energy
analysis and derivation of the interface treatment. In (2), the Einstein summation
convention applies to subscript indices : and ;. Coefficients BGG:; , BGH:; and BHH:;
are components of the compliance tensor, which can be expressed in terms of _ and
`. However, their exact expressions are not needed for the upcoming discussion. As
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explained later in Section 3, system (1) is still the one used for implementation.

d
mEG

mC
=
mfGG

mG
+ mfGH

mH
;

d
mEH

mC
=
mfGH

mG
+ mfHH

mH
;

BGG:;
mf:;

mC
=
mEG

mG
;

BGH:;
mf:;

mC
=

1
2

(
mEH

mG
+ mEG
mH

)
;

BHH:;
mf:;

mC
=
mEH

mH
.

(2)

The staggered grids illustrated in Figure 1 are used to discretize the above systems,
where two uniformgrid regions are separated by a horizontal interface,with a contrast
ratio 1:2 in grid spacing. Both regions include the interface in discretization.

Fig. 1: Illustration of the grid configuration.

3 Methodology

In this section, we demonstrate how to couple the discretizations of system (1) on
the two uniform grid regions illustrated in Figure 1 using the SBP-SAT approach. A
similar work has been presented in [4] for acoustic wave equations. We will follow
the methodology and terminology developed therein.

The continuous energy associated with system (2), and system (1) by equivalence,
can be expressed as:

4 =

∫
Ω

1
2dE8E83Ω +

∫
Ω

1
2 f8 9B8 9:;f:;3Ω , (3)

where Ω denotes a simply connected domain; the Einstein summation convention
applies to subscript indices 8, 9 , : and ;. The two integrals of (3) correspond to the
kinetic and potential parts of the continuous energy, respectively. Differentiating 4
with respect to time C and substituting the equations from (2), it can be shown that

34

3C
=

∫
mΩ

E8f8 9= 93mΩ, (4)

where mΩ denotes the boundary of Ω. For the free-surface boundary condition,
i.e., f8 9= 9 = 0, and periodic boundary condition considered in this work, we have
34/3C = 0, i.e., system (2) conserves energy 4.
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Spatially discretizing (2) with finite difference methods on a uniform grid leads
to the following semi-discretized system:

A+G 1+G 3+G
3C

= A+GDΣGG
G ΣGG + A+GDΣGH

H ΣGH ;

A+H 1+H 3+H
3C

= A+HDΣGH
G ΣGH + A+HDΣHH

H ΣHH ;

AΣGG(
Σ:;
GG:;

3Σ:;

3C
= AΣGGD+GG +G ;

AΣGH(
Σ:;
GH:;

3Σ:;

3C
= 1

2AΣGH

(
D+HG +H + D+GH +G

)
;

AΣHH(
Σ:;
HH:;

3Σ:;

3C
= AΣHHD+HH +H ,

(5)

where the Einstein summation convention applies only to : and ; in the subscripts,
but not to those appearing in the superscripts. Superscript such as +G indicates
the grid with which the underlying quantity or operator is associated. In (5), D
symbolizes a finite difference matrix, while A symbolizes a diagonal norm matrix
with its diagonal component loosely representing the area that the corresponding
grid point occupies. From the implementation perspective, the norm matrices in (5)
are redundant, but they will play an important role in deriving the proper interface
treatment. These 2D finite difference matrices and norm matrices are constructed
from their 1D counterparts via tensor product. Specifically,

A+G = A"G ⊗ A#H , A+H = A#G ⊗ A"H ,
AΣGH = A"G ⊗ A"H , AΣGG = AΣHH = A#G ⊗ A#H ,

(6)

and
D+GG = D"G ⊗ I#H , D+HG = D#G ⊗ I"H , DΣGH

G = D"G ⊗ I"H , DΣGG
G = D#G ⊗ I#H ,

D+GH = I"G ⊗ D#H , D+HH = I#G ⊗ D"H , DΣGH
H = I"G ⊗ D"H , DΣHH

H = I#G ⊗ D#H ,
(7)

where I symbolizes a 1D identity matrix. Superscript # indicates the ‘normal’ grid
that aligns with the boundaries while " indicates the ‘modified’ grid that is staggered
with respect to the ‘normal’ grid. The specific forms of the 1D norm matrices and
1D finite difference matrices in (6) and (7) have been described in [5, p. 672]1. By
construction, they satisfy the following relations:

A#G D"G +
(
A"G D#G

))
= 0 ; (8a)

A#H D"H +
(
A"H D#H

))
= E'H

(
P'H

))
− E!H

(
P!H

))
, (8b)

where E'H and E!H are canonical basis vectors that select values of the solution
variables defined on the # grid at the top and bottom boundaries, respectively, while
P'H and P!H are projection vectors that extrapolate values of the solution variables
defined on the " grid to the top and bottom boundaries, respectively.

The discrete energy associated with semi-discretized system (5) is defined as:

� = 1
2+

)
8

(
A+8 1+8

)
+8 + 1

2Σ
)
8 9

(
AΣ8 9(

Σ:;
8 9:;

)
Σ:; , (9)

where, as in (5), the Einstein summation convention applies only to 8, 9 , : , and ; in
the subscripts. Differentiating � with respect to time C and substituting the equations

1Weuse this specific set of operators here to demonstrate themethodology, while alternative choices
exist (e.g., [9]), for which the presented methodology can still be applied with minor modifications.
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from (5), it can be shown that
3�

3C
=+ )G

[I"G ⊗ E'H ] A"G [I"G ⊗ (P'H )) ]
ΣGH + Σ)HH

[I#G ⊗ E'H ] A#G [I#G ⊗ (P'H )) ]
+H

−+ )G
[I"G ⊗ E!H ] A"G [I"G ⊗ (P!H )) ]

ΣGH − Σ)HH
[I#G ⊗ E!H ] A#G [I#G ⊗ (P!H )) ]

+H ,

(10)
where the first two terms are associatedwith the top boundarywhile the last two terms
are associated with the bottom boundary, as indicated by the respective selection
and projection operators appearing in these terms. With the above discrete energy
analysis result, we can now modify system (5) accordingly to account for boundary
and interface conditions.

In the following, we use superscripts + and − to distinguish systems or terms from
the upper and lower regions of Figure 1, respectively. To account for the free-surface
boundary condition on the top boundary, i.e., fGH = fHH = 0, the first two equations
in the upper region system are appended with penalty terms, i.e., SATs, as follows:

(+)



A+ +G 1+ +G 3+
+
G

3C
= A+ +G DΣ+GG

G Σ+GG + A+
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G DΣ+GH
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+ [+ +G
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}
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G Σ+GH + A+

+
H DΣ+HH

H Σ+HH

+ [+
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}
,

(11)

where [+
+
G

)
= [

+ +H
)

= −1 are penalty parameters. The forms of the penalty terms and
values of the penalty parameters are chosen so that the energy-conserving property
from the continuous system is preserved. To see this, we differentiate � from (9)
with respect to time C as before. After substitution, the penalty terms in (11) bring
two extra terms into 3�/3C, i.e.,

[
+ +G
)
(+ +G ))

[I"+G ⊗ E'+H
] A"+G [I"+G ⊗ (P'+H ))

]
Σ+GH

and
[
+ +H
)
(+ +H ))

[I# +G ⊗ P'
+

H

] A# +G [I# +G ⊗ (E'
+

H ))
]
Σ+HH .

By setting [+
+
G

)
= [

+ +H
)

= −1, these extra terms cancel out the first two terms in (10),
which are associated with the top boundary. Similar modifications presented later
in (12)-(14) are obtained by following the same procedure and rationale. It is worth
mentioning that such procedure and rationale for deriving the proper boundary and
interface treatment, particularly the usage of the energy method, is very similar to
that for flux specification in discontinuous Galerkin methods, cf., for example, [6].

Similarly, to account for the free-surface boundary condition on the bottombound-
ary, the first two equations of the lower region system are modified as follows:
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where [+
−
G

�
= [

+ −H
�

= 1 are the chosen penalty parameters.
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To account for the interface conditions (cf. [10, p. 52]), i.e., f+GH =f−GH , f+HH =f−HH ,
E+G = E−G , and E+H = E−H , the upper and lower region systems are further modified by
appending additional SATs as follows:
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H + −H

+ [Σ
−
HH

�

[I#−G ⊗ E'
−

H

] A#−G {[I#−G ⊗ (P'
−

H ))
]
+ −H − T#

−+
( [
I# +G ⊗ (P!

+
H ))

]
+ +H

)}
,

(14)
where [

+ +G
�

= [
Σ+GH
�

= [
+ +H
�

= [
Σ+HH
�

= 1
2 and [

+ −G
�

= [
Σ−GH
�

= [
+ −H
�

= [
Σ−HH
�

= − 1
2 are the

chosen penalty parameters. Moreover, T"+− , T# +− in (13) and T"−+ , T#−+ in (14) are
interpolation operators that satisfy the following relations:

A# +G T#
+− =

(
A#−G T#

−+
))

and A"+G T"
+− =

(
A"−G T"−+

))
. (15)

They operate on the interface only, e.g., T# +− interpolates from lower region #

grid points on the interface to upper region # grid points on the interface. Their
derivations are usually assisted by symbolic computing software. For the interface
illustrated in Figure 1, which has a 1 : 2 contrast in grid spacing, the operators
T# +− and T"+− that we use here are characterized by the formulas in (16) and (17),
respectively, for the collections of grid points illustrated in Figure 2; moreover, T#−+
and T"−+ can be derived from T# +− and T"+− , respectively, via the relations in (15).
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As in the case of SBP operators, these interpolation operators are not unique, either.

Fig. 2: Illustration of grid points involved for interpolation operators T# +− (left) and T"+− (right).
5 (G+0 ) ← 5 (G−0 ); 5 (G+1 ) ← − 1

16 5 (G−−1) + 9
16 5 (G−0 ) + 9

16 5 (G−1 )− 1
16 5 (G−2 ); 5 (G+2 ) ← 5 (G−1 ) .

(16)
5 (G+0 ) ← 5

32 5 (G−0 ) + 15
16 5 (G−1 ) − 3

32 5 (G−2 ); 5 (G+1 ) ← − 3
32 5 (G−0 ) + 15

16 5 (G−1 ) + 5
32 5 (G−2 ) .

(17)
With the above choices on the SATs, it can be verified that the overall semi-

discretization conserves the discrete energy � from (9). Now that the proper SATs
have been derived, we can remove the norm matrices by dividing them from both
sides of the equations in (11-14). From the implementation perspective, the appended
SATs amount to modifying the corresponding derivative approximations, e.g., the
SAT in the first equation of (14)modifies DΣ−GH

H Σ−GH .Written in terms of thesemodified
derivative approximations, the above discretizations for system (2) can be easily
reverted to forms that conform to system (1).

4 Numerical examples

The first example concerns a homogeneous medium characterized by parameters
d = 1 kg/m3, 2? = 2m/s and 2B = 1m/s. The grid spacings of the upper and lower
regions are chosen as 0.004m and 0.008m, respectively, while the time step length
is chosen as 0.001 s, which is ∼ 0.707 of the CFL limit associated with an infinite
uniform grid with 0.004m grid spacing. The rest of the numerical setup is the same
as that for the first example of [4, p. 435], including sizes of the grids, source and
receiver locations, and source profile.

Fig. 3: Seismogram (left) and evolvement of discrete energy (right); Homogeneous media.

The recorded seismogram and evolvement of discrete energy for the first 6 s are
displayed in Figure 3, where we observe good agreement between the uniform grid
simulation result and the nonuniform grid simulation result using the presented SBP-
SAT approach. The source term S, cf. (1), which is omitted from the analysis, is
responsible for the initial ‘bumps’ in the evolvement of discrete energy. After the
source effect tapers off at around 0.5 s (cf. [5, p. 684]), the discrete energy remains
constant as expected (at a value ∼0.0318).

The second example concerns a heterogeneous medium downsampled from the
Marmousi2 model, cf. [8]. Wave-speeds 2? and 2B are illustrated in Figure 4.2 Grid
spacing is chosen as 2m and 4m for upper and lower regions (separated by the
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Fig. 4: Media parameters 2? (left) and 2B (right); Colorbar reflects wave-speed with unit m/s.

green dashed line), respectively. Time step length is chosen as 2e-4 s and 3e-4 s for
uniform and nonuniform grid simulations, respectively. Same plots as in the previous
example are displayed in Figure 5, from where similar observations can be made.

Fig. 5: Seismogram (left) and evolvement of discrete energy (right); Heterogeneous media.

In this example, the ratio between the numbers of spatial grid points in uniform
and nonuniform grid simulations is ∼1.813. As a rough estimation, the amount of
arithmetic operations per time step is assumed to be linearly proportional to the
number of spatial grid points. We therefore expect the ratio between runtimes to be
∼2.719, with an extra factor of 1.5 coming from the difference in total time steps. A
test with our Matlab code reveals a ratio of ∼2.681 in runtimes (average of 5 runs),
which agrees well with the above complexity analysis result.

5 Summary

Finite difference discretization of the isotropic elastic wave system is considered.
An interface treatment procedure is presented to connect two uniformly discretized
regions with different grid spacings. The interface conditions are weakly imposed
through carefully designed simultaneous approximation terms. The overall semi-
discretization conserves a discrete energy that resembles the continuous physical
energy, which is demonstrated on both homogeneous and heterogeneous media.

Acknowledgements Gao and Keyes gratefully acknowledge the support of KAUST’s OSR under
CCF-CAF/URF/1-2596. The authors would also like to thank KSL for computing resources. Part
of this work was conducted while the first author was visiting IPAM (Sep - Dec 2018).

2 To simplify the discussion, the distance between neighboring parameter grid points is assigned to
2m, which is the same as the grid spacing used in uniform grid simulation. Bilinear interpolation
is used when discretization grid points do not match parameter grid points due to grid staggering.
We note here that media parameters for uniform grid and nonuniform grid simulations are sampled
differently; thus, small discrepancies in simulation results should be allowed.
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Asynchronous One-Level and Two-Level
Domain Decomposition Solvers

Christian Glusa, Erik G. Boman, Edmond Chow, Sivasankaran Rajamanickam, and
Paritosh Ramanan

1 Introduction

Multilevel methods such asmultigrid and domain decomposition are among themost
efficient and scalable solvers developed to date. Adapting them to the next generation
of supercomputers and improving their performance and scalability is crucial for ex-
ascale computing and beyond. Domain decomposition methods subdivide the global
problem into subdomains, and then alternate between local solves and boundary data
exchange. This puts significant stress on the network interconnect, since all processes
try to communicate at once. On the other hand, during the solve phase, the network
is under-utilized. The use of non-blocking communication can only alleviate this
issue, but not solve it. In asynchronous methods, on the other hand, computation and
communication occur concurrently, with some processes performing computation
while others communicate, so that the network is consistently in use.

Unfortunately, the term “asynchronous” can have several different meanings in
the literature. In computer science, it is sometimes used to describe communica-
tion patterns that are non-blocking, such that computation and communication can
be overlapped. Iterative algorithms that use such “asynchronous” communication
typically still yield the same iterates (results), just more efficiently. In applied math-
ematics, on the other hand, “asynchronous” denotes parallel algorithms where each
process (processor) proceeds at its own speed without synchronization. Thus, asyn-
chronous algorithms go beyond the widely used bulk-synchronous parallel (BSP)
model. More importantly, they are mathematically different than synchronous meth-
ods and generate different iterates. The earliest work in this area was called “chaotic
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relaxation” [6]. Both approaches are expected to play an important role on future su-
percomputers. In this paper, we focus on the mathematically asynchronous methods.

Domain decomposition solvers [8, 16, 15] are often used as preconditioners in
Krylov subspace iterations. Unfortunately, the computation of inner products and
norms widely used in Krylov methods requires global communication. Global com-
munication primitives, such as MPI_Reduce, asymptotically scale as the logarithm of
the number of processes involved. This can become a limiting factor when very large
process counts are used. The underlying domain decomposition method, however,
can do away with globally synchronous communication, assuming the coarse prob-
lem in multilevel methods can be solved in a parallel way. Therefore, we will focus
on using domain decomposition methods purely as iterative methods. We note, how-
ever, that the discussed algorithms could be coupled with existing pipelined methods
[10] which alleviate the global synchronization requirement of Krylov solvers.

Another issue that is crucial to good scaling behavior is load imbalance. Load
imbalance might occur due to heterogeneous hardware in the system, or due to local,
problem specific causes, such as iteration counts for local sub-solves that vary from
region to region. Especially the latter are difficult to predict, so that load balancing
cannot occur before the actual solve. Therefore, a synchronous parallel application
has to be idle until its slowest process has finished. In an asynchronous method, local
computation can continue, and improve the quality of the global solution. An added
benefit of asynchronousmethods is that, since the interdependence of one subdomain
on the others has been weakened, fault tolerance [4, 5] can be more easily achieved.

The main drawback of asynchronous iterations is the fact that deterministic be-
havior is sacrificed. Consecutive runs do not produce the same result. (The results do
match up to a factor proportional to the convergence tolerance.) This also makes the
mathematical analysis of asynchronous methods significantly more difficult than the
analysis of their synchronous counterparts. Analytical frameworks for asynchronous
linear iterations have long been available [6, 2, 3, 9], but generally cannot produce
sharp convergence bounds except for in the simplest of cases.

2 Domain decomposition methods

We want to solve the system Gu = f , where G ∈ R#×# . Informally speaking, one-
level domain decomposition solvers break up the global system into overlapping sub-
problems that cover the global system. The iteration alternates between computation
of the global residual, involving communication, and local solves for corrections.
Special attention is paid to unknowns in the overlap to avoid over-correction.

We use the notation of [8] and denote subdomain matrices by G? , restrictions by
X? , and the discrete partition of unity by J ? . The local form of the restricted additive
Schwarz iteration (RAS) is given in Figure 1. A detailed derivation of the algorithm
can be found in [11]. In fact, Figure 1 describes both the synchronous and the
asynchronous version of RAS. In the synchronous version Line 4 is executed in lock
step by all subdomains using non-blocking two-sided communication primitives. In
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1: w ? ← 0
2: while not converged do
3: Local residual: t ? ← J?X?f − G?J?w ?

4: Accumulate: r ? ←
∑%
@=1 X?X

)
@ t@

5: Solve: G?v ? = r ?
6: Update: w ? ← w ? + v ?
7: end while
8: Post-process: u ? ←

∑%
@=1 X?X

)
@J@w@

Fig. 1: Restricted additive Schwarz (RAS) in local form. G? are subdomain matrices, X? are
subdomain restrictions, J? are the discrete partition of unity.

the asynchronous variant, each subdomain exposes amemory region to remote access
via MPI one-sided primitives. On execution of Line 4, the relevant components of
current local residual t ? are written to the neighboring subdomains, and the latest
locally available data t@ from neighbors @ is used.

In order to improve the scalability of the solver, amechanismof global information
exchange is required [15, 16]. Let X0 ∈ R=×=0 be the restriction from the fine grid
problem to a coarser mesh, and let the coarse grid matrix G0 be given by the Galerkin
relation G0 = X0GX

)
0 . The coarse grid solve can be incorporated in the RAS

iteration in additive fashion u =+1 = u =+
(

1
2 S

−1
'�(
+ 1

2 X
)
0 G−1

0 X0

)
(f − Gu =), where

S−1
'�(

denotes the preconditioner associatedwith the RAS iteration described above.
We focus on the additive version, since it lends itself to asynchronous iterations:
subdomain solves and coarse-grid solves are independent of each other. From the
mathematical description of two-level additive RAS, one might be tempted to see
the coarse-grid problem simply as an additional subdomain. However, subdomains
determine the right-hand side for their local solve and correct it by transmitting
boundary data to their neighbors. The coarse-grid, on the other hand, receives its
entire right-hand side from the subdomains, and hence has to communicate with
every single one of them.

In order to perform asynchronous coarse-grid solves, we therefore need to make
sure that all the right-hand side data necessary for the solve has been received
on the coarse grid. Moreover, corrections sent by the coarse grid should be used
exactly once by the subdomains. This is achieved by not only allocating memory
regions to hold the coarse grid right-hand side on the coarse grid rank and the
coarse grid correction on the subdomains, but also Boolean variables that are polled
to determine whether writing or reading right-hand side or solution is permitted.
More precisely, writing of the local subdomain residuals to the coarse grid memory
region of r 0 is contingent upon the state of the Boolean variable canWriteRHS? .
(See Figure 2.) When canWriteRHS? is True, right-hand side data is written to
the coarse grid, otherwise this operation is omitted. Here, the subscripts are used
to signify the MPI rank owning the accessed memory region. As before, index 0
corresponds to the coarse grid and indices 1, . . . , % correspond to the subdomains.
To improve readability, we show access to a memory region on the calling process in
light gray, while remote access is printed in dark gray. In a similar fashion, the coarse
grid checks whether every subdomain has written a right-hand side to r 0 by polling
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1: while not converged do
2: On subdomains
3: Local residual: t ? ← J?X?f−G?J?w ?

4: if canWriteRHS? then
5: r 0 ← r 0 + X0X

)
? t ?

6: canWriteRHS? ← False
7: RHSisReady0 [?] ← True
8: end if
9: Accumulate asynchronously:

10: r ? ←
∑%
@=1 X?X

)
@ t@

11: Solve: G?v ? = r ?
12: Update: w ? ← w ? + 1

2 v ?
13: if solutionIsReady? then
14: Update: w ? ← w ? + 1

2 c ?
15: solutionIsReady? ← False
16: end if

17: On coarse grid
18: if RHSisReady0 [?] ∀? = 1, . . . , % then
19: Solve G0v 0 = r 0
20: for ? = 1, . . . , % do
21: RHSisReady0 [?] ← False
22: canWriteRHS? ← True
23: c ? ← X?X

)
0 v 0

24: solutionIsReady? ← True
25: end for
26: else
27: Sleep
28: end if
29: end while
30: On subdomains
31: Post-process synchronously
32: u ? ←

∑%
@=1 X?X

)
@J@w@

Fig. 2: Asynchronous RAS with additive coarse grid in local form. Variables printed in light gray
are exposed memory regions that are local to the calling process. Dark gray variables are remote
memory regions.

the state of the local Boolean array RHSisReady0. We notice that the algorithm is
asynchronous despite the data dependencies. Coarse grid and subdomain solves do
not wait for each other.

Since we determined by experiments that performance is adversely affected if
the coarse grid constantly polls the status variable RHSisReady0, we added a sleep
statement into its work loop. The sleep interval should not be too large, since this
results in under-usage of the coarse grid. Keeping the ratio of attempted coarse grid
solves to actual performed coarse grid solves at around 1/20 has been proven effective
to us. This can easily be achieved by an adaptive procedure that counts solves and
solve attempts and either increases or decreases the sleep interval accordingly.

We conclude this section with a note on convergence theory for the asynchronous
case. Contrary to the synchronous case, where the condition d (K) < 1 on the
iteration matrix K of the method is necessary and sufficient for convergence,
asynchronous convergence is guaranteed if K is a block H-matrix which is a P-
contraction [9]. Obtaining a prediction for a rate at which the asynchronous method
converges appears to bemore elusivewhich is whywe limit ourselves to experimental
comparisons.

3 Numerical Experiments

The performance of linear iterative methods is typically measured by the average
contraction factor per iteration d̃ = (Afinal/A0)

1
 , where A0 is the norm of the initial

residual vector, Afinal the norm of the final residual vector, and  the number of iter-
ations that were taken to decrease the residual from A0 to Afinal. For an asynchronous
method, the number of iterations varies from subdomain to subdomain, and hence d̃
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is not well-defined. The following generalization permits us to compare synchronous
methods with their asynchronous counterpart: d̂ = (Afinal/A0)

gsync
) . Here,) is the total

iteration time, and gsync is the average time for a single iteration in the synchronous
case. In the synchronous case, since ) = gsync , d̂ recovers d̃. The approximate
contraction factor d̂ can be interpreted as the average contraction of the residual
norm in the time of a single synchronous iteration.

We expect the performance of the asynchronousmethod relative to its synchronous
counterpart to be essentially dependent on the communication stencil. Here, we limit
ourselves to a simple 2D problem. Further experiments for more complicated PDEs
and as well as in 3D are part of future work.

As a test problem, we solve −ΔD = 5 in Ω = [0, 1]2 subject to the boundary
condition D = 0 on mΩ, where the right-hand side is 5 = 2c2 sin (cG) sin (cH) and
the corresponding solution is D = sin (cG) sin (cH). We discretizeΩ using a uniform
triangular mesh and approximate the solution using piece-wise linear finite elements.

In classical synchronous iterative methods, a stopping criterion of the form A < Y

is evaluated at every iteration. Here, A is the norm of the residual vector and Y is
a prescribed tolerance. The global quantity A needs to be computed as the sum of
local contributions from all the subdomains. This implies that convergence detection
in asynchronous methods is not straightforward, since collective communication
primitives require synchronization. In the numerical examples below, we terminate
the iteration using a simplistic convergence criterion where each process writes its
local contribution to the residual norm to a master rank, say rank 0. The master rank
sums the contributions, and exposes the result through another MPI window. Each
subdomain can retrieve this estimate of the global residual norm, and terminates
if it is smaller than the prescribed tolerance. This simplistic convergence detection
mechanism has several drawbacks. For one, the global residual is updated by the
master rank, which might not happen frequently enough. Hence it is possible that
the iteration continues despite the true global residual norm already being smaller
than the tolerance. Moreover, the mechanism puts an increased load on the network
connection to the master rank, since every subdomain writes to its memory region.
Finally, since the local contributions to the residual norm are not necessarily mono-
tonically decreasing, the criterion might actually detect convergence when the true
global residual is not yet smaller than the tolerance. The delicate topic of asyn-
chronous convergence detection has been treated in much detail in the literature, and
we refer to [1, 14] for an overview of more elaborate approaches.

All runs are performed on the Haswell partition of Cori at NERSC. While the
code was written from scratch, the differences between the synchronous and the
asynchronous code paths are limited, since only the communication layer and stop-
ping criterion need to be changed. One MPI rank is used per core, i.e. 32 ranks per
Haswell node. For the two-level method, the coarse grid solve is performed on a
single rank. The underlying mesh is partitioned using METIS [12]. Both subdomain
and coarse grid problems are factored and solved using the SuperLU [13, 7] direct
solver. This choice is guided by the desire to eliminate the impact that inexact solves
such as preconditioned iterative sub-solves might have on the overall convergence.
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One-level RAS We compare synchronous and asynchronous one-level RAS in a
strong scaling experiment, where we fix the global problem size to about 261,000
unknowns, and vary the number of subdomains between 4 and 256. We obviously
cannot expect good scaling for this one-level method, since increasing the number of
subdomains adversely affects the rate of convergence. In Figure 3a we display solve
time, final residual norm and approximate rate of convergence. It can be observed
that the synchronousmethod is faster for smaller subdomain count, yet comparatively
slower for larger number of subdomains. The crossover point is at 64 subdomains.

An important question is whether the asynchronous method converges because
every subdomain performs the same number of local iterations, and hence the asyn-
chronous method just mirrors the synchronous one, merely with the communication
method replaced. The histogram in Figure 3c shows that this is not the case. The
number of local iterations varies significantly between 11,000 and 16,000 iterations.
The problemwas load balanced by the number of unknowns, thus the local solves are
also approximately balanced but the communication is likely slightly imbalanced.

The advantage of asynchronous RAS becomes even clearer when the experiment
is repeated with one of the subdomains being 50% larger, thereby artificially creating
load imbalance. In Figure 3b we observe that the asynchronous method outperforms
the synchronous one in all but the smallest run.

Two-level RAS In order to gauge the performance and scalability of the syn-
chronous and asynchronous two-level RAS solvers, we perform a weak scaling ex-
periments. We use 16, 64, 256 and 1024 subdomains. The local number of unknowns
on each subdomain is kept constant at almost 20,000. The coarse grid problem in-
creases in size proportionally to the number of subdomains, with approximately
16 unknowns per subdomain. In Figure 4a we plot the solution time, the achieved
residual norm and the average contraction factor d̂. Both the synchronous and the
asynchronous method reach the prescribed tolerance of 10−8. Due to the lack of an
efficient mechanism of convergence detection, the asynchronous method ends up
iterating longer than necessary, so that the final residual often is smaller than 10−9.
The number of iterations in the synchronous case is about 110, whereas the num-
ber of local iterations in the asynchronous case varies between 110 and 150. (See
Figure 4c.) One can observe that for 16, 64 and 256 subdomains, asynchronous and
synchronous method take almost the same time. For 1024 subdomains, however, the
synchronous method is seen to take drastically more time. For this case the size of the
coarse grid is comparable to the size of the subdomains, and hence the coarse grid
solve which exchanges information with all the subdomains slows down the overall
progress. For the asynchronous case this is not observed, since the subdomains do
not have to wait for information from the coarse grid. The third subplot of Figure 4a
shows that the asynchronous method outperforms its synchronous equivalent in all
but the smallest problem.

To further illustrate the effect of load imbalance, we repeat the previous experi-
ment with one subdomain being 50% larger. The results are shown in Figure 4b. The
results are consistent with the previous case, and the performance advantage of the
asynchronous method over the synchronous one has increased. Even when the size
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Fig. 3: (a) Performance of synchronous and asynchronous one-level RAS for a system size of
approximately 261,000 unknowns. The subdomains are load balanced. From top to bottom: Solution
time, final residual norm, and the resulting approximate contraction factor. (b) Performance of
synchronous and asynchronous one-levelRAS for a system size of approximately 261,000 unknowns
under load imbalance: one subdomain is 50% larger than the rest. (c) Histogram of local iteration
counts asynchronous one-level RAS with 256 subdomains in the balanced case.

of the coarse grid system is smaller than the size of the typical subdomain problem,
the asynchronous method outperforms its synchronous counterpart.
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Fig. 4: (a) Weak scaling of synchronous and asynchronous two-level additive RAS, load balanced
case. From top to bottom: Total solution time, final residual norm, and approximate contraction
factor. (b) Weak scaling of synchronous and asynchronous two-level additive RAS under load
imbalance: one subdomain is 50% larger than all the other ones. (c) Histogram of local iteration
counts asynchronous two-level additive RAS with 1024 subdomains in the balanced case.
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Comparison of Continuous and Discrete
Techniques to Apply Coarse Corrections

Martin J. Gander, Laurence Halpern, and Kévin Santugini-Repiquet

1 Introduction

There has been substantial attention on coarse correction in the domain decom-
position community over the last decade, sparked by the interest of solving high
contrast and multiscale problems, since in this case, the convergence of two-level
domain decomposition methods is deteriorating when the contrast becomes large,
see [1, 10, 16, 17, 11, 9, 8] and references therein. Our main interest here is not the
content of the coarse spaces, but the way they are applied to correct the subdomain
iterates. A classical way at the discrete level to apply coarse corrections, which led
to the two level additive Schwarz method introduced in [2], is based on the residual
like in multigrid: one computes the residual, projects it onto the coarse space, then
solves a coarse problem which is for example obtained by a Galerkin projection of
the fine system matrix on the coarse space, and then prolongates the correction by
interpolation to the fine grid to add the correction to the current subdomain approx-
imation. A complete analysis of this two level additive Schwarz preconditioner at
the continuous level is given in [5], and for better coarse spaces, see [4, 6]. An-
other technique, also at the discrete level, is to use deflation, going back to the first
coarse correction technique [15], where the functions spanning the coarse space
are deflated, and then a deflated system is solved, see [14]. A further important
class of coarse space correction techniques at the discrete level are the Balancing
Domain Decomposition (BDD) methods [12, 13]. A more recent and very general
approach at the continuous level for coarse correction is to approximately solve a
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transmission problem for the error, as described in [7], which also shows that for
domain decomposition methods discontinuous coarse spaces are of interest, since
subdomain solutions are in general discontinuous in their traces and/or fluxes at
the interfaces. This observation led to the DCS-DMNV algorithm (Discontinuous
Coarse Space - Dirichlet Minimization and Neumann Variational) at the continuous
level, a two-level iterative domain decomposition algorithm introduced in [3].

We are interested here in understanding if there is a relation between the coarse
corrections formulated at the discrete level by a residual correction, like in Additive
Schwarz, and the coarse correction obtained at the continuous level solving a trans-
mission problem. These two approaches seem at first to be very different, and to be
able to compare them, we will precisely compute the coarse correction one obtains
with these two approaches for the very simple model problem

LD := mGGD = 5 in Ω := (0, 1), D(0) = D(1) = 0, (1)

and two subdomain iterates D 9 , 9 = 1, 2 on the subdomains Ω1 := (0, 1
2 + !)

and Ω2 := ( 1
2 − !, 1) which were obtained by an arbitrary domain decomposition

method, i.e. the subdomain iterates simply satisfy the equation in (1) and the outer
homogeneous boundary conditions, but no other interface condition at 1

2 − ! and
1
2 + !. They can thus come from a Schwarz method if ! > 0, optimized Schwarz
method for both ! > 0 and ! = 0, or a FETI or Neumann-Neumann method if
! = 0. To compare continuous and discrete techniques, we also assume that we have
a discretization of (1) leading to a linear system of equations

�u = f, (2)

and two discrete subdomain iterates u 9 , 9 = 1, 2.

2 Discrete Coarse Correction Based on the Residual

Suppose our coarse space is spanned by two continuous functions @1 and @2, see
for example the hat functions (thick solid blue lines) in Fig. 1. Evaluating them on
the grid used for the discretization leads to two vectors q1 and q2. To formulate
the classical residual based coarse correction like in multigrid and used in Additive
Schwarz, one puts the two row vectors q1 and q2 into the coarse restriction matrix
'0, and forms the coarse matrix �0 := '0�'

)
0 , like in a classical Galerkin approach.

Having two approximate discrete subdomain solutions u1 and u2, one forms a global
approximation using a partition of unity j 9 (diagonal matrices summing to the
identity in this discrete setting with ones on the diagonal outside the overlap),

ũ := j1u1 + j2u2, (3)

and then corrects this approximation by the residual correction formula



Comparison of Continuous and Discrete Techniques to Apply Coarse Corrections 145
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Fig. 1: Geometry with two subdomains Ω 9 , coarse functions @ 9 and subdomain solutions D 9 ,
9 = 1, 2, which could be restricted to a non-overlapping decomposition to become D̃ 9

ũ=4F := ũ + ')0 �−1
0 '0 (f − �ũ). (4)

3 Continuous Coarse Correction Using a Transmission Problem

At the continuous level, a coarse correction can be computed by solving a trans-
mission problem between the subdomains: for two approximate subdomain solution
functions D1 and D2 shown as thin solid red lines in Figure 1, we restrict them first
to a non-overlapping decomposition if the DD method used overlap,

D̃1 := D1 |(0, 1
2 ) and D̃2 := D2 |( 1

2 ,1) , (5)

as shown with thick dashed dark red lines in Figure 1. If the DD method did not use
overlap, we just denote by the tilde quantities D̃ 9 the original iterates D 9 , 9 = 1, 2.
We then form the global approximation D̃ by gluing D̃1 and D̃2 together,

D̃(G) :=
{
D̃1 (G) if G ≤ 1

2 ,
D̃2 (G) if G > 1

2 .
(6)

To compute the coarse correction, one can then for example use the DCS-DMNV
technique, which we describe now using the coarse basis functions @ 9 shown with
thick solid blue lines in Fig. 1 for the specific casewhen W = 0: we define a continuous
coarse space -2 and a discontinuous coarse space -3 by

-2 := span{@1 + @2}, -3 := span{@1, @2}, W = 0. (7)
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Note that the glued solution D̃ lies in -3 .We then introduce a functional formeasuring
the jump in the approximate solution D̃ at the interfaces, which in our example would
be at G = 1

2 ,

@(E) := [E]2 ( 1
2
), [E] ( 1

2
) := E+ ( 1

2
) − E− ( 1

2
). (8)

To correct the approximation D̃, DCS-DMNV solves the minimization problem

D̃=4F = D̃ + argminE∈+ @(D̃ + E) (9)

over the constraint space

+ := {E ∈ -3 :
∫
Ω

E′(G)F′(G) 3G = [D̃′] ( 1
2
)F( 1

2
), ∀F ∈ -2}. (10)

The underlying vector space is

+0 := span(@1 − @2) and -3 = +0 ⊕ -2 . (11)

4 Comparison of the Discrete and Continuous Techniques

In order to compare the discrete residual based coarse grid correction (4) to the
continuous coarse correction (9) obtained by solving approximately a transmission
problem using DCS-DMNV, we need to first formulate (4) at the continuous level for
the specific case where the partition of unity (3) used in (4) glues the approximate
subdomain solutions the same way as in DCS-DMNV which uses (6). Note that the
glued function D̃ is a piece-wise C∞ distribution, supported at 1

2 . This leads to

Theorem 1 Let @ 9 for 9 = 1, 2 be the two hat functions in Figure 1,

@1 =


1

1
2−W

G on (0, 1
2 − W),

1
2W ( 1

2 + W − G) on ( 1
2 − W, 1

2 + W),
0 on ( 1

2 + W, 1),
@2 =


0 on (0, 1

2 − W),
1

2W (G − 1
2 + W) on ( 1

2 − W, 1
2 + W),

1
1
2−W
(1 − G) on ( 1

2 + W, 1),

for 0 ≤ W ≤ !, and let the partition of unity (3) be defined as in (6). Then the
continuous equivalent to the discrete residual based coarse correction (4) is

D̃=4F = D̃ + ( 1
2
− W)

(
( 1
2
[D̃′] ( 1

2
) + [D̃] ( 1

2
))@1 + ( 12 [D̃

′] ( 1
2
) − [D̃] ( 1

2
))@2

)
. (12)

Proof If D is a piece-wise C2 function with a finite number of jumps at 01, . . . , 0# ,
and )D denotes the distribution corresponding to D, we obtain for the derivatives
using the jumps formula
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) ′D = )D′ +
#∑
8=1
[D] (08)X08 , ) ′′D = )D′′ +

#∑
8=1
( [D′] (08)X08 + [D] (08)X′08 ).

Recall that the derivative of the Dirac distribution X0 is defined by X′0 (q) = −q′(0)
for q a C1 function in the neighborhood of 0. If we now apply the jump formula to D̃
we constructed by gluing the subdomain solutions together in (6), we obtain for the
residual we need for the computation of the coarse correction

A := 5 − ) ′′D̃ = −[D̃] (
1
2
)X′1

2
− [D̃′] ( 1

2
)X 1

2
.

The continuous equivalent to the discrete coarse correction (4) is to search for a
coarse correction function* = U@1 + V@2 such that

() ′′* , @1) = (A, @1), () ′′* , @2) = (A, @2), (13)

and to add it to D̃ to obtain D̃=4F . We will work equivalently for this proof instead
with the basis (@1 + @2, @1 − @2) to solve system (13), which will naturally reveal
the role played by the sum (continuous) and difference (discontinuous in the limit
when W goes to zero) and prepare for the relation with the DCS-DMNV approach.
Working with the sum and difference also simplifies the solution of the system. We
thus project now the residual A onto +0 defined in (11) and -2 defined in (7), for
which we need the functions @1 + @2 and @1 − @2,

@1+@2 =


1

1
2−W

G on (0, 1
2 − W),

1 on ( 1
2 − W, 1

2 + W),
1

1
2−W
(1 − G) on ( 1

2 + W, 1),
@1−@2 =


1

1
2−W

G on (0, 1
2 − W),

1
2W (1 − 2G) on ( 1

2 − W, 1
2 + W),

− 1
1
2−W
(1 − G) on ( 1

2 + W, 1).

Since @1 + @2 is constant equal to 1 in ( 1
2 − W, 1

2 + W), we obtain

(A, @1 + @2) = −[D̃′] ( 12 ), (A, @1 − @2) = − 1
W
[D̃] ( 1

2
).

We search now for a coarse correction* = U′(@1 + @2) + V′(@1 − @2) such that

() ′′* , @1 + @2) = (A, @1 + @2), () ′′* , @1 − @2) = (A, @1 − @2). (14)

From the jumps formula, we find

) ′′@1±@2 = [@′1±@′2] (
1
2
− W)X 1

2−W + [@
′
1±@′2] (

1
2
+ W)X 1

2+W ,

which leads to

) ′′@1+@2 =
−1

1
2 − W

(X 1
2−W + X 1

2+W), ) ′′@1−@2 =
−1

2W( 1
2 − W)

(X 1
2−W − X 1

2+W).
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Since (@1 +@2) ( 1
2 −W) = (@1 +@2) ( 1

2 +W) = 1 and (@1−@2) ( 1
2 −W) = −(@1−@2) ( 1

2 +
W) = 1, we find that

) ′′@1+@2 (@1 + @2) = 2W) ′′@1−@2 (@1 − @2) = −2
1
2 − W

, ) ′′@1±@2 (@1 ∓ @2) = 0.

Inserting this into (14) gives a simple diagonal system for U′ and V′, namely

−2
1
2 − W

U′ = −[D̃′] ( 1
2
), −1

W( 1
2 − W)

V′ = − 1
W
[D̃] ( 1

2
),

and thus for the coarse correction

* = ( 1
2
− W) ( 1

2
[D̃′] ( 1

2
) (@1 + @2)+[D̃] ( 12 ) (@1 − @2)),

which concludes the proof. �

For the DCS-DMNV algorithm for computing the coarse correction described in
Section 3, we obtain the following theorem:

Theorem 2 The coarse correction computed by the DCS-DMNV algorithm (9)-(10)
is given by

D̃=4F = D̃ + ( 1
2
[D̃] ( 1

2
) + 1

4
[D̃′] ( 1

2
))@1 + (−1

2
[D̃] ( 1

2
) + 1

4
[D̃′] ( 1

2
))@2,

which is equal to the limit of the coarse correction computed by the residual correc-
tion approach given in (12) when W goes to zero.

Proof The DCS-DMNV algorithm uses the spaces +0 and -2 , which we defined
in (7) and (11) using the hat functions @1 and @2 for the specific case where W = 0,
in which @1 and @2 are discontinuous at G = 1

2 , and we have

@1 + @2 =

{
2G on [0, 1

2 ],
2(1 − G) on [ 12 , 1],

@1 − @2 =

{
2G on [0, 1

2 ),
−2(1 − G) on ( 1

2 , 1] .

We first note that -2 and +0 are orthogonal subspaces of !2, and the same holds
for their derivatives, since ‖@1‖ = ‖@2‖ and ‖@′1‖ = ‖@′2‖. We next identify the
constraint space + from (10): the function

E := U′(@1 + @2) + V′(@1 − @2)

belongs to + if and only if∫
Ω

(U′(@′1 + @′2) + V′(@′1 − @′2)) (G) (@′1 + @′2) (G) 3G = [D̃′] (
1
2
) (@1 + @2) ( 12 ),

which gives
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4U′ = [D̃′] ( 1
2
).

This defines + as the affine line

+ = +0 + 1
4
[D̃′] ( 1

2
) (@1 + @2).

Therefore* = 1
4 [D̃′] ( 1

2 ) (@1 + @2) + V′(@1 − @2). Now the Euler equation for (9) is

@′(D̃ +*) · E := 2[D̃ +*] ( 1
2
) [E] ( 1

2
) = 0 ∀E ∈ +0. (15)

Since [@1 − @2] ( 1
2 ) = 2, (15) yields [D̃ +*] ( 1

2 ) = 0, and since @1 + @2 is continuous
at G = 1

2 ,

[D̃] ( 1
2
) + V′[@1 − @2] ( 12 ) = [D̃] (

1
2
) − 2V′ = 0.

Therefore
* =

1
2
[D̃] ( 1

2
) (@1 − @2) + 1

4
[D̃′] ( 1

2
) (@1 + @2),

and we see that this is indeed the limit as W → 0 of the system (12). �

5 Conclusions

We have shown that two apparently quite different approaches for computing a
coarse correction in domain decomposition, namely the residual based approach at
the discrete level, and the approximate solution of a transmission problem at the
continuous level using DCS-DMNV, lead to the same coarse correction in the limit
when the discretized approach is computed at the continuous level, provided that
one uses a discontinuous partition of unity. It therefore does not matter in this case
which approach is used for computing the coarse correction, they are equivalent.

We showed our result for a simplified setting of Laplace’s equation in 1D and
for two subdomains only, but the generalization to many subdomains in 1D does
not pose any difficulties, one just has to use the jumps formula several times. The
generalization to higher spatial dimensions is also possible and not difficult in the
case of strip decompositions. The case when cross points are present would however
require more care and does not follow trivially. For a more general operator than the
Laplacian, the generalization is in principle also possible, but one essential ingredient
is that the coarse space functions @ 9 must satisfy the homogeneous equation, which
is in general a desirable property for coarse space functions, see [7] and references
therein.

A further open question is how the coarse correction computation based on
deflation, and the BDD technique, are related to the two methods we compared here.
We are currently studying these two techniques for the same simple model problem
presented here, and also the higher dimensional case.
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On the Scalability of the Parallel Schwarz
Method in One-Dimension

Gabriele Ciaramella, Muhammad Hassan, and Benjamin Stamm

1 Introduction and main results

Analgorithm is said to beweakly scalable if it can solve progressively larger problems
with an increasing number of processors in a fixed amount of time. According to
classical Schwarz theory, the parallel Schwarz method (PSM) is not scalable (see,
e.g., [2, 7]). Recent results in computational chemistry, however, have shedmore light
on the scalability of the PSM: surprisingly, in contrast with classical Schwarz theory,
the authors in [1] provide numerical evidence that in some cases the one-level PSM
converges to a given tolerance within the same number of iterations independently of
the number # of subdomains. This behaviour is observed if fixed-sized subdomains
form a “chain-like” domain such that the intersection of the boundary of each
subdomain with the boundary of the global domain is non-empty. This result was
subsequently rigorously proved in [3, 4, 5] for the PSM and in [2] for other one-level
methods. On the other hand, this weak scalability is lost if the fixed-sized subdomains
form a “globular-type” domain Ω, where the boundaries of many subdomains lie in
the interior of Ω. The following question therefore arises: is it possible to quantify
the lack of scalability of the PSM for cases where individual subdomains are entirely
embedded inside the global domain? To do so, for increasing # one would need to
estimate the number of iterations necessary to achieve a given tolerance.

Some isolated results in this direction do exist in the literature. For instance, in [2]
a heuristic argument is used to explain why in the case of the PSM for the solution
of a 1D Laplace problem an unfortunate initialisation leads to a contraction in the
infinity norm being observed only after a number of iterations proportional to # .
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Similarly, for a special choice of overlapping subdomains, an elegant result can be
found in [6] where the authors prove that the Schwarz waveform-relaxation, for the
solution of the heat equation, contracts at most every<+2 iterations with< being an
integer representing the maximum distance of the subdomains from the boundary.
Nevertheless, the literature does not contain a comprehensive study of this problem
for a general decomposition. Furthermore, existing results unfortunately do not
provide a systematic approach to build on and extend in order to cover more general
settings. Our goal therefore has been to develop a framework that can be applied
to a broad class of overlapping subdomains, in multiple dimensions and containing
sub-domains with an arbitrary number and type (double, triple, quadruple and so
on) of intersections, such as for molecular domains in computational chemistry [1].

Of course, tackling this problem in a completely general setting is a daunting task.
The purpose of the current article is to develop such a new framework and apply it
to the PSM for the solution of a 1D Laplace problem as a ’toy’ problem. The key
elements of our proposed framework are

• the identification of an adequate norm for studying the properties of the Schwarz
operator,

• the maximum principle,
• and the idea of tracking the propagation of the contraction towards the interior of

the global domain Ω.

Our expectation is that a framework based on these ingredients can then be sys-
tematically extended to more general decompositions of the domain which can be
quite complex in two and three dimensions. We emphasise that most (but not all)
of the results we prove are either known or intuitively clear. Our true contribution
is the new analysis technique that we introduce. On the one hand, this technique
results in a deeper understanding of the method and leads to a sharper description
of the contraction behaviour. On the other hand, the tools developed in this article
also suggest a systematic roadmap to extend our results to more realistic problems
in higher dimensions. In principle, this can be done by carefully tracking the prop-
agation of the contraction through the subdomains as attempted in this manuscript.
Note however that the contraction behaviour for a 1D reaction-diffusion equation is
completely different from that of the 1D Laplace equation. This can be proved as
shown in [2, 3] .

We first state our main results. We consider the Laplace equation in one-
dimension. Let ! > 0, we must find a function 4 : [0, !] → R that solves

(4) ′′(G) = 0 ∀ G ∈ (0, !), 4(0) = 0, 4(!) = 0. (1)

Clearly (1) represents an error equation whose solution is trivially 4 = 0. In order
to apply the PSM to solve (1), we consider a decomposition Ω = ∪#

9=1Ω 9 , where
Ω 9 := (0 9 , 1 9 ) with 01 = 0, 11 = 01 + ℓ and 0 9+1 = 9 (ℓ − X), 1 9+1 = 0 9+1 + ℓ for
9 = 1, . . . , # − 1. Here, ℓ > 0 is the length of each subdomain, X > 0 the overlap,
and it holds that ! = #ℓ− (# −1)X. Now, let 40 : Ω→ R be some initialization. The
PSM defines the sequences {4=

9
}=∈N by solving for each = ∈ N the sub-problems
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(4=9 ) ′′(G) = 0 ∀ G ∈ (0 9 , 1 9 ), 4=9 (0 9 ) = 4=−1
9−1 (0 9 ), 4=9 (1 9 ) = 4=−1

9+1 (1 9 ), (2)

for each 9 = 2, . . . , # − 1 and

(4=1 ) ′′(G) = 0 ∀ G ∈ (01, 11), 4=1 (01) = 0, 4=1 (11) = 4=−1
2 (11),

(4=# ) ′′(G) = 0 ∀ G ∈ (0# , 1# ), 4=# (0# ) = 4=−1
#−1 (0# ), 4=# (1# ) = 0.

Solving (1) and (2) and defining for each = ∈ N the vector e= ∈ R2# as

e= :=
[
4=1 (01) 4=1 (02) 4=2 (11) 4=2 (03) · · · 4=9 (1 9−1) 4=9 (0 9+1) · · · 4=# (1#−1) 4=# (1# )

]>
,

it is possible to write the PSM iterations as e=+1 = )e=. Here ) ∈ R2#×2# is a
non-negative ()9 ,: ≥ 0), non-symmetric block tridiagonal matrix:

) =



0 )̃2 0 · · · 0 0 0
)1 0 )2 · · · 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · )1 0 )2
0 0 0 · · · 0 )̃1 0


,

)1 =

[
0 1 − X

ℓ

0 X
ℓ

]
, )̃1 =

[
0 1 − X

ℓ

0 0

]
,

)2 =

[
X
ℓ

0
1 − X

ℓ
0

]
, )̃2 =

[
0 0

1 − X
ℓ

0

]
.

Wedenote by ‖·‖ the usual infinity norm and the corresponding inducedmatrix norm.
Our goal is to analyze the convergence properties of the PSM sequence {4=

9
}=∈N with

respect to ‖ · ‖. Hence, we must study the properties of the matrix) . Our main results
are summarized in the following theorem.

Theorem 1 Let # ∈ N be the number of subdomains in Ω and 1# ∈ R2# the vector
whose elements are all equal to 1. Then ‖)=‖ = ‖)=1# ‖ ≤ 1 for any = ∈ N and

(a) ‖) d #2 e ‖ < 1 and hence d()) < 1, where d()) is the spectral radius of ) .
(b)‖)=+1‖ < ‖)=‖ if # is even, and ‖)=+2‖ < ‖)=‖ if # is odd, for = ≥ ⌈

#
2
⌉
.

Theorem 1 states clearly that the PSM converges. Moreover, it identifies 1# as the
unit vector that maximises the ℓ∞ operator norm of the iteration matrices )=, = ∈ N.
This fact is then used to prove Theorem 1 (b): if initialized with 1# , after d #2 e
iterations the PSM sequence contracts in the infinity norm at every iteration if # is
even, or every second iteration if # is odd. Although proven for a 1-D problem, this
result is much sharper than the one found in [6], which states that the PSM sequence
contracts in the infinity norm at most every

⌈
#
2
⌉
iterations. To prove Theorem 1 (b)

we use Lemmas 4 and 5. These two technical results characterize precisely the shape
of the vector e= = )=1# at every iteration = and clearly show how the contraction
propagates from the two points of mΩ towards the subdomains in the middle of Ω.

We prove Theorem 1 in the following sections. In particular, in Section 2 we prove
first that ‖)=‖ = ‖)=1# ‖ and then Theorem 1 (a). In Section 3 we prove Theorem 1
(b). Notice that using Theorem 1, one could also estimate the spectral radius of ) as

d()) ≤ ‖) d #2 e ‖1/d #2 e =
[
1 −

( X
!

) d #2 e ]1/d #2 e
.
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This can be proved by a direct calculation involving geometric arguments. However,
since this is a quite conservative bound, we will not prove this result in this short
article.

2 Proof of Theorem 1 (a)

In what follows, we use % =
[
0 1
1 0

]
. Moreover, let < ∈ N and v, w ∈ R<, then v < w

(resp. v > w) means that E8 < F8 (resp. E8 > F8) for each 8 ∈ {1, . . . , <}.
Lemma 1 For all = ∈ N it holds that ‖)=‖ = ‖)=1# ‖.
Proof Let w = )=1# . Then for each 8 ∈ {1, . . . , 2#} it holds that F8 =

∑2#
9=1 ()=)8 9 .

Since ) is non-negative, )= is also non-negative for any = ∈ N and it holds that

‖)=‖ = max
8=1,...,2#

2#∑
9=1
()=)8 9 = max

8=1,...,2#

������ 2#∑
9=1
()=)8 9

������ = max
8=1,...,2#

|F8 | = ‖)=1# ‖.

Next, let 0, 1, 2, 3 ∈ [0, 1) be real numbers such that 0 < 1 ≤ 2 < 3. Direct
calculations show that the matrices )1 and )2 satisfy the following relations:

1 11 < )1

[
0

1

]
+ )211 =

[(1 − X
ℓ
)1 + X

ℓ
X
ℓ
1 + 1 − X

ℓ

]
< 11, (3)

1 11 ≤ )1

[
0

1

]
+ )2

[
2

3

]
=

[(1 − X
ℓ
)1 + X

ℓ
2

X
ℓ
1 + (1 − X

ℓ
)2

]
≤ 2 11, (4)

)111 + )211 = 11, )1

[
0

1

]
+ )2

[
2

3

]
= %

(
)1

[
3

2

]
+ )2

[
1

0

] )
, (5)

where the equality in (4) holds if and only if 1 = 2.

Definition 1 Let = ∈ {
1, . . . ,

⌈
#
2
⌉}

be a natural number, we define += ⊂ R2# as

+= :=

{
v := (v1, . . . , v# ) :

{
v 9 < 11 if 9 ∈ {1, . . . , =} ∪ {# + 1 − =, . . . , #}
v 9 = 11 otherwise

}
.

We now state and prove the main result that will lead directly to Theorem 1 (a).
Lemma 2 Let = ∈ {

1, . . . ,
⌈
#
2
⌉}

be a natural number and let w = )=1# . Then it
holds that )=1# ∈ +=, and for all 9 ∈ {1, . . . , #} it holds that w 9 = % w#+1− 9 .

Proof We proceed by induction on the iteration index =. Let = = 1 and w = )1# .
Then by definition of the iteration matrix ) and the matrices )̃1, )̃2 it holds that

w1 = )̃211 =

[
0

1 − X
ℓ

]
< 11, w# = )̃111 =

[
1 − X

ℓ

0

]
< 11,
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so that w1 = % w# . Furthermore, by (5) it holds that w 9 = )111 + )211 = 11 for all
9 ∈ {2, . . . , # − 1}, and thus w 9 = % w#+1− 9 . Hence, Lemma 2 holds for = = 1.

Assume now that Lemma 2 holds for some = ∈ {
1, . . . ,

⌈
#
2
⌉ − 1

}
. We must show

that Lemma 2 also holds for = + 1. Let u = )=1# and let w = )=+11# . We proceed
in three parts. First, we prove that the result holds in the case = ≥ 2 for indices
9 ∈ {1, . . . , = − 1}, then we prove it for the index 9 = = and finally for the index
9 = = + 1. Note that it is necessary to proceed in these three steps since in each of
these cases w 9 depends on u 9−1 and u 9+1 which take different values depending on
the index 9 .

1. = ≥ 2 and 9 ∈ {1, . . . , = − 1}: Assume first that 9 = 1. It follows from the
induction hypothesis that u2 = % u#−1 < 11. A direct calculation similar to the
one for the base case = = 1 reveals that w1 = % w# < 11. Now assume 9 ≠ 1. It
follows by the induction hypothesis that u 9−1 = % u#+2− 9 , and % u 9+1 = u#− 9 ,
and u 9−1, u 9+1 < 11. We therefore obtain from (5) that

w 9=)1u 9−1+)2u 9+1=%
(
)1%u 9+1+)2%u 9−1

)
=%

(
)1u#− 9+)2u#− 9+2

)
=%w#− 9+1<11 .

2. 9 = =: The induction hypothesis implies that u=−1 = % u#+2−=, u=−1 < 11 and
u=+1 = 11. Hence (5) implies that

w==)1 u=−1+)2 11=%()1 11+)2%u=−1 )=%()1 11+)2u#+2−= )=%w#+1−=<11 .

3. Let 9 = = + 1: By the induction hypothesis we have that u= = % u#+1−=,
u=+2 = % u#−1−=, u= < 11 and u=+2 ≤ 11. Using (4) and (5) we get

w=+1=)1u=+)2u=+2=%()1%u=+2+)2%u=)=%()1u#−1−=+)2u#+1−=)=%w#−=<11 .

It remains to show that w: = 11 for all : ∈ {= + 2, . . . ,
⌈
#
2
⌉} ∪ {⌈ #2 ⌉

, . . . , # −
1 − =}. The induction hypothesis yields that u = )=1# ∈ +=. Hence, u: = 11
for all : ∈ {= + 1, . . . ,

⌈
#
2
⌉} ∪ {⌈ #2 ⌉

, . . . , # − =}. The result now follows by
applying Equation (5).

Lemma 2 implies that ) d #2 e1# ∈ + d #2 e so that ‖) d #2 e ‖ = ‖) d #2 e1# ‖ < 1,
which is precisely Theorem 1 (a).

3 Proof of Theorem 1 (b)

We first prove an intermediate lemma.

Lemma 3 Let = ∈ {
2, . . . ,

⌊
#
2
⌋ − 2

}
, let u = )=1# and w = )u. If for all 9 ∈

{1, . . . , =} it holds that

(u 9 )1 ≤ (u 9 )2, and u 9 < u 9+1, (6)

then for all 9 ∈ {1, . . . , = + 1} it holds that
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(w 9 )1 ≤ (w 9 )2, and w 9 < w 9+1. (7)

Proof We prove the result by induction over the subdomain index 9 . The definition
of the matrices )̃1 and )̃2 implies that 0 = (w1)1 ≤ (w1)2, and Equation (4) yields
that

w1 =

[
0

(1 − X
!
) (u2)1

]
<

[(1 − X
!
) (u1)2

(1 − X
!
) (u3)1

]
≤

[(1 − X
!
) (u1)2 + X

!
(u3)1

X
!
(u1)2 + (1 − X

!
) (u3)1

]
= w2.

We now proceed to the induction step. Assume that (7) holds for some 9 ∈
{1, . . . , =}. We first show that (w 9+1)1 ≤ (w 9+1)2. Equation (4) implies that it is
sufficient to show that u 9 ≤ u 9+2. There are two cases: 9 < = − 1 and 9 ∈ {= − 1, =}.
If 9 < = − 1, then (6) yields the required result. If 9 ∈ {= − 1, =}, then (6) and the
fact that u ∈ += gives that u 9 < u 9+2 = 11.

Next, we show that w 9+1 < w 9+2. Equation (4) implies that it is sufficient to show
that u 9 < u 9+1 and u 9+2 ≤ u 9+3. There are three cases: 9 < = − 1, 9 = = − 1 and
9 = =. If 9 < =− 1 then (6) yields the required result. If 9 = =− 1 then (6) yields that
u 9 < u 9+1 and the fact that u ∈ += gives that u 9+2 = u 9+3 = 11. If 9 = = then (6)
yields that u 9 < u 9+1 and it remains to show that u 9+2 ≤ u 9+3. To this end, we recall
that = ≤ ⌊

#
2
⌋ − 2. Therefore, there are three sub-cases: = <

⌊
#
2
⌋ − 2 in which case

= + 1 < 9 + 2, 9 + 3 ≤ ⌊
#
2
⌋
; = =

⌊
#
2
⌋ − 2 and # is even in which case u 9+2 = %u 9+3;

= =
⌊
#
2
⌋ − 2 and # is odd in which case u 9+3 = %u 9+1. In all three sub-cases, we

obtain that u 9+2 = u 9+3 = 11. �

Lemma 4 below describes the ‘shape’ of the vector )=1# for natural numbers
= <

⌊
#
2
⌋
.

Lemma 4 Let = ∈ {
1, . . . ,

⌊
#
2
⌋ − 1

}
be a natural number and let w = )=1# . Then

for all 9 ∈ {1, . . . , =} it holds that

(w 9 )1 ≤ (w 9 )2, (w#+1− 9 )2 ≤ (w#+1− 9 )1, and w 9 < w 9+1, w#+1− 9 < w#− 9 .

Proof By Lemma 2 it holds that w 9 = % w#+1− 9 for each 9 ∈ {1, . . . , =} so it
suffices to show that for each = ∈ {

1, . . . ,
⌊
#
2
⌋ − 1

}
and all 9 ∈ {1, . . . , =} it holds

that

(w 9 )1 ≤ (w 9 )2 and w 9 < w 9+1. (8)

We prove the result by induction over the iteration number =. Let = = 1. The definition

of the matrix )̃2 and (5) yield that w1 =

[
0

1 − X
!

]
and w2 = 11. Thus, (8) holds for

= = 1. Next, let = = 2 and let u = )1
#
. The definition of the matrix )̃2 together with

Equations (3) and (5) yields w1 =

[
0

1 − X
!

]
, w1 < w2 < 11 and w3 = 11. Thus, (8)

holds for = = 2. Finally, assume that (8) holds for some = ∈ {2, . . . , ⌊ #2 ⌋ − 2}. It
follows from Lemma 3 that (8) also holds for = + 1. �
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Next, Lemma 5 describes the ‘shape’ of the vector )=1# for natural numbers
= ≥ ⌊

#
2
⌋
. Together, Lemmas 4 and 5 establish that the vector)=1# is monotonically

increasing as one moves from the extrema of Ω towards its centre.

Lemma 5 Let = ≥ ⌊
#
2
⌋
be a natural number, and let w = )=1# . Then for all

9 ∈ {1, . . . , ⌊ #2 ⌋ − 1} it holds that

(w 9 )1 ≤ (w 9 )2, (w#+1− 9 )2 ≤ (w#+1− 9 )1, and w 9 < w 9+1, w#+1− 9 < w#− 9 .

In addition, if # is an odd number, then wb #2 c ≤ wd #2 e and wb #2 c+2 < wd #2 e .
Proof Lemma 5 can be proven in a similar manner to Lemma 4 using a proof-by-
induction on the iteration number =. We omit it here for brevity. �

We are now ready to prove our second main result.

Proof (Theorem 1 (b)) Assume that # ∈ N is even. In view of Lemma 1, we must
prove that ‖)=+11# ‖ < ‖)=1# ‖. Let w = )=+11# and u = )=1# . By Lemma 5, we
know that ‖)=+11# ‖ = ‖wd #2 e ‖ and ‖)

=1# ‖ = ‖ud #2 e ‖.
Since w = )u, we have that wd #2 e = )1ud #2 e−1 +)2ud #2 e+1. Since # is even, we

obtain that
⌈
#
2
⌉ + 1 = #

2 + 1 and thus, Lemma 2 yields that ud #2 e+1 = %ud #2 e . It
follows that wd #2 e = )1ud #2 e−1 + )2%ud #2 e . From (4) we also obtain that

ud #2 e−1 ≤ wd #2 e ≤ % ud #2 e , (9)

where the equality holds if and only if (ud #2 e−1)2 = (% ud #2 e )1 = (ud #2 e )2. We
know fromLemma 5 that ud #2 e−1 < ud #2 e , which yields that (ud #2 e−1)2 < (ud #2 e )2.
Hence the inequalities in (9) are strict: ud #2 e−1 < wd #2 e < % ud #2 e . Hence, we ob-
tain that ‖)=+11# ‖ = ‖wd #2 e ‖ < ‖% ud #2 e ‖ = ‖ud #2 e ‖ = ‖)

=1# ‖. This completes
the proof of the first assertion.

Assume now that # ∈ N is odd. Let u = )=1# , w = )=+11# and y = )=+21# .
Lemma 5 implies that

‖)=+21# ‖ = ‖yd #2 e ‖, ‖)=+11# ‖ = ‖wd #2 e ‖, ‖)=1# ‖ = ‖ud #2 e ‖.

Since ‖) ‖ = 1, we have

‖yd #2 e ‖ ≤ ‖wd #2 e ‖ ≤ ‖ud #2 e ‖. (10)

Clearly if ‖wd #2 e ‖ < ‖ud #2 e ‖ then (10) yields that

‖)=+21# ‖ ≤ ‖)=+11# ‖ = ‖wd #2 e ‖ < ‖ud #2 e ‖ = ‖)
=1# ‖,

which is our claim. Suppose that ‖wd #2 e ‖ = ‖ud #2 e ‖. We show that ‖yd #2 e ‖ <‖wd #2 e ‖ which implies our claim. To do so, since # is odd, we use Lemma 2
together with the facts that y = )w and w = )u to obtain that yd #2 e = )1wd #2 e−1 +



)2% wd #2 e−1 and wd #2 e = )1ud #2 e−1 + )2% ud #2 e−1 which implies

yd #2 e = (wd #2 e−1)211, wd #2 e = (ud #2 e−1)211. (11)

From Lemma 2, we know that

ud #2 e
Lemma 2
= wd #2 e

(11)
= (ud #2 e−1)211. (12)

Using the fact that w = )u and Equation (12) we have that

wd #2 e−1
(4)
= )1ud #2 e−2 + )2 ud #2 e

(12)
= )1ud #2 e−2 + )2 (ud #2 e−1)211.

Using (4) we obtain that

ud #2 e−2 ≤ wd #2 e−1 ≤ (ud #2 e−1)211. (13)

where the equality holds if and only if (ud #2 e−2)2 = (ud #2 e−1)2. However, Lemma
5 implies that ud #2 e−2 < ud #2 e−1 which immediately yields that (ud #2 e−2)2 <

(ud #2 e−1)2. Hence the inequalities in (13) are strict and thus

wd #2 e−1
(13)
< (ud #2 e−1)211

(11)
= wd #2 e . (14)

Recalling (11) we obtain that yd #2 e
(11)
= (wd #2 e−1)211

(14)
< wd #2 e , which completes

the proof. �
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Fully Discrete Schwarz Waveform Relaxation on
Two Bounded Overlapping Subdomains

Ronald D. Haynes and Khaled Mohammad

1 Introduction

Overlapping Schwarz waveform relaxation (SWR) provides space–time parallelism
by iteratively solving partial differential equations (PDEs) over a time window on
overlapping spatial subdomains. SWR has been studied for many problems at the
continuous and discrete levels. Gander and Stuart [5] and Giladi and Keller [6] have
analyzed SWR for the heat equation on a finite spatial domain in the continuous and
semi-discrete (in space) cases. Semi-discrete (in space) analysis for reaction diffusion
equations on an infinite spatial domain can be found in [10]. Closely related work on
applications of WRmethods to RC type circuits can be found in [3, 2, 1] (continuous
in time analysis), [11] (infinite circuit, discrete in time), [8, 9] (fractional order,
infinite circuit, discrete and continuous resp. in time), and [12] (Volterra integro-
PDEs, infinite spatial domain). Fully discrete analysis for Schrödinger’s equation
and the wave equation can be found in [7] and [4]. We provide an analysis of a full
space–time discretization of SWR for the heat equation on two overlapping, bounded
subdomains, which does not appear to be in the literature.

Consider the one dimensional heat equation DC = DGG + 5 (G, C) for −! < G < !

and 0 < C ≤ ) subject to initial and boundary conditions D(G, 0) = D0 (G), D(−!, C) =
ℎ1 (C), and D(!, C) = ℎ2 (C). Discretizing in space with central finite differences on
Ωℎ = {G< : G<+1 = G< + ΔG, < = −#, ..., # − 1}, where ΔG = !

#
and G−# = −!,

leads to the IVP

3u(C)
3C

= �u(C) + f (C), 0 < C ≤ ), u(0) = u0, (1)

Ronald D. Haynes
Memorial University, St. John’s, Newfoundland, Canada, e-mail: rhaynes@mun.ca

Khaled Mohammad
Memorial University, St. John’s, Newfoundland, Canada, e-mail: km2605@mun.ca
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where u(C) is the solution vector on the interior of Ωℎ with components D< (C), < =
−(# − 1), . . . , (# − 1), which are the semi-discrete approximations of D(G, C) at
G = G<. Here � = 1

ΔG2 tridiag{1,−2, 1} ∈ R(2#−1)×(2#−1) ,

f (C) = ( 5 (G−(#−1) , C) +
1
ΔG2 ℎ1 (C) , 5 (G−(#−2) , C) ,

. . . , 5 (G(#−2) , C) , 5 (G(#−1) , C) +
1
ΔG2 ℎ2 (C)))

and u0 = (D0 (G−(#−1) ), . . . , D0 (G (#−1) ))) .

2 Semi–discretized SWR

To obtain the classical (,' solution of (1), we decompose Ωℎ into two overlapping
subdomains: Ωℎ1 = {G−# , G−(#−1) , . . . , G" } and Ωℎ2 = {G−" , G−("−1) , . . . , G# }
where the quantity " ≥ 1 is an integer that determines the overlap size.

The classical semi-discrete (,' algorithm on the two subdomains, Ωℎ1 and Ωℎ2 ,
can be written as : for : = 1, 2, . . . , for 9 = 1, 2 solve

3u:
9
(C)

3C
= � 9u:9 (C) + f:9 (C), 0 < C ≤ ), (2a)

where
u:1 (C) = (D:1,−(#−1) (C), D:1,−(#−2) (C), ..., D:1, ("−1) (C))) , (2b)

and
u:2 (C) = (D:2, (−"+1) (C), D:2, (−"+2) (C), ..., D:2, (#−1) (C))) , (2c)

are the subdomain iterates on the interior nodes of Ωℎ1 and Ωℎ2 . Here, for 9 = 1, 2,
� 9 =

1
ΔG2 tridiag{1,−2, 1} ∈ R#+"−1,#+"−1. The vectors f:

9
∈ R#+"−1, for 9 =

1, 2, are defined by

f:1 (C) = f̄1 (C) + 1
ΔG2 D

:
1," (C)X1 and f:2 (C) = f̄2 (C) + 1

ΔG2 D
:
2,−" (C)X2, (2d)

where X 9 ∈ R#+"−1 for 9 = 1, 2, are the unit column vectors

X1 = (0, . . . , 0, 1)) and X2 = (1, 0, . . . , 0)) . (2e)

The overbar notation indicates that f̄ 9 , for 9 = 1, 2, are the first and last # + " − 1
components of f, respectively. This notation will be used throughout. The system
(2a) is supplemented with an initial condition

u:9 (0) = ū 9 (0), 9 = 1, 2, (2f)

and boundary and transmission conditions



Discrete SWR on Bounded Subdomains 161

D:1,−# (C) = ℎ1 (C), D:1," (C) = D:−1
2," (C), 0 < C ≤ ),

D:2,−" (C) = D:−1
1,−" (C), D:2,# (C) = ℎ2 (C), 0 < C ≤ ).

(2g)

Here D:
9,<
(C) represents the numerical approximation of D(G, C) at G = G< over Ω 9

using the (,' algorithm at the : Cℎ iteration. To get the iteration started we must
pick initial guesses for D0

2," (C) and D0
1,−" (C).

3 Convergence Analysis

To analyze the fully discrete SWRwe begin with a lemma which describes the single
domain discrete solution of (1) using a backward Euler integrator.

Lemma 1 The single domain solution at C = C=, u(=), restricted to the interior of
Ωℎ
9
, ū 9 (=), for 9 = 1, 2, using a backward Euler integrator for the semi–discrete heat

equation (1), is the unique solution of the subsystems

(�1 − ΔC�1)ū1 (=) − `D" (=)X1 = ū1 (= − 1) + ΔC f̄1 (=),
(�2 − ΔC�2)ū2 (=) − `D−" (=)X2 = ū2 (= − 1) + ΔC f̄2 (=),

for = = 1, 2, . . .. Here ` = ΔC/ΔG2, Xj, for 9 = 1, 2, are defined in (2e), D" (=) and
D−" (=) are the single domain solutions at the interior interface nodes at time C=,
and �1,2 are (# + " − 1) × (# + " − 1) identity matrices. Here f̄j (n) ≡ f̄j (tn) for
9 = 1, 2.

Similar expressions for the SWR approximations are given in the next lemma.

Lemma 2 The solution of (2a)–(2g) using a backward Euler integrator at C = C=,
u:
9
(=), for 9 = 1, 2, at the : Cℎ iteration, are the unique solutions of the subsystems

(�1 − ΔC�1)uk
1 (=) = uk

1 (= − 1) + ΔCfk
1 (=),

(�2 − ΔC�2)uk
2 (=) = uk

2 (= − 1) + ΔCfk
2 (=),

for = = 1, 2, . . .. Here f:
9
(=) ≡ f:

9
(C=), for 9 = 1, 2, where fk

j (C) are defined in (2d).

We denote the error between the single domain and SWR solutions at time step =
by e:

9
(=) = u:

9
(=) − ū 9 (=) for 9 = 1, 2. Simply subtracting the representations of the

single domain and SWR solutions from the previous two lemmas gives the following
result.

Lemma 3 For 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the errors, e:
9
(=), satisfy

(�1 − ΔC�1)ek
1 (=) = ek

1 (= − 1) + `ek
1,M (=)X1,

(�2 − ΔC�2)ek
2 (=) = ek

2 (= − 1) + `ek
2,−M (=)X2,



162 Ronald D. Haynes and Khaled Mohammad

with initial condition
e:9 (0) = 0̄ 9 , for 9 = 1, 2,

and boundary conditions

4:1," (=) = 4:−1
2," (=), 4:1,−# (=) = 0,

4:2,−" (=) = 4:−1
1,−" (=), 4:2,# (=) = 0.

Here 0̄j ∈ R#+"−1, for 9 = 1, 2, is the zero vector.

Using the boundary values and the definition of �1,2 and X1,2 we obtain the
following lemma.

Lemma 4 Component-wise, for 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the errors
e:
9,<
(=) satisfy

−`4:1,<−1 (=) + (1 + 2`)4:1,< (=) − `4:1,<+1 (=) = 4:1,< (= − 1) , for < = −(# − 1) , . . . , " − 1,

−`4:2,<−1 (=) + (1 + 2`)4:2,< (=) − `4:2,<+1 (=) = 4:2,< (= − 1) , for < = −(" − 1) , . . . , # − 1.

To analyze these recursions for the error we need the discrete Laplace transform.
The discrete Laplace transform for a general vector h = (h(0), h(1), . . .)) , defined
on a regular grids with time step ΔC is

ĥ(B) = ΔC√
2c

∞∑
==0

I−=h(=),

where I = 4BΔC , B = f + 8l, f > 0 and −c/) ≤ l ≤ c/ΔC.
The recursions for the discrete Laplace transforms of the errors are recorded in

the next lemma.

Lemma 5 For 9 = 1, 2, : = 1, 2, . . . and = = 1, 2, . . . the discrete Laplace transform
of errors ê:

9,<
(=) satisfy

`4̂:1,<−1 (B) − (2` + [)4̂:1,< (B) + `4̂:1,<+1 (B) = 0, < = −(# − 1), . . . , (" − 1)

and

`4̂:2,<−1 (B) − (2` + [)4̂:2,< (B) + `4̂:2,<+1 (B) = 0, < = −(" − 1), . . . , (# − 1).

The Laplace transform of the initial error gives

ê:9 (0) = 0 9 , for 9 = 1, 2

and the Laplace transforms of the boundary conditions are

4̂:1," (B) = 4̂:−1
2," (B), 4̂:1,−# (B) = 0,

4̂:2,−" (B) = 4̂:−1
1,−" (B), 4̂:2,# (B) = 0,



Discrete SWR on Bounded Subdomains 163

where ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC .
The general solutions of these recursion relations are given in the next two lemmas.

Lemma 6 The general solutions of the recursions for the Laplace transforms of the
error are given by

4̂:9,< (B) = 0:9_<+ + 1:9_−<+ , for 9 = 1, 2, (3)

where _+ solves ` − (2` + [)_ + `_2 = 0 and is given explicitly by _+ =

(2`+[)+
√
(2`+[)2−4`2

2` , ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC where the coefficients
(0:
9
, 1:

9
)) =: c:

9
are shown to satisfy a simple fixed point iteration in the next

lemma.
Note: in the expression above for _+, we have chosen the square root with positive

real part.

Lemma 7 The coefficients in the general solution for the Laplace transform of the
error, c:

9
= (0:

9
, 1:

9
)) , for 9 = 1, 2, satisfy(

c:1
c:2

)
= Γ

(
c:−2

1
c:−2

2

)
,

where the contraction matrix, Γ, is the block diagonal matrix

Γ =

(
(1
(2

)
,

where
(1 = Λ

−1
1 Θ1Λ

−1
2 Θ2 and (2 = Λ

−1
2 Θ2Λ

−1
1 Θ1,

and

Λ1 =

(
_−#+ _#+
_"+ _−"+

)
,Λ2 =

(
_−"+ _"+
_#+ _−#+

)
,Θ1 =

(
0 0
_"+ _−"+

)
,Θ2 =

(
_−"+ _"+

0 0

)
.

Proof The boundary conditions, obtained from (3), can be written as

Λ2ck
2 = Θ2ck−1

1 and Λ1ck
1 = Θ1ck−1

2 ,

from which the result follows. �

To ultimately show convergence of the discrete SWR algorithm we show that for
9 = 1, 2, c:

9
tends to zero as : tends to infinity. A straightforward, but slightly tedious

calculation, gives the following explicit representation of d(Γ).
Lemma 8 The spectral radius of the contraction matrix Γ above, d(Γ), is

d (Γ) =
�����_ (#−" )+ − _−(#−" )+
_
(#+" )
+ − _−(#+" )+

�����2 ,



164 Ronald D. Haynes and Khaled Mohammad

where _+ =
(2`+[)+

√
(2`+[)2−4`2

2` , ` = ΔC

ΔG2 , [ = I−1
I

and I = 4BΔC .

Proof Direct calculation gives

(1 = j

(
1 − _2(#−" )

+ _2"+ − _2#+
_−2"+ − _−2#+ 1 − _−2(#−" )

+

)
and (2 = j

(
1 − _−2(#−" )

+ _−2"+ − _−2#+
_2"+ − _2#+ 1 − _2(#−" )

+

)
,

where j = −
(
_#+"+ − _−(#+" )+

)−2
. It is easy to see that det((1) = det((2) = 0,

hence d((1) = |CA ((1) | and d((2) = |CA ((2) |, where CA (·) denotes the trace of the
matrix.We also note CA ((1) = CA ((2). Computing the trace gives the required result.�

From the form of the contraction factor in the previous lemma it is not clear that
the algorithm converges. We may rewrite the contraction factor as follows.

Lemma 9 Using the mapping, _+ = 4E , where E = Z + 8i, the spectral radius of the
contraction matrix, d(Γ), can be written as

d(Γ) =
���� sinh ((# − ")E)
sinh ((# + ")E)

����2 . (4)

or

d (Z, i) = 2?(Z, i) − sin(2#i) sin(2"i) − sinh(2#Z) sinh(2"Z)
2?(Z, i) + sin(2#i) sin(2"i) + sinh(2#Z) sinh(2"Z) , (5)

where
?(Z, i) = sinh2 (#Z) cosh2 ("Z) + sinh2 ("Z) cosh2 (#Z)

+ sin2 (#i) cos2 ("i) + sin2 ("i) cos2 (#i).
(6)

Proof Using the substitution _+ = 4E and the definition of the hyperbolic sine
function we arrive at (4). Now using E = Z + 8i and hyperbolic trigonometric
identities, the contraction rate (4) can be written as

d (Z, i) =
���� sinh((# − ")Z) cos((# − ")i) + 8 cosh((# − ")Z) sin((# − ")i)
sinh((# + ")Z) cos((# + ")i) + 8 cosh((# + ")Z) sin((# + ")i)

����2 .
(7)

Simplifying the modulus in (7) gives

d (Z, i) = sinh2 ((# − ")Z) cos2 ((# − ")i) + cosh2 ((# − ")Z) sin2 ((# − ")i)
sinh2 ((# + ")Z) cos2 ((# + ")i) + cosh2 ((# + ")Z) sin2 ((# + ")i)

.

(8)
Again using hyperbolic trigonometric identities we arrive at (5) where ? is as defined
in (6). �

To show the spectral radius is strictly less one a more detailed analysis of _+ is
necessary.

Lemma 10 The quantity [ = (I − 1)/I in the expression for _+ satisfies Re([) > 0
and hence Re(_+) > 1.
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Proof Consider [ = (I − 1)/I where I = 4BΔC , B = f + 8l, f > 0 and c/) ≤ |l | ≤
c/ΔC. The real part of [ is given by Re([) = 1 − 4−fΔC cos(lΔC) which is easily
seen to be positive for f > 0 and c/) ≤ |l | ≤ c/ΔC. The real part of _+ is given by
Re(_+) = 1 + Re([)

2` +
Re(
√
[2+4`[)
2` . The conclusion Re(_+) > 1 then follows from

the fact that Re([) > 0 and the choice of the square root in _+. �

The following inequality will finally lead us to the main result.

Lemma 11 If _+ = 4Z+8i then

sinh( Z) > |sin( i) | , (9)

for any integer  ≥ 1.

Proof Recall that _+ satisfies ` − (2` + [)_+ + `_2+ = 0. Substituting _+ = 4Z+8i ,
multiplying by 4−(Z+8i) and dividing by 2`, we find 4Z+8i+4−(Z+8i)

2 = 1+ [

2` . Using the
definition of the hyperbolic cosine function and splitting the real and the imaginary
parts of [ we have

cosh(Z + 8i) =
(
1 + Re([)

2`

)
+ 8 Im([)

2`
.

Since Re([) > 0 then clearly |cosh(Z + 8i) |2 > 1.
Induction is used to prove (9). Using Euler’s formula, hyperbolic trigonometric

identities and simplifying the square of the modulus, |cosh(Z + 8i) |2 > 1 becomes

cosh2 (Z) cos2 (i) + sinh2 (Z) sin2 (i) > 1,

which simplifies to sinh2 (Z) > sin2 (i). Since '4(_+) = 4Z 2>B(i) > 1, then Z > 0
and hence sinh(Z) > 0. Taking the square root of both sides of the inequality
sinh2 (Z) > sin2 (i) then gives the base case in the induction argument.

The induction step then follows using the base inequality, hyperbolic trigono-
metric identities, properties of the hyperbolic and trigonometric functions and the
triangle inequality. �

We now arrive at the final and main result.

Theorem 1 The fully discrete (,' algorithm which results from applying the back-
ward Euler time integrator to (2a)–(2g) converges to the single domain discrete
solution on the interior of Ωℎ

9
, for 9 = 1, 2.

Proof We are now in a position to prove that d(Γ) < 1. The spectral radius of
the contraction matrix, d(Γ), is given in (5) where ? is given in (6). Since ? > 0,
then clearly d (Z, i) < 1 if sin(2#i) sin(2"i) + sinh(2#Z) sinh(2"Z) > 0. This
inequality follows from Lemma 11 for  = 2# and  = 2" . To see this, we
consider different cases for the sign of sin(2#i) and sin(2"i). Since Z > 0 we
have sinh(2#Z) > 0 and sinh(2"Z) > 0. There are two cases to consider: if
sin(2#i) and sin(2"i) have the same or opposite signs. If they have the same sign



then the inequality above is obvious. If they have opposite signs then Lemma 11
gives the result.

4 Conclusions

In this paper we have obtained an explicit contraction rate for the discrete Laplace
transform of the error for the fully discretized SWR algorithm applied to the heat
equation on two overlapping bounded domains. Further analysis, with other families
of time integrators and an arbitrary number of subdomains will appear elsewhere.
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Local Spectra of Adaptive Domain
Decomposition Methods

Alexander Heinlein, Axel Klawonn, and Martin J. Kühn

1 Introduction
For second order elliptic partial differential equations, such as diffusion or elasticity,
with arbitrary and high coefficient jumps, the convergence rate of domain decom-
position methods with classical coarse spaces typically deteriorates. One remedy
is the use of adaptive coarse spaces, which use eigenfunctions computed from lo-
cal generalized eigenvalue problems to enrich the standard coarse space; see, e.g.,
[19, 6, 5, 4, 22, 23, 3, 16, 17, 14, 7, 8, 24, 1, 20, 2, 13, 21, 10, 9, 11]. This typically
results in a condition number estimate of the form

^ ≤ � tol or ^ ≤ � 1
tol

(1)

of the preconditioned system, where� is independent of the coefficient function and
tol is a tolerance for the selection of the eigenfunctions.

Obviously, the robustness of the adaptive domain decomposition methods is
therefore closely related to the choice of tol. Whereas for a pessimistic choice, i.e.,
tol ≈ 1, the adaptive coarse space can resort to a direct solver, a very optimistic
choice can lead to bad convergence behavior of the method.

In this article, we will compare the spectra of the generalized eigenvalue problems
of several adaptive coarse spaces for overlapping as well as nonoverlapping domain
decompositionmethods. The spectra are of interest because they provide information
for choosing an adequate tolerance splitting bad and good eigenmodes as well as
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about the resulting dimension of the adaptive coarse spaces. Therefore, we will
consider certain representative examples of coefficient functions in two dimensions.

Note that we are not going to discuss other important properties of the adaptive
coarse spaces considered here, such as

• condition number and iteration counts of the methods,
• costs for the computation of the eigenvalue problems and the coarse basis func-

tions, respectively,
• necessary communication in a parallel implementation and the ratio of local and

global work.

Thus, we do not claim to draw a general comparison of the different adaptive meth-
ods. We only want to discuss reasonable choices for the user-defined tolerance for
different, exemplary coefficient distributions and the different types of eigenvalue
problems. We hope that this gives some insight for further discussions.

Model problems and domain decomposition notation We consider the varia-
tional form of a second order elliptic partial differential equation, such as diffusion
or elasticity, and denote the coefficient by d ∈ R+ which is assumed to be constant
on each finite element. In matrix form, the problem reads �G = 1.

Now, let Ω be decomposed into nonoverlapping subdomains Ω1, . . . ,Ω# and Γ
be the interface of this domain decomposition. We define corresponding subdomain
stiffness matrices �(8) with Neumann boundary conditions on mΩ8 , 8 = 1, . . . , #
and the block diagonal matrix �# := blockdiag8

(
�(8) ) which is not assembled in

the interface degrees of freedom. For an edge E or its closure E shared by the
subdomains Ω8 and Ω 9 , we obtain the matrix �(8, 9)0 by assembly of the degrees of
freedom on E or E, respectively, in the matrix �(8, 9)=0 := blockdiag

(
�(8) , �( 9)

)
.

The Schur complements with respect to Z = E, Z = E, or any other Z ⊂ Γ
are obtained from �

(8, 9)
=0 or �(8, 9)0 by elimination of all remaining local degrees of

freedomZ� :
(
(8, 9)
∗,Z := �(8, 9)∗,Z Z − �

(8, 9)
∗,Z Z�

(
�
(8, 9)
∗,Z� Z�

)−1
�
(8, 9)
∗,Z� Z

with ∗ ∈ {0, =0}. We also need ( (8)Z := �(8)Z Z − �
(8)
Z Z�

(
�
(8)
Z� Z�

)−1
�
(8)
Z� Z .

In addition to that, let thematrices �E and"E bematrix discretizations of the one-
dimensional bilinear forms 0E (D, E) :=

∫
E dE,max �GCD �GC E 3G and 1E (D, E) :=

ℎ−1 ∑
G: ∈E

V:D (G: ) E (G: ) with V: :=
∑

{C ∈gℎ ::∈dof (C) }
dC . Here, dC is the constant coeffi-

cient on the element C ∈ gℎ and dE,max (G) := max
{

lim
H8 ∈Ω8→G

d(H8), lim
H 9 ∈Ω 9→G

d(H 9 )
}
.

�GC denotes the tangent derivative with respect to the edge 48 9 , and the G: correspond
to the finite element nodes on the edge. Consequently, �E and "E are the stiffness
matrix and a scaled lumped mass matrix on the edge E.

2 Various adaptive coarse spaces in domain decomposition
Overlapping Schwarz methods We extend the nonoverlapping subdomains to
overlapping subdomains Ω′1, ...,Ω

′
#

and consider two-level overlapping Schwarz
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methods of the form

"−1
$(−2 = Φ�

−1
0 Φ

) +
#∑
8=1

')8 �
−1
8 '8 ,

with overlapping matrices �8 = '8�'
)
8
, 8 = 1, ..., # , where '8 is the restriction

matrix to the overlapping subdomain Ω′
8
, and the coarse matrix �0 = Φ

) �Φ. Here,
the columns of Φ are the coarse basis functions. We consider three different adap-
tive coarse spaces for overlapping Schwarz methods, i.e., the Spectral Harmonically
Enriched Multiscale (SHEM) [7], the Overlapping Schwarz Approximate Compo-
nent Mode Synthesis (OS-ACMS) [10], and the Adaptive Generalized Dryja-Smith-
Widlund (AGDSW) [9, 11] coarse spaces.

In all these approaches, the coarse space consists of vertex- and edge-based
energy-minimizing basis functions, i.e., the interior values Φ� are given by Φ� :=
−�−1

� �
��ΓΦΓ for given interface values ΦΓ. The vertex-based basis functions are

nodal basis functions of Multiscale Finite Element Method (MsFEM) [12] type with
different choices of edge values; cf. [7, 10, 9, 11]. The edge-based basis functions are
energy-minimizing extensions of the solutions of generalized eigenvalue problems
corresponding to the edges of the nonoverlapping domain decomposition.

For an edge E of the nonoverlapping domain decomposition, we consider the
following edge eigenvalue problems.
(Ov1) SHEM coarse space [7]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) �E gE = `−1
E \

) "E gE ∀\ ∈ +ℎ0 (E) .

(Ov2) OS-ACMS coarse space [10]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) (
(8, 9)
E gE = `−1

E \) �E E gE ∀\ ∈ +ℎ0 (E) .

(Ov3) AGDSW coarse space [9, 11]: find (gE , `E) ∈ +ℎ0 (E) × R s. t.

\) (
(8, 9)
E gE = `−1

E \) �E E gE ∀\ ∈ +ℎ0 (E) .

Let the reciprocal eigenvalues `E be ordered nondescendingly. Then, we se-
lect eigenpairs with `E > tol to obtain a condition number estimate of the form
^("−1

$(2�) ≤ �tol that is independent of the coefficient function d. Note that we
use the reciprocal eigenvalue only for comparison with the adaptive coarse spaces
for nonoverlapping domain decomposition methods. For the AGDSW coarse space,
the matrix on the left hand side is singular. Therefore, we obtain infinity reciprocal
eigenvalues in our numerical results.

Nonoverlapping methods In the nonoverlapping domain decomposition meth-
ods FETI-1 and FETI-DP, we use the block diagonal matrix �# and introduce a
jump operator � for the interface with � := (�1, . . . , �# ), D = (D)1 , . . . , D)# )) , and
D8 : Ω8 → R, 8 = 1, . . . , # such that �D = 0 if and only if D is continuous across the
interface. The FETI master system is given by[

�# �)

� 0

] [
D

_

]
=

[
5

0

]
.
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In FETI-1, the null space of �# is handled by a projection % such that we solve
the following system reduced to the Lagrange multipliers and preconditioned by the
nonadaptive, projected Dirichlet preconditioner %"−1

�
%)

%"−1
� %

) ��+# �
) %) _ = %"−1

� %
) 3

with corresponding right hand side%"−1
�
%) 3.Wehave"−1

�
= ��blockdiag

(
(
(8)
Γ8

)
�)
�
,

where �� is a scaled variant of �. In FETI-DP, we subassemble �# in a selected
number of degrees of freedom on the interface, e.g., all vertices, and denote the
resulting nonsingular matrix by �̃# . In the nonadaptive case, we then solve the
preconditioned system

"−1
� ��̃−1

# �
) _ = "−1

� 3̃.

Adaptive constraints can then be enforced by, e.g., a second projection %0 (see [23]
for FETI-1 or [17, 14] for FETI-DP) or via a generalized transformation-of-basis
approach; see [15]. In FETI-1/-DP and BDD(C) methods, the operator %� = �)�� is
used for proving condition number bounds and thus also appears in some generalized
eigenvalue problems.

In this paper, we consider the theGenEOeigenvalue problems for FETI-1 (or BDD
methods); see [23]; which were first introduced for overlapping Schwarz methods;
see [22]. A %�-based estimate based coarse space was motivated in [19]. There, %�
was localized to %�,E by extracting from � and �� the rows only considering the
jumps on the corresponding edge (in 2D). A condition number bound for the 2D case
was proven in [17]. The method was extended to a robust three dimensional version
in [14].We present results with d-scaling as (NOv2a) and deluxe-scaling as (NOv2b).
Another %�-based coarse space was proposed by [3] for BDDCwith deluxe-scaling.
In the eigenvalue problems, the matrix operator � : � = �(� + �)+� is used and
the cutoff of the interface Schur complement at the edge ( (8)

Γ8 |E
is used on the right

hand side. The energy comparison was generalized to arbitrary scaling matrices
� (8) in [17]. Extensions of this method to three dimensions were considered, e.g.,
in [24, 1, 20, 2, 13]. We present results for d-scaling as (NOv3a) and deluxe-scaling
as (NOv3b).
(NOv1) GenEO coarse space (FETI-1/BDD) [23]: find (gΓ8 , `Γ8 ) ∈ +ℎ (Γ8) × R
s. t.

\) (
(8)
Γ8
gΓ8 = `

−1
Γ8
\)

(
�)8 "

−1
� �8)gΓ8 ∀\ ∈ +ℎ (Γ8).

(NOv2) %�-based coarse space no. 1 (FETI-DP/BDDC) [19]: find (gΓ8 , `Γ8 ) ∈(
ker ( (8, 9)

=0,Γ8 9

)⊥ × R s. t.

\) %)�,E(
(8, 9)
=0,Γ8 9

%�,EgΓ8 9 = `Γ8 9 \
) (
(8, 9)
=0,Γ8 9

gΓ8 9 ∀\ ∈
(
ker ( (8, 9)

=0,Γ8 9

)⊥
.

(NOv3) %�-based coarse space no. 2 (FETI-DP/BDDC) [3]: find (gE , `E) ∈
+ℎ0 (E) × R s. t.

\) (
(8)
E : ( ( 9)E gE = `E\)

(
�
( 9) ,)
E (

(8)
Γ|E
�
( 9)
E + �

(8) ,)
E (

( 9)
Γ|E
�
(8)
E

)
gE ∀\ ∈ +ℎ0 (E)
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Let the (reciprocal) eigenvalues be ordered nondescendingly. Then, we select
eigenpairs with `−1

Γ8
, `Γ8 9 , or `E greater than tol. For the (NOv1) and the (NOv3)

eigenvalue problems, the matrix on the left hand side is singular, therefore, we obtain
infinity (reciprocal) eigenvalues in our numerical results. For (NOv1), note that the
authors of [23] do not incorporate the eigenvectors corresponding to zero eigenvalues
into the coarse space. With all three eigenvalue problems (NOv1)-(NOv3), we then
obtain adaptivemethodswith a condition number bound ^ ≤ �tol that is independent
of the coefficient function d.

3 Numerical results
In this section, we present results for a diffusion problem onΩ = (0, 1)2 decomposed
into nine subdomains. We used a rectangular domain decomposition and slightly
curved edges for the subdomain in the center to prevent the appearance of symmetric
effects. We set homogeneous Dirichlet boundary conditions for the edge with G = 0
and homogeneous Neumann boundary conditions elsewhere.

The local spectra of the different adaptive coarse spaces for eight different co-
efficient distributions are shown in Figures 1 and 2. The critical eigenvalues and
reciprocal eigenvalues, respectively, are displayed above the spectral gap, which is
hatched in gray. They are plotted side by side if they are close to each other. A wide
spectral gap simplifies the choice of an appropriate tolerance tol. In addition to that,
the number of critical eigenvalues is related to the dimension of the coarse space.
Note that the condition number estimate (1) guarantees fast convergence of all differ-
ent approaches for arbitrary coefficient distributions if a suitable tolerance is chosen.
However, as can be observed from our results, there are significant differences in
the width of the spectral gap and the number of critical eigenvalues for the depicted
model problems.

The use of harmonic extensions in the eigenvalue problems of the OS-ACMS
coarse space can reduce the number of bad eigenmodes compared to the cheaper
one-dimensional integrals in the related SHEM coarse space. A similar behavior can
be observed for the expensive deluxe-scaling compared to the cheaper d-scaling for
the %�-based approaches for FETI-DP/BDDC. For several coefficient distributions,
the width of the spectral gap is larger than two orders of magnitude for all approaches,
whereas it is quite small, e.g., for channel-type coefficient distributions.

Note that the plots in Figures 1 and 2 contain much more information, which we
cannot discuss here due to lack of space. We hope that the results presented here give
some insight for further investigations. Further investigations in three dimensions
are also of high interest. This is however out of the scope of this paper. A small
comparison between the 3D version algorithms of columns (Nov2a) and (Nov2b)
can be found in [18, Sec. 6.5.3]. For overlapping Schwarz methods, a comparison
between different 3D approaches including (Ov3) can be found in [11].
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Fig. 1: Left: domain decompositions and high coefficient components (d = 146, black) for several
exemplary coefficient distributions. Right: corresponding (reciprocal) eigenvalues `. Large eigen-
values (> 500) are distributed horizontally to visualize their number. The gap between good and
bad eigenmodes is shown in gray.
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Fig. 2: Left: domain decompositions and high coefficient components (d = 146, black) for several
exemplary coefficient distributions. Bottom coefficient function generated from the microstructure
of a dual-phase steel; courtesy of Jörg Schröder, University of Duisburg-Essen, Germany, originat-
ing from a cooperation with ThyssenKruppSteel. Right: corresponding (reciprocal) eigenvalues `.
Large eigenvalues (> 500) are distributed horizontally to visualize their number. The gap between
good and bad eigenmodes is shown in gray.
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FROSch: A Fast And Robust Overlapping
Schwarz Domain Decomposition Preconditioner
Based on Xpetra in Trilinos

Alexander Heinlein, Axel Klawonn, Sivasankaran Rajamanickam, and Oliver
Rheinbach

1 Introduction

This article describes a parallel implementation of a two-level overlapping Schwarz
preconditioner with the GDSW (Generalized Dryja–Smith–Widlund) coarse space
described in previous work [12, 10, 15] into the Trilinos framework; cf. [16]. The
software is a significant improvement of a previous implementation [12]; see Sec. 4
for results on the improved performance.

In the software, now named FROSch (Fast and Robust Overlapping Schwarz),
efforts were made for the seamless integration into the open-source Trilinos frame-
work, and to allow the use of heterogeneous architectures, such as thosewithNVIDIA
accelerators. These goals were achieved in the following way:

1. The GDSW preconditioner, i.e., the FROSch library, is now part of Trilinos
as a subpackage of the package ShyLU. The ShyLU package provides distributed-
memory parallel domain decomposition solvers, and node-level direct solvers for
the subdomains. Currently, ShyLU has two other domain decomposition solvers,
i.e., a Schur complement solver [19] and an implementation of the BDDC method
by Clark Dohrmann, and node-level (in)complete LU factorizations (basker [2]),
fastilu [18]) , Cholesky factorization (tacho [17]) and triangular solves (hts [3]).
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2. FROSch now supports the Kokkos programming model through the use of
the Tpetra stack in Trilinos. The FROSch library can therefore profit from the
efforts of the Kokkos package to obtain performance portability by template meta-
programming, on modern hybrid architectures with accelerators. During this process
the GDSWcode has beenmodified and improved significantly. The resulting FROSch
library is now designed such that different types of Schwarz operators can be added
and combined more easily. Consequently, various different Schwarz preconditioners
can be constructed using the FROSch framework. Recently, FROSch has been used in
a three-level GDSW implementation [13, 14] and for the solution of incompressible
fluid flow problems [11].

2 The GDSW Preconditioner

We are concerned with finding the solution of a sparse linear system

�G = 1, (1)

arising from a finite element discretization with finite element space + = +ℎ (Ω) of
an elliptic problem, such as, a Laplace problem, on a domainΩ ⊂ R3 , 3 = 2, 3, with
sufficient Dirichlet boundary conditions. The GDSW preconditioner [4, 5] is a two-
level additive overlapping Schwarz preconditioner with exact local solvers (cf. [21])
using a coarse space constructed from energy-minimizing functions. It is meant to
be used in combination with the Krylov methods from the packages Belos [1] or
AztecOO. In particular, let Ω be decomposed into # nonoverlapping subdomains
Ω8 , 8 = 1, ..., # , and overlapping sudomains Ω′

8
, 8 = 1, ..., # , respectively, and

+8 = +
ℎ (Ω′

8
), 8 = 1, ..., # , be the corresponding local finite element spaces. Further,

we define standard restriction operators '8 : + → +8 , 8 = 1, ..., # , from the global
to the local finite element spaces. Then, the Schwarz operator of the GDSW method
can be written in the form

%GDSW = "−1
GDSW� = Φ�

−1
0 Φ

) � +
#∑
8=1

')8 �
−1
8 '8�, (2)

where �0 = Φ) �Φ is the coarse space matrix, and the matrices �8 = '8�'
)
8
,

8 = 1, ..., # , represent the overlapping local problems; cf. [5]. The matrix Φ is the
essential ingredient of the GDSW preconditioner. It is composed of coarse space
functions which are discrete harmonic extensions from the interface to the interior
degrees of freedom of nonoverlapping subdomains. The values on the interface are
typically chosen as restrictions of the elements of the null space of the operator �̂
to the edges, vertices, and faces of the decomposition, where �̂ is the global matrix
corresponding to � but with homogeneous Neumann boundary condition. Therefore,
for a scalar elliptic problem, the coarse basis functions form a partition of unity on
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all subdomains that do not touch the Dirichlet boundary. The condition number of
the GDSW Schwarz operator is bounded as

^(%GDSW) ≤ �
(
1 + �

X

) (
1 + log

(
�

ℎ

))2
, (3)

where ℎ is the size of a finite element, � the size of a nonoverlapping subdomain,
and X the width of the overlap; see [4, 5, 6]. The exponent of the logarithmic term
can be reduced to 1 for variants of the GDSW coarse space; see, e.g., [7, 8].

However, the dimension of the standard GDSW coarse space is in the order of
dim(+0) = O(dim(null( �̂)) (#V +#E +#F)),where #V , #E , and #F are the global
numbers of vertices, edges, and faces of the nonoverlapping domain decomposition,
respectively. The dimension of the coarse space is fairly high. Therefore, GDSW
coarse spaces of reduced dimension have very recently been introduced in [8]; see
also [15] for parallel results. For general problems, the dimension of the reduced
GDSW coarse spaces is dim(+0) = O(dim(null( �̂)) (#V)), which is, especially
for unstructured decompositions, significantly smaller. Both types of GDSW coarse
spaces are implemented in FROSch, and in Sec. 4, we present performance results.

3 Software Design of the FROSch Library

During the integration of the FROSch library into Trilinos, the code was substantially
restructured. In particular, in the transition from the Trilinos Epetra (used in [12])
to the newer Xpetra sparse matrix infrastructure, it was extended to a framework
of Schwarz preconditioners. Additionally, parts of the code have been improved and
functionality has been added. As opposed to [12], FROSch is completely based on
Xpetra.
A Framework for Schwarz Preconditioners As described in Sec. 2, the GDSW
preconditioner is a two-level overlapping Schwarz method using a specific coarse
space. The GDSW Schwarz operator is of the form

%2−Lvl = Φ�
−1
0 Φ

) �︸       ︷︷       ︸
%0

+
#∑
8=1

')8 �
−1
8 '8�︸       ︷︷       ︸
%8

;

cf. (2); and therefore, it is the sum of local overlapping Schwarz operators %8 ,
8 = 1, ..., # , and a global coarse Schwarz operator %0. There are different ways to
compose Schwarz operators %8 , 8 = 0, ..., # , e.g.:

Additive: %ad =
#∑
8=0
%8

Multiplicative: %mu = � − (� − %# ) (� − %#−1) · · · (� − %0)
%mu−sym = � −∏#

8=0 (� − %8)
∏#−1
8=0 (� − %#−1−8)

Hybrid: %hy−1 = � − (� − %0)
(
� −

#∑
8=0
%8

)
(� − %0)

%hy−2 = U%0 + � − (� − %# ) · · · (� − %1);
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Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Fig. 1: Heuristic reconstruction of the domain decomposition interface: uniquely distributed map
(left); extension of the uniquely distributed map by one layer of elements resulting in an overlapping
map, where the overlap contains the interface (middle); by selection, using the lower subdomain
ID, the interface is defined (right).

cf. [21]. Using the FROSch library, it is simple to construct the different vari-
ants once the ingredients are set up. Let us explain this based on the example of
the class GDSWPreconditioner in FROSch, which is derived from the abstract
class SchwarzPreconditioner and contains an implementation of the GDSW
preconditioner: in FROSch, the SumOperator is used to combine Schwarz op-
erators in an additive way. The additive first level is implemented in the class
AlgebraicOverlappingOperator and the coarse level of the GDSW precon-
ditioner in the class GDSWCoarseOperator. Therefore, the GDSWPreconditioner
is basically just the following composition of Schwarz operators:

GDSWPreconditioner = SumOperator( AlgebraicOverlappingOperator,
GDSWCoarseOperator )

By replacing the SumOperator by a ProductOperator, the levels can be coupled
in a multiplicative way. The different classes for Schwarz operators are all de-
rived from an abstract SchwarzOperator, and the classes SchwarzOperator and
SchwarzPreconditioner are both derived from the abstract Xpetra::Operator.
Transition from Epetra to Xpetra To facilitate the use of FROSch on novel ar-
chitectures, the code was ported completely from Epetra data structures to Xpetra.
As Xpetra provides a lightweight interface to Epetra as well as Tpetra, FROSch
can now profit from the computational kernels from Kokkos, while maintaining
compatibility to older Epetra-based software such as LifeV [9].
Improvement of theCode&Additional Functionality The efficiency of the code
was improved and new functionality was added as part of this redesign. In particular,
the routines for the computation of local-to-global mappings and the identification
of the interface components have been rewritten and therefore improved with respect
to their performance; see Sec. 4 for the numerical results.

Two important features have been added. First, we have introduced the possibility
to reconstruct a domain decomposition interface algebraically based on a unique
distribution of the degrees of freedom into subdomains and the nonzero pattern
of the matrix; cf. Fig. 1. This works particularly well for scalar elliptic problems
and piecewise linear elements. In general, the best performance is obtained when
a RepeatedMap is provided by the user; cf. Fig. 2. This map corresponds to the
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Previous implementation from [12]:
Teuchos::RCP<SOS::SOS> M_SOS(new SOS::SOS(numVectors ,numSubdomainsPerProcess ,

M_DomainMap ,M_RangeMap));
Teuchos::RCP<SOS::SOSSetUp> M_SOSSetUp(new SOS::SOSSetUp(

numSubdomainsPerProcess ,dimension ,dofs,M_rowMatrixTeuchos ,M_DomainMap));
M_SOSSetUp ->FirstLevel(M_ProcessMapOverlap);
M_SOSSetUp ->SecondLevel(M_ProcessMapNodes ,M_ProcessMap ,SOS::LifeVOrdering ,

M_LocalDirichletBoundaryDofs ,"Mumps",useRotations ,M_LocalNodeList);
M_SOSSetUp ->SetUpPreconditioner(M_SOS,"Mumps",secondLevelSolverParameterList ,

Type);

Current implementation Shylu/FROSch:
Teuchos::RCP<FROSch::GDSWPreconditioner <SC,LO,GO,NO> > FROSchGDSW(new FROSch::

GDSWPreconditioner <SC,LO,GO,NO>(A,ParameterList);
FROSchGDSW ->initialize(Dimension ,Overlap,RepeatedMap);
FROSchGDSW ->compute();

Fig. 2: Comparison of the user-interface for the previous implementation of the GDSW solver (top)
and the current implementation in FROSch (bottom). The setup is split into the initialize and
compute phases instead of the two levels.

nonoverlapping domain decomposition and is replicated in the interface degrees of
freedom. Secondly, we have introduced a function that identifies Dirichlet boundary
conditions based onmatrix rowswith only diagonal entries. This is important because
the coarse basis functions are zero on the Dirichlet boundary.
User Interface The user-interface of the FROSch library has been completely
re-designed. Compared to the previous implementation, where the setup of the
preconditioner was split into the first and second level, it is now split into the phases
initialize and compute, also reducing the number of required lines of code to
construct the GDSW preconditioner; cf. Fig. 2. In the initialize phase, all data
structures that correspond to the structure of the problem are built, i.e., the index
sets of the overlapping subdomains and the interface are identified and the interface
values of the coarse basis are computed. In the compute phase, all computations
related to the values of the matrix � are performed, i.e., the overlapping problems
are factorized, the interior values of the coarse basis are computed, and the coarse
problem is assembled and factorized. Therefore, the initialize and compute
phases can be seen as the symbolic and the numerical factorizations of a direct
solver: if only the the values in the matrix � change, the preconditioner can be
updated using compute, and if the structure of the problem is changed, initialize
has to be called to update the preconditioner. Also, FROSch provides a Stratimikos
interface for easier use in applications; Stratimikos provides a unified framework
for solvers and preconditioners in Trilinos.



FROSch: A Fast And Robust Overlapping Schwarz Preconditioner 181

Fig. 3: Weak scalability of the two-level Schwarz preconditioner using the GDSW coarse space
for the Poisson model problem: (Left) in two dimensions with overlap X = 5ℎ and �/ℎ = 100
(approximately 50k degrees of freedom per sudomain); (Right) in two dimensions with overlap
X = 2ℎ and �/ℎ = 14 (approximately 50k degrees of freedom per sudomain). Comparison of
the previous implementation (blue) and the current implementation in FROSch, i.e., the Epetra
(orange) and the Tpetra (green) versions available through the Xpetra interface. The number of
iterations (black) are identical for all versions.

Fig. 4:Weak scalability of the two-level Schwarz preconditionerwith overlap X = 1ℎ for the Poisson
model problem in three dimensions with �/ℎ = 14 (approximately 35k degrees of freedom per
subdomain): comparison of the GDSW and the RGDSW coarse space using the Tpetra version of
the FROSch implementation.

4 Performance of the New FROSch Software

Here, the performance of the new software is compared against the previous imple-
mentation. We consider a Poisson model problem on Ω ⊂ R3 , 3 = 2, 3, with full
Dirichlet boundary condition, discretized by piecewise quadratic finite elements.
We compare the performance of the previous implementation, which is based on
Epetra, and the current implementation in FROSch. In particular, the Epetra and
the Tpetra version of the current implementation, which are both available through
the Xpetra interface, are compared. As a Krylov-solver GMRES from Belos [1] is
used with a relative tolerance of 10−7 for the unpreconditioned residual. For the local
and coarse problems, the native direct solver in Trilinos, KLU, is used; only in Fig. 5,
Mumps is used as the direct solver. We always use one subdomain per processor core.
The computations were performed on the magnitUDE supercomputer at Universität
Duisburg-Essen, which has 15k cores (Intel Xeon E5-2650v4, 12C, 2.2GHz) and
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Fig. 5: Weak scalability for the Poisson model problem in two dimensions with �/ℎ = 200
(approximately 195k degrees of freedom per sudomain): comparison of FROSch using the GDSW
coarse space and the one-level overlapping Schwarz preconditioner Ifpack with overlap X = 20ℎ;
numbers of GMRES iterations (left) and total solver times (right). Using Mumps for all direct solves.
For 1 024 subdomains, Ifpack did not converge within 500 GMRES iterations.

a total memory of 36 096GB. Here, we do not exploit any node parallelism when
using Tpetra. We consider the setup phase and the solution phase and include the
identification of the interface components in the setup phase. This part does not scale
very well and can takes a significant amount of time for a large number of processes;
cf. [12]. In Fig. 3 (left), we present numerical results for the GDSW preconditioner
in two dimensions. We observe that, in the solution phase, the new implementation is
always faster than the previous implementation. The time for the setup phase is com-
parable. The results in Fig. 3 (right), where we compare the preconditioners in three
dimensions, are more interesting. Again, we observe that the solution phase is faster
by a similar factor. However, in three dimensions, the setup phase in the FROSch
implementation is much faster compared to the previous implementation. We also
observe that the Tpetra version is always slightly faster than the Epetra version of
the new code. In Fig. 4, the GDSW and the RGDSW coarse spaces are compared
for the Tpetra version of the FROSch implementation. We observe that, due to the
increasing dimension of the coarse space, the computation time can be improved
when using reduced dimension coarse spaces. This effect becomes stronger when
the number of subdomains is increased; cf. [15]. Finally, we present a comparison of
FROSch using the GDSW coarse space and Ifpack [20], i.e., a one-level overlapping
Schwarz preconditioner, in Fig. 5. We observe that Ifpack does not scale as it lacks
a second level. Already for 64 subdomains, FROSch converges much faster, and for
1 024 subdomains, Ifpack does not converge within a maximum number of 500
GMRES iterations.
Conclusion We presented the new Trilinos library FROSch that allows the flexible
construction of different overlapping Schwarzmethods. The FROSch implementation
of the GDSW preconditioner is significantly faster than the previous one.
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A Three-level Extension of the GDSW
Overlapping Schwarz Preconditioner in Three
Dimensions

Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Friederike Röver

1 The Standard GDSW Preconditioner

The GDSW (Generalized Dryja–Smith–Widlund) preconditioner is a two-level
overlapping Schwarz domain decomposition preconditioner [23] with exact local
solvers [5, 4]. The GDSW preconditioner can be written in the form

"−1
GDSW = Φ −1

0 Φ)︸     ︷︷     ︸
Coarse Level

+
#∑
8=1

')8  
−1
8 '8︸          ︷︷          ︸

First Level

, (1)

where  0 = Φ
)  Φ is the coarse matrix and the  8 = '8 '

)
8
, 8 = 1, ..., # , cor-

respond to the local overlapping subdomain problems. By +1, . . . , +# , we denote
the local subspaces corresponding to the overlapping subdomains, and +0 denotes
the corresponding coarse space. The restriction operators on the subdomain level
are defined as '8 : +ℎ (Ω) → +8 := +ℎ (Ω′

8
) for 8 = 1, . . . , # . The columns of the

matrix Φ correspond to the coarse basis function which are chosen to to be discrete
harmonic extensions from the interface of the nonoverlapping decomposition to the
interior degrees of freedom. The interface values are restrictions of the elements of
the null space of the operator to the edges, vertices, and faces. For linear elliptic
problems, the condition number of the Schwarz operator is bounded by
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Fig. 1: Structured decomposition of an exemplary two-dimensional computational domain Ω into
nonoverlapping subregions Ω80(left), a zoom into one overlapping subregion Ω′

80 consisting of
subdomains Ω8 (middle), and a zoom into one overlapping subdomain Ω′

8
(right). Each level of

zoom corresponds to one level of the preconditioner; image taken from [13].
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where ℎ is the size of a finite element, � the size of a nonoverlapping subdomain,
and X the width of the overlap; see [4, 5, 6]. Even better condition number estimates
are available. For example, the power of the logarithmic term can be reduced to
1 using Option 1 in [7]. An important advantage of the GDSW preconditioner is
that it can be constructed in an algebraic fashion from the fully assembled matrix  
and without the need of an additional coarse triangulation. This will also facilitate
the construction of the three-level GDSW preconditioner presented in the following
section.

2 The Three-Level GDSW Preconditioner

If a direct solver is used for the solution of the coarse problem in (1), this can become
a bottleneck for a large number of subdomains; cf. [11, 9]. As a remedy, in this paper,
we apply the GDSW preconditioner recursively to the coarse problem, resulting in
a three-level extension of the GDSW preconditioner; see [13] for the corresponding
algorithm in two dimensions. Our three-level GDSW method is related to the three-
level BDDC method [24]. A further recursive application of the preconditioner,
resulting in a multilevel extension similar to multi-level BDDC methods [18, 2, 16],
multilevel Schwarz methods [17, 21], or multigrid methods [8], is algorithmically
straightforward but out of the scope of this paper. The scalability of the two-level
method can also be improved by reducing the size of the GDSW coarse space;
cf. [14, 7]. There, instead of using coarse basis functions corresponding to subdomain
edges, vertices, and, faces, new basis functions are constructed, e.g., corresponding
only to the vertices. In this paper, we will construct three-level GDSWmethods using
standard as well as reduced dimension coarse spaces.

To define the three-level GDSW preconditioner, we decompose the domain Ω
into nonoverlapping subregions Ω80 of diameter �2; see [24] and Figure 1 for a
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graphical representation of the decomposition Ω in two dimensions. Each subregion
is decomposed into nonoverlapping subdomains of diameter about�. Extending each
subregion Ω80 to Ω′

80 by recursively adding layers of subdomains, an overlapping
decomposition into subregions is obtained. The overlap on subregion level is denoted
by Δ; the overlap on the subdomain level is denoted by X, consistent with the notation
of the two-level method; see Figure 1.

The three-level GDSW preconditioner then is defined as
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where  00 = Φ
)
0  0Φ0 and  80 = '80 0'

)
80 . On the subregion level, we define the

restriction operators to the overlapping subregionsΩ′
80 as '80 : +0 → +0

8
:= +0 (Ω′

80)
for 8 = 1, ..., #0. The respective coarse space is denoted as +00 and spanned by the
coarse basis functions Φ0.

3 Implementation and Software Libraries

The parallel three-level GDSW implementation discussed in this paper is based on
[9, 11, 12] and uses the Trilinos Epetra linear algebra package. A recent Xpetra
version (FROSch - Fast and Robust Overlapping Schwarz framework [10]) is now
part of the Trilinos [15] package ShyLU [19].

To test our three-level GDSW implementation, we consider the Poisson problem
on the unit cube [0, 1]3 with homogenous Dirichlet boundary conditions on mΩ.
We use structured domain decompositions into subregions and subdomains; see
Figure 1 for a representation of the two-dimensional case. Our model problem is
discretized using piecewise linear finite elements. As a default Krylov method, we
apply the GMRES method provided by the Trilinos package Belos [3]. Trilinos
version 12.11 (Dev) is used; cf. [15].

All numerical experiments were carried out on the JUQUEEN supercomputer at
JSC Julich. We use the IBM XL C/C++ compiler for Blue Gene V.12.1, and Trilinos
is linked to the ESSL.

To solve the overlapping subdomain and subregion problems and the coarse
problem, we always use MUMPS 4.10.0 [1] in symmetric, sequential mode, and
interfaced through the Trilinos package Amesos [20]. For our experiments, we
always have a one-to-one correspondence of subdomains and processor cores. We
use the relative stopping criterion ‖A: ‖2/‖A0‖2 ≤ 10−6. Moreover, we assume that
we have a fast and scalable method to identify interface degrees of freedom. That
cost is therefore neglected in this paper.
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3.1 Weak Parallel Scalability of the Three-Level GDSW Preconditioner

In this section, we focus on the weak scalability of our preconditioners. For the
numerical scalability of the three-level GDSW preconditioner in two dimensions,
more detailed numerical results can be found in [13]. We also compare results for the
two and three-level methods using the standard coarse space (denoted by GDSW)
and the reduced dimension coarse space (denoted by RGDSW). In particular, we use
Option 1, which is the completely algebraic variant of the RGDSW coarse space;
cf. [7] or [14], respectively.

The number of Krylov iterations is presented in Figure 2 and Table 1. Note that
the standard two-level GDSW method fails for more than 13 824 cores since the
coarse problem could not be factored any more due to memory limits. All other
methods show numerical scalability for up to 64 000 cores. This includes the two-
level RGDSW method, which is a remarkable result since RGDSW coarse space is
smaller than the standard GDSW coarse space but the coarse basis function have, on
average, a larger support (see also Table 2); cf. also [14].

Our results show, that the numerical scalability of both two-level methods is
slightly better; cf. Figure 2 and Table 1. Moreover, the number of iterations is higher
by almost a factor of two for both three-level methods; this is, however, not surprising
since the direct coarse solver is replaced by a (two-level) preconditioner.

Fig. 2:Weak numerical scalability of the two- and three-level GDSW (left) and the RGDSW (right)
preconditioner. All methods are numerically scalable; see Table 1 for the corresponding data.

Let us now consider the computing times, which are more favorable for the three-
level methods; see Figure 3 and Table 1. By Solver Time, we denote the time to
solution, which is the sum of the time for the setup of the preconditioner, denoted
Setup Time, and the time for the Krylov iteration, which we denote Krylov Time. The
Setup Time includes the factorizations of the matrices on the different levels using the
MUMPS sparse direct solver. For RGDSW coarse space, the three-level method is
faster than the two-level methods for 4 096 cores and more; see Figure 3 and Table 1.
The two-level RGDSW method is consistently the fastest method from 1 728 to to
32 768 cores. However, for 46 656 and 64 000 cores, the three-level method is faster.



A Three-Level GDSW Method 189

Fig. 3: Weak parallel scalability of the two- and three-level methods using the standard (left) and
the reduced coarse space (right); see Table 1 for the data.

Fig. 4:Memory usage of the MUMPS direct solver for the factorization of the coarse matrix 0 and
 00 for the two-level and three-level GDSW method using the standard (left) and reduced coarse
space (right); see Table 2 for the corresponding data.

For the largest problem with 1.72 billion degrees of freedom, the Solver Time for
three-level RGDSW precondtioner (77.7s Solver Time) more than 20% faster than
two-level RGDSW preconditioner (98.3s Solver Time) and also slightly faster than
the three-level GDSW preconditioner (78.7s Solver Time). However, considering the
size of  0, we expect the two-level RGDSW to fail beyond 100 000 cores while
both three-level methods will continue to scale; also cf. the memory usage for the
factorazation of  00 in Figure 4 and Table 2.
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#Sub- Two-level GDSW Three-level GDSW Two-level RGDSW Three-level RGDSW
domains Iter Solver Setup Krylov Iter Solver Setup Krylov Iter Solver Setup Krylov Iter Solver Setup Krylov
= #cores Time Time Time Time Time Time Time Time Time Time Time Time

1 728 35 50.2 s 30.9 s 19.4 s 48 51.8 s 28.3 s 23.4 s 44 47.9 s 26.9 s 21.1 s 60 55.2 s 26.2 s 28.9 s
4 096 33 58.7 s 35.5 s 23.2 s 51 55.1 s 30.1 s 25.0 s 45 50.0 s 27.6 s 22.4 s 65 58.3 s 26.7 s 31.6 s
8 000 33 77.7 s 46.3 s 31.4 s 59 60.0 s 30.2 s 29.8 s 44 56.1 s 32.3 s 23.8 s 68 64.4 s 30.8 s 33.7 s

13 824 33 115.2 s 69.1 s 46.0 s 57 60.4 s 31.3 s 29.1 s 44 59.6 s 33.3 s 26.3 s 70 67.0 s 31.9 s 35.1 s
21 952 — — — — 65 69.5 s 35.0 s 34.6 s 44 64.7 s 34.6s 30.1 s 72 69.0 s 32.1 s 36.9 s
32 768 — — — — 62 69.8 s 36.2 s 33.6 s 43 69.4 s 35.2 s 34.2 s 74 70.8 s 32.6 s 38.2 s
46 656 — — — — 66 74.8 s 37.1 s 37.6 s 43 78.6 s 37.2 s 41.4 s 75 73.8 s 33.7 s 40.2 s
64 000 — — — — 67 78.7 s 38.5 s 40.2 s 42 98.3 s 50.2 s 48.1 s 78 77.7 s 34.8 s 42.9 s

Table 1: By Iter, we denote number of Krylov iterations. The Solver Time is the sum of the Setup
Time and Krylov Time. We have �/ℎ = 30, �/X = 15, �2/� = 4, and �2/Δ = 4. Also see
Figure 2 and Figure 3. The fastest Solver Time is printed in bold.
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#Subdomains Size Factori- Forward- Memory Size Factori- Forward- Memory
= #Cores of  0 zation Time Backward Usage of  00 zation Time Backward Usage
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Table 2: Costs for solving the problem on the coarsest level, i.e., using  0 in the standard two-
level GDSW and RGDSW preconditioner and using  00 in the three-level GDSW and RGDSW
preconditioner. Here, Factorization Time is the time Amesos reports for the MUMPS sparse direct
solver for the sum of symbolic and numerical factorization of  0 and  00, respectively; Forward-
Backward is the sumof all times spent in forward-backward substitutions during theKrylov iteration;
Memory Usage is the estimated amount of memory allocated by MUMPS during the factorization.
See Table 1 for the corresponding Solver Time, Setup Time and Krylov Time. Also see Figures 5, 4.

Fig. 5: Computing time for solving the problem on the coarsest level, i.e., using  0 in the standard
two-level method preconditioner ans using  00 for the three-level GDSW preconditioner and using
the standard coarse space (left) and respectively the reduced coarse space (right). See Table 2 for
the corresponding data.
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Non-geometric Convergence of the Classical
Alternating Schwarz Method

Gabriele Ciaramella and Richard M. Höfer

1 Introduction

Let Ω be a domain in R= and 5 ∈ !2 (Ω) be a given function. Consider the Laplace
problem

ΔD = 5 in Ω, D = 0 on mΩ. (1)

In error form, the alternating Schwarz method for the solution to (1) is

Δ4=1 = 0 in Ω1,

4=1 = 0 on mΩ ∩Ω1,

4=1 = 4
=−1
2 on Γ1,

Δ4=2 = 0 in Ω2,

4=2 = 0 on mΩ ∩Ω2,

4=2 = 4
=
1 on Γ2.

(2)

Given any initial guess 40 ∈ + := �1
0 (Ω) and solving iteratively (2), one obtains the

sequence (4=1 )=∈N+ ⊂ �1 (Ω1) of errors in Ω1 and the sequence (4=2 )=∈N+ ⊂ �1 (Ω2)
of errors in Ω2. Let us define the sequence (4: ):∈N+ ⊂ + as

4: :=

{
4:1 in Ω1

4:−1
2 in Ω \Ω1

for : odd, and 4: :=

{
4:2 in Ω2

4:−1
1 in Ω \Ω2

for : even.

We denote by +1 and +2 the extensions by zero in Ω of �1
0 (Ω1) and �1

0 (Ω2).
Their orthogonal complements +⊥1 and +⊥2 in + with respect to the inner product
〈·, ·〉 := (∇·,∇·)!2 are of the form

+⊥9 = {E ∈ �1
0 (Ω) : ΔE = 0 in Ω\Ω 9 } (3)
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for 9 = 1, 2. It is then possible to show that (2) is equivalent to the alternating
projection method (APM), 4: := %+ ⊥2 %+ ⊥1 4:−1, for : ∈ N+, where %+ ⊥

9
denote the

orthogonal projections onto +⊥
9
, 9 = 1, 2; [11, 5].

For an arbitraryHilbert space+ and two closed subspaces+1 and+2, vonNeumann
[12] andHalperin [10] proved that 4: → 0whenever+1 ++2 = + .Moreover, if+1++2
is closed, then the convergence is geometric, i.e. there exists \ < 1 such that for all
40 ∈ + it holds that ‖4: ‖ ≤ \: ‖40‖. In the particular case of only two subspaces +1
and +2, it is proven that the optimal \ is incl(+1, +2), with 0 ≤ incl(+1, +2) ≤ 1 the
inclination between the subspaces +1 and +2, and that \ = incl(+1, +2) < 1 if and
only if +1 ++2 is closed; see, e.g., [6, 5].

In the context of Schwarz method, P.L. Lions proves in [11] that an overlapping
decomposition Ω = Ω1 ∪ Ω2 guarantees that +1 ++2 = + , and gives sufficient
conditions for +1 + +2 = +1 ++2 to hold; see also [5, Lemma 2.16 and Theorem
2.17]. These conditions hold if the overlap Ω1 ∩Ω2 is a sufficiently regular domain.
A natural question arises: what happens if Ω1 ∩ Ω2 is not regular enough (e.g.,
non-Lipschitz)? Is the geometric convergence still guaranteed in this case?

We show in this paper that ifΩ1∩Ω2 is non-Lipschitz, then+1++2 is not necessarily
closed. Classical abstract results state that in this case the APM converges ‘arbitrarily
slowly’ [7, 8, 1]:

Definition 1 (Arbitrarily slow convergence (ASC)) The APM is said to converge
arbitrarily slowly if for every sequence ( 5=)=∈N ⊂ R+ with 5= → 0 and for all Y > 0
there exists 40 ∈ + with ‖40‖ < sup= 5= + Y and ‖4: ‖ ≥ 5= for all =.

An ASC is quite difficult to observe and characterize. Therefore, we introduce the
notion of ‘non-geometric’ convergence:

Definition 2 (Non-geometric convergence (NGC)) The APM is said to converge
non-geometrically if there is no \ < 1 such that for all 40 ∈ + it holds that ‖4: ‖ ≤
\: ‖40‖. Moreover, we say that a vector 40 ∈ + leads to NCG, if there exists no \ < 1
such that ‖4: ‖ ≤ \: ‖40‖.

To the best of our knowledge, the case of a non-closed sum +1 ++2 is not studied
in the literature of classical Schwarz theory. Moreover, also the literature concerning
the more general framework of the APM presents surprisingly few results for this
problem. The aim of our work is to study ASC and NGC of the classical Schwarz
method and hence to shed more light on the issue of ‘slow convergence’ of the
APM. To do so, in Section 2 we present a domain decomposition example that
leads to two subspaces +1 and +2 whose sum is not closed. Section 3 focuses on
theoretical results about NGC and ASC of the APM. In Section 4, we consider again
the example from Section 2 and discuss the dependence of the convergence rate on
the initial function 40. Moreover, we precisely characterize a dense subset of the
set of all functions leading to geometric convergence. Finally, results of numerical
experiments are presented in Section 5.
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Ω2

Ω1
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H

�

Γ� Γ2 Γ1

Γ� Γ�

Γ�

Γ� Γ�

Fig. 1: Decomposition Ω = Ω1 ∪ Ω2 with � = {(G, H) ∈ Ω : G > 0, H > GU } = Ω1 ∩ Ω2 and
U < 1.

2 Domain decomposition with non-Lipschitz overlap

Consider a domainΩ = (−1, 1)×(0, 1) and two subdomainsΩ1 = (−1, 0]×(0, 1)∪�
and Ω2 = (0, 1) × (0, 1) with � = {(G, H) ∈ Ω : G > 0, H > GU} for some U > 0.
Clearly, the overlapping decomposition Ω1 ∪ Ω2 = Ω holds, and � is the overlap;
see Fig. 1. The following theorem shows that, if U < 1 (hence � is a non-Lipschitz
domain), then the decomposition Ω = Ω1 ∪ Ω2 leads to two subspaces +1 and +2 of
+ whose sum is not closed.

Theorem 1 (Non-closedness of V1 + V2) Let + 9 denote the extension by zero in Ω
of �1

0 (Ω 9 ) for 9 = 1, 2. Then +1 ++2 = �
1
0 (Ω), but +1 ++2 ≠ + for any U < 1.

Proof Let E ∈ +1 ++2
⊥. Then E ∈ +⊥

9
(see (3)), for 9 = 1, 2. In particular ΔE = 0 in

Ω, thus E = 0. This proves that +1 ++2
⊥
= {0} and the first claim follows.

To prove the second statement, we consider the function E = (AV sin q)k, where
(A, q) denote polar coordinates and k ∈ �1 (Ω) is a cut-off function with k = 0 on
mΩ \ {H = 0} and k = 1 in [−2−U−1

, 2−U−1 ] × [0, 1
2 ]. A direct calculation shows that

E ∈ �1
0 (Ω) for V > 0, and we now prove that E ∉ +1 ++2. To do so, assume for

the sake of contradiction that there are E1 ∈ +1 and E2 ∈ +2 such that E = E1 + E2.
Clearly, it must hold that E1 = E on {G = 0} and E1 = 0 on {(G, GU) : 0 ≤ G ≤ 1}. Let
W(H) := HU

−1 . Then E1 (W(H), H) = 0 and we get −E1 (0, H) =
∫ W (H)

0 mGE1 (C, H) 3C.1
Hence, we have

‖∇E1‖2!2 ≥
∫ 1

2

0

∫ W (H)

0
|mGE1 (C, H) |2 3C 3H ≥

∫ 1
2

0

[∫ W (H)

0
mGE1 (C, H) 3C

]2 1
W(H) 3H

=

∫ 1
2

0

E2
1 (0, H)
W(H) =

∫ 1
2

0

H2V

HU
−1 ,

1 Strictly speaking this is not necessarily meaningful due to possible lack of regularity of E1.
However, it is true for smooth functions and therefore one can argue by density.
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which implies that ‖∇E1‖!2 = ∞ if 2V − U−1 ≤ −1, i.e., if U ≤ 1
1+2V . Thus, for any

U < 1, this shows that E1 ∉ +1 if we choose V > 0 sufficiently small, which leads to
a contradiction. Hence the second claim follows. �

Consider for any Y ∈ (0, 1) and _ > 0 the sets

-_,Y := {D ∈ �1
0 (Ω) : D(0, H) ≥ _HV for a.e. H ∈ (0, Y)}, (4)

where the inequality has to be understood in the sense of traces. Notice that∪_>0-_,Y
is dense in + for any 0 < Y < 1. Moreover, if V = (U−1 − 1)/2, then according to the
proof of Theorem 1 it holds that -_,Y ⊂ + \ (+1 + +2). Hence, Theorem 3 implies
that any 40 ∈ -_,Y leads to a NGC.

In view of Theorem 1, the geometric convergence of the Schwarz method (as
APM) does not hold. This is due to results that we discuss in Section 3.

3 ‘Slow’ convergence in the abstract framework of the APM

Consider an arbitrary Hilbert space (+, 〈·, ·〉) and two closed subspaces +1 and +2
such that +1 + +2 ≠ +1 ++2. Denote by ‖ · ‖ the norm induced by 〈·, ·〉.2 Does the
APM, corresponding to the iteration operator %+ ⊥2 %+ ⊥1 , converge geometrically?
The answer is negative and given in Theorem 2.

Theorem 2 (On the geometric convergence of the APM) Let+1, +2 ⊂ + be closed
subspaces of a Hilbert space with +1 ++2 = + . Let ‖ · ‖ ′ be the operator norm
induced by ‖ · ‖. The following statements are equivalent.

(i) +1 ++2 = + .
(ii) ‖%+ ⊥2 %+ ⊥1 ‖

′ < 1.
(iii) There exists \ ∈ [0, 1) such that ∀40 ∈ + and ∀: ∈ N ‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤
\: ‖40‖.

(iv) For all 40 ∈ + there is \40 ∈ [0, 1) such that ∀: ∈ N ‖(%+ ⊥2 %+ ⊥1 )
:40‖ ≤

\:40 ‖40‖.

Proof The implication from (i) to (ii) is well known; see, e.g., [11, 5]. Clearly (ii)
implies (iii), and (iii) implies (iv). It remains to prove that (iv) implies (i). To do
so, let 40 ∈ + , and denote 4: = (%+ ⊥2 %+ ⊥1 )

:40. We observe that (iv) implies that
lim:→∞ 4: = 0 and that the series H :=

∑∞
:=0 4: is absolutely convergent. Moreover,

we have
%+ ⊥2

%+ ⊥1
40 = (1 − %+2 ) (1 − %+1 )40 = 40 − %+2%+ ⊥1

40 − %+140.

2 Notice that we consider here the same notation (namely the symbols + , +1, +2, 〈·, ·〉 and
‖ · ‖) used in the other sections to describe a more abstract setting. However, it is clear from the
context whether the notation refers to an abstract Hilbert space setting or to the precise domain
decomposition setting.
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By induction and using that lim:→∞ 4: = 0 and that the series H :=
∑∞
:=0 4:

converges absolutely, we obtain

40 = (%+1 + %+2%+ ⊥1
)40 + 41 = (%+1 + %+2%+ ⊥1

)
=∑
:=0

4: + 4=+1

= (%+1 + %+2%+ ⊥1
)H ∈ +1 ++2.

Since 40 ∈ + was arbitrary, the claim follows. �

Theorem 2 implies that, if+1++2 is not closed, then there exists an initial function
40 such that the APM sequence (4: ):∈N does not converge geometrically. The issue
of the rate of convergence of the APM when +1 + +2 is not closed has first been
addressed by Franchetti and Light, who prove in [9] the following result.

Theorem 3 (NGC of the APM) Let+1, +2 ⊂ + be as in Theorem 2 and assume that
+1 + +2 is not closed. Then, for all 40 ∈ + \ (+1 + +2) it holds that

∑∞
:=1

‖4: ‖√
:
= ∞.

In particular, the convergence is NGC.

Theorem 3 states that for any initial function 40 ∈ + \ (+1 + +2) the convergence
of the APM is much slower than geometric. Moreover, in the same paper, the authors
provide an example of a non-closed sum+1 ++2 leading to ASC. In 1997, Bauschke,
Borwein and Lewis proved in [3] that ASC holds whenever +1 + +2 is not closed.
However, Bauschke, Deutsch and Hundal pointed out later in [4] that the proof of
this result given in [3] is erroneous, and they give a different approach to obtain the
same result:

Theorem 4 (DichotomybetweenASCand non-closedness ofV1+V2) Let+1, +2 ⊂
+ be as in Theorem 2. Then, exactly one of the following two statements holds:

(1) +1 ++2 is closed. Then the convergence is geometric.
(2) +1 ++2 is not closed. Then the convergence is arbitrarily slow.

In 2010, Deutsch and Hundal studied ASC for a general class of operators on
Banach spaces [7, 8]. Their results include Theorem 4, also in the case of more than
two subspaces. Independently, the same results have been proved in 2011 by Badea,
Grivaux and Müller [1]. In the same paper it is shown that, if +1 + +2 is not closed,
then, for any positive sequence ( 5=)=∈N, the set {40 ∈ + : ‖4=‖ ≥ 5= for a. e. = ∈ N}
is dense in + .

We have seen that if +1 + +2 is not closed, then the APM converges arbitrarily
slow and the convergence is much slower than geometric at least for any initial
vector 40 ∈ + \ (+1 + +2), and that the set of all 40 leading to ASC is dense in
+ . However, what is the dependence of the convergence rate on the initial vector
40? Can one characterize the set of all 40 leading to geometric convergence? In the
papers mentioned above, there are only a few sentences hinting on the dependence
of the convergence rate on the starting point 40. In [2], Badea and Seifert have
shown that one can always find a dense subset, ⊂ + for which ‘super-polynomially
fast convergence’ holds. However, it seems difficult to characterize such a subset
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in a concrete example. In the following section, we discuss the dependence of the
convergence rate on the starting point 40 for the specific example from Section 2.
In particular, we provide rigorous results on the regularity that is needed for an
initial function 40 to lead to geometric convergence, and show that the set of these
initial functions is a dense subset of V if the overlap of the domains is not too rough
(U > 1/3).

4 The dependence of the convergence rate on the initial function

Consider the domain decomposition studied in Section 2with a non-Lipschitz overlap
�. Recall also + = �1

0 (Ω) and the two subspaces +1 and +2 whose orthogonal
complements are given in (3). For which initial functions 40 ∈ + does the Schwarz
method converge geometrically?

Probably the functions that come first to the mind of the reader are the ones in +
that vanish on the interface Γ1 := mΩ1 ∩Ω. For these functions, the Schwarz method
(2) converges in only one step. Indeed, with � := {E ∈ + : E = 0 on mΩ1 ∩ Ω}, we
see that ker(%+ ⊥2 %+ ⊥1 ) = +1 ⊕ (+⊥1 ∩ +2) = +1 ⊕ {E ∈ + : E = 0 in Ω1} = �, where
we used (3). It is not difficult to see that, if D ∉ �, then the iteration will not yield the
exact result after any finite number of iterations. Moreover, � is not the maximal set
of functions that lead to geometric convergence. This is clearly shown by Theorem
5 below. To prove it, we need the following lemma.
Lemma 1 Let +1, +2 ⊂ + be as in Theorem 2, and let , ⊂ +1 + +2 be a closed
subspace which is invariant under %+ ⊥2 %+ ⊥1 . Then, there exists \ < 1 such that
‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤ \: ‖40‖ for all 40 ∈ , .

Proof The result follows by the same arguments used in [11, Theorem I.1]. �

Theorem 5 (A set of initial functions leading to geometric convergence) Recall
the domain decomposition given in Theorem 1 and the corresponding parameter U.
Consider for an arbitrary _ > 0 the set

,_ :=
{
E ∈ + : E(G, H) ≤ _H for almost all (G, H) ∈ Ω}

.

For all 1 > U > 1/3, the sets,_ are closed subspaces of+1++2 and invariant under
%+ ⊥2

%+ ⊥1
. Moreover, ∪_>0,_ is dense in + , and for any _ > 0 there exists \ < 1

such that
‖(%+ ⊥2 %+ ⊥1 )

:40‖ ≤ \: ‖40‖ for all 40 ∈ ,_.
Proof Notice that ,_ are closed subspaces of + and �∞2 (Ω) ⊂ ∪_>0,_. Hence
∪_>0,_ is dense in + .

To show that,_ ⊂ +1 ++2, we define the cut-off function [ : Ω→ R by

[(G, H) =


0 in Ω1 \Ω2,

1 in Ω2 \Ω1,

GH−U
−1 in � = Ω1 ∩Ω2.
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Then, for (G, H) ∈ � we have

|∇[(G, H) | =
�� (H−U−1

,−U−1GH−U
−1−1) �� ≤ � (U)H−U−1

. (5)

Let now _ > 0 be fixed and let F ∈ ,_. Then we claim [F ∈ +1 and (1 − [)F ∈ +2.
Using (5) and recalling that U > 1/3, we get

‖(∇[)F‖2
!2 (Ω) ≤

∫
�

� (U)_2 H2

H2U−1 = � (U)_2
∫ 1

0

∫ HU
−1

0

H2

H2U−1 3G 3H

= � (U)_2
∫ 1

0

H2

HU
−1 3H = � (U)_2 1

3 − U−1 .

Noticing [ ≤ 1 in Ω, the above estimate shows [F ∈ +1 and (1 − [)F ∈ +2.
Next, we show that ,_ are invariant under %+ ⊥

8
, 8 = 1, 2. Let F ∈ ,_. Then

E := %+ ⊥1 F is the unique function such that ΔE = 0 in Ω1 with E = F in Ω \ Ω1.
Therefore, since the function i(G, H) = _H is harmonic, the maximum principle
implies that E ≤ i in Ω1 and clearly also that E = F ≤ i in Ω \ Ω1. Hence E ∈ ,_.
The invariance under %+ ⊥2 is analogous. Therefore, we obtain that ,_ is invariant
under %+ ⊥2 %+ ⊥1 . Finally, the geometric convergence follows from Lemma 1. �

Theorem 5 says that for U > 1/3 we have geometric convergence for all 40 ∈
∪_>0,_. The restriction U > 1/3 is optimal. To see it, recall the sets -_,Y defined in
(4) and that -_,Y ⊂ + \ (+1 ++2). Hence, Theorem 3 guarantees that any 40 ∈ -_,Y
leads to a NGC. However, for U ≤ 1/3, -_,Y and,_ have non-trivial intersections.
Therefore, if U ≤ 1/3, then there exists 40 ∈ ,_, in particular 40 ∈ ,_ ∩ -_,Y , that
leads to NGC.

5 Numerical experiments

In this section, we present a numerical study of the NGC of the Schwarz method
corresponding to the domain decomposition given in Fig. 1. The (monodomain)
problem is discretized by linear finite elements using the software Freefem. The
discrete meshes for Ω1 \ Ω2, � and Ω2 \ Ω1 are obtained by the mesh generator of
Freefem where we discretized the boundary components Γ�, Γ� , Γ� and Γ� with
10 points and Γ�, Γ� , Γ1 and Γ2 with 10# points with a positive integer # . This
choice is motivated by the higher accuracy needed close to the singularity point of
m�. The results of our numerical experiments are shown in Fig. 2, where we plot
the value 1 − ‖4=‖/‖4=−1‖ for the iteration count = = 1, . . . , 2000. The numerical
procedure is stopped only if ‖4=‖ < 10−16 or if the value 1 − ‖4=‖/‖4=−1‖ becomes
too small (or negative). Clearly, if 1 − ‖4=‖/‖4=−1‖ becomes constant as = grows,
then the method reached a geometric convergence regime. On the other hand, if
1 − ‖4=‖/‖4=−1‖ → 0 as = grows, then the method converges non-geometrically.
Motivated by Theorems 1 and 5, we study the numerical behavior of the Schwarz
method for an overlap characterized by U = \

2 + 1−\
3 for different \ in [0, 1], an initial

guess 40 ∈ ,1, and different # . In particular, according to Theorem 5, we expect



200 Gabriele Ciaramella and Richard M. Höfer

0 500 1000 1500 2000
10

-8

10
-6

10
-4

10
-2

10
0

0 500 1000 1500 2000
10

-8

10
-6

10
-4

10
-2

10
0

0 500 1000 1500 2000
10

-8

10
-6

10
-4

10
-2

10
0

Fig. 2: Convergence behavior of the Schwarz method. The value 1 − ‖4= ‖/‖4=−1 ‖ is shown for
# = 10 (left), # = 20 (center), # = 30 (right).

geometric convergence for any \ ∈ (0, 1] and NGC for \ = 0. In Fig. 2, we see that
for # = 10 the Schwarz method is numerically geometric convergent for \ ∈ [1/2, 1]
(solid lines), but not for \ < 1/2 (dashed lines). However, if one refines the mesh
with # = 20 and # = 30, then geometric convergence holds also for \ = 0.4 and
\ = 0.3. Moreover, for bigger # also the curves for smaller \ are less steep and
show a behavior closer to the proved geometric convergence. Finally, we wish to
remark that, according to our experience, a more precise numerical description of
the correct theoretical behavior for \ approaching zero is hard. This is mainly due
to the non-Lipschitz overlap, where a correct numerical discretization is not trivial.
Therefore, further studies would be needed. These are beyond the scope of this short
manuscript, and we hope to consider them in future work.
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Global–in–Time Domain Decomposition for a
Nonlinear Diffusion Problem

Elyes Ahmed, Caroline Japhet and Michel Kern

1 Introduction

We study a simplified model for two–phase flow in porous media, where the medium
is made of two (or more) different rock types. Each rock type is a subdomain with
a distinct capillary pressure function so that the saturation becomes discontinuous
across the interface between the different regions. This leads to the phenomenon of
capillary trapping (see [12] or [4]).

In this paper we develop a non-overlapping domain decomposition method that
combines the Optimized Schwarz Waveform Relaxation method with Robin trans-
mission conditions and the discontinuous Galerkin method in time. The domain
decomposition method we present is global-in-time, which provides flexibility for
using non-matching time grids so as to handle the very different time scales that
occur in the different rocks of the porous medium. The method is a generalization of
previous work on linear diffusion or diffusion–advection problems [8, 9].

We state briefly the physical model, referring to [1, 4] for further details. Let
Ω be a bounded open subset of R3 (3 = 2 or 3), assumed to be polygonal, with
Lipschitz continuous boundary. We assume that the porous medium Ω is heteroge-
neous and made-up of two rock types, represented by polygonal subsets (Ω8)8∈{1,2}
(the restriction to two subdomain is only to simplify the exposition, and indeed the
example given in section 4 uses more than 2 subdomains). The subdomains share
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the interface Γ = Ω1 ∩Ω2. We suppose that each subdomain Ω8 is homogeneous, in
that the physical properties depend on space only through the subdomain index.

We consider the following nonlinear diffusion problem (for some time ) > 0)

mCD8 − ∇ · (_8 (D8)∇c8 (D8)) = 0, in Ω8 × (0, )), 8 = 1, 2, (1)

for scalar unknowns D8 = D |Ω8 : Ω8 × (0, )) → [0, 1] representing the gas saturation.
This model can be obtained from the complete two-phase flow model by neglecting
the advection terms in the saturation equation, so that the saturation and pressure
equations become completely decoupled (see [4] for details). In [4], this simplified
model is shown to allow gas trapping in low capillary pressure regions. The func-
tions c8 : [0, 1] → R (Lipschitz and strictly increasing) and _8 : [0, 1] → R are
respectively the capillary pressure and the global mobility of the gas in subdomain
Ω8 . Initial data D0 ∈ !2 (Ω) is given with D0 (G) ∈ [0, 1] for a.e. G ∈ Ω, and for
simplicity we assume homogeneous Neumann boundary conditions on mΩ.

Transmission conditions across the interface Γ × [0, )] are needed to comple-
ment (1). In order to handle the three different cases where both phases can flow
across the interface, or where only one phase flows, and the other phase is trapped in
a subdomain, one introduces truncated capillary pressure curves (see [4] or [1] for
details), defined by

c̄1 (D) = max(c1 (D), c2 (0)), c̄2 (D) = min(c2 (D), c1 (1)).

The transmission conditions are then given by

c̄1 (D1) = c̄2 (D2)
_1∇c1 (D1) · n1 = −_2∇c2 (D2) · n2

on Γ × (0, )), (2)

where n8 is the unit, outward pointing, normal vector field on mΩ8 .
In the next section, this physical problem is rewritten in a form better suited for

mathematical and numerical analysis. In particular, the existence of a weak solution
of the local Robin problems is addressed. A semi–discrete formulation based on
discontinuous Galerkin in time is given in section 3 and numerical experiments
using a finite volume method are described in section 4.

2 Space–time domain decomposition at the continuous level

Themodel stated above is well adapted to physical modeling, but is difficult to handle
mathematically because of the low regularity of the solutions. To obtainmathematical
results, it has been found useful to introduce the Kirchhoff transformation [4], so that
_8 and c8 are replaced by a single function i8 . Following [3, 4], one also introduces
new functions (Π8)8=1,2 that satisfy

c̄1 (D1) = c̄2 (D2) ⇔ Π1 (D1) = Π2 (D2), ∀(D1, D2) ∈ [0, 1]2.
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Defining the global function Π6 (G, C) = Π8 (D8 (G, C)), for G ∈ Ω8 , C ∈ (0, )), it is
shown in the above references thatΠ6 (D) ∈ !2 (0, ) ;�1 (Ω)), which gives a meaning
to the first transmission condition in (4) below.

In terms of the new functions, the problem becomes

mCD8 − Δi8 (D8) = 0, in Ω8 × (0, )), D8 (·, 0) = D0, in Ω8 , (3)

together with a Neumann boundary condition on mΩ8\Γ and the transmission con-
ditions

Π1 (D1) = Π2 (D2)
∇i1 (D1) · n1 = −∇i2 (D2) · n2,

on Γ × (0, )). (4)

An existence theorem is known for the transmission problem (3), (4), see [3, 4]
where existence of a suitably defined weak solution is proved.

An equivalent formulation to the model problem (3)–(4) can be obtained by
replacing (4) with equivalent Robin transmission conditions on Γ × (0, )):

∇i1 (D1)·n1 + U1Π1 (D1) = −∇i2 (D2)·n2 + U1Π2 (D2),
∇i2 (D2)·n2 + U2Π2 (D2) = −∇i1 (D1)·n1 + U2Π1 (D1),

on Γ × (0, )), (5)

where U1 and U2 are free parameters that can be chosen to enhance the convergence
of the method (see [7, 8] for linear problems and [2] for a reaction-diffusion problem
with nonlinear source term). It is shown in [1] how the Robin transmission condi-
tions can be extended to Ventcell transmission conditions, to further improve the
convergence of the method.

The Optimized Schwarz Waveform Relaxation method with nonlinear Robin
transmission conditions (NL–OSWR) is defined by the following iterations for : ≥ 0,
where Ψ0

8
is a given initial Robin guess on Γ × (0, )) for 8 = 1, 2:

mCD
:
8 − Δi8 (D:8 ) = 0, in Ω8 × (0, )),

∇i8 (D:8 ) · n8 + U8Π8 (D:8 ) = Ψ:−1
8 , on Γ × (0, )),

(6)

with suitable initial and boundary conditions, then set

Ψ:8 := −∇i 9 (D:9 )·n 9 + U8Π 9 (D:9 ), 9 = (3 − 8), : ≥ 1. (7)

We give an existence result for the subdomain problem, namely problem (6)
with the iteration : and the subdomain Ω8 fixed. Because of the non-linear Robin
boundary condition, the result is not standard (references [3] and [4] both assume
Neumann boundary conditions). For the rest of this section, we denote by O ⊂ R3
a polygonal domain with Lipschitz boundary (that plays the role of one the Ω8), and
denote by Γ the part of the boundary of O along which the Robin boundary condition
applies. First a notion of weak solution is defined:

Definition 1 (Weak solution for the local Robin problem)
A function D is said to be a weak solution of problem (6) (with initial condition

D0 and homogeneous Neumann boundary condition on mO\Γ if it satisfies:



Global–in–Time DD for Nonlinear Diffusion 205

1. D ∈ !∞ (O × (0, ))), 0 ≤ D ≤ 1 for a.e. in O × (0, )),
2. i(D) ∈ !2 (0, ) ;�1 (O)), and Π(D) ∈ !2 (0, ) ;�1 (O)),
3. For all k ∈ �test =

{
ℎ ∈ �1 (O × (0, ))), ℎ(., )) = 0

}
,

−
∫ )

0

∫
O
D(x, C)mCk(x, C) dxdC −

∫
O
D0 (x)k(x, 0) dx

+
∫ )

0

∫
O
∇i(D(x, C)) · ∇k(x, C) dxdC −

∫ )

0

∫
Γ

UΠ(D(x, C))k dW(x)dC

=

∫ )

0

∫
Γ

Ψ(x, C)k dW(x)dC, (8)

where dW(x) is the (3 − 1)-dimensional Lebesgue measure on mO.
We then have an existence theorem for the sub-domain problem

Theorem 1 Assume that:

1. the initial condition D0 is in !∞ (O) and satisfies D0 (G) ∈ [0, 1] for a.e. G ∈ O;
2. the right-hand side Ψ ∈ !2 (O × (0, )));
3. the function i is Lipschitz continuous and strictly increasing on (0, 1);
4. the function Π is continuous and non–decreasing on (0, 1);
5. the Robin coefficient U is chosen such that:

0 < Ψ(G, C) < UΠ(1), ∀(G, C) ∈ O × (0, )). (9)

Then there exists a weak solution to Problem (6) in the sense of Definition 1.

The proof is beyond the scope of this article, and will be the topic of a future paper.
It is an adaptation to nonlinear Robin boundary conditions of the proof in [3, 4], and
is based on the convergence of a finite volume scheme.

Note that in the context of the NL–OSWR method assumption (9) will have to be
checked iteratively to prove that the algorithm is well posed (see section 3).

3 Semi–discrete space–time domain decomposition with different
time steps in the subdomains

We introduce a non–conforming time discretization, that is each subdomain Ω8 has
its own time discretization, by using a (lowest order) Discontinuous Galerkin (DG)
time discretization on each subdomain, together with a projection across the interface
(see [7, 8] for an analysis in the linear case). More precisely, for integers "8 , define
XC8 = )/"8 , and denote by T8 the partition of [0, )] in sub-intervals �=

8
of size XC8 ,

where �=
8
= (C=−1

8
, C=
8
] , with C=

8
= =XC8 , for = = 0, . . . , "8 .

For 8 = 1, 2, we introduce the space
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P0
T8 := {D8 (·, C) : (0, )) → !2 (Γ); D8 (·, C) is constant on �=8 , 1 ≤ = ≤ "8}.

Afunction inP0
T8 is thus defined by the"8 functions {D=8 := D8 (·, C) |�=

8
}1≤=≤"8 in !

2 (Γ).
In order to deal with the non–conformity in time, we introduce the !2 projection op-
erator %8, 9 from P0

T9 (!2 (Γ)) onto P0
T8 (!2 (Γ)), i.e., for q ∈ P0

T9 (!2 (Γ)), (%8, 9q) |�=
8

is the average value of q on �=
8
, for = = 1, ..., "8:

(%8, 9q) |�=
8
=

1
XC8

" 9∑
ℓ=1

∫
� ℓ
9
∩�=
8

q.

The semi-discrete counterpart in time of the NL–OSWR method (6)–(7) with pos-
sibly different time grids in the subdomains can be written as follows:

For 8 = 1, 2, given initial iterates Ψ0
8
∈ P0

T8 and starting from the initial condition

D
0,0
8

= D0 |Ω8 , a semi–discrete solution
(
D
:,=
8

)
1≤=≤"8

at step : of the algorithm is
computed by solving, for = = 1, . . . , "8 ,

D
:,=
8
− D:,=−1

8

XC8
− Δi8 (D:,=8 ) = 0 in Ω8 ,

∇i8 (D:,=8 ) · n8 + U8Π8 (D:,=8 ) =
1
XC8

∫
�=
8

Ψ:−1
8 (C) 3C, on Γ × (0, )).

(10)

Then we set

Ψ:8 := %8, 9
(
− ∇i 9 (D:9 (C))·n 9 + U8Π 9 (D:9 (C))

)
, 9 = (3 − 8), : ≥ 1. (11)

The projections in (11) between arbitrary grids are performed using the algorithm
with linear complexity introduced in [5, 6].

Last, we check that the NL–OSWR algorithm is well posed. That is, we need to
verify that assumption (9) holds for every iteration. The initial iterate and the Robin
coefficients are chosen such that it holds for : = 0. We have been able to show
that this remains true throughout the algorithm only in the case when the capillary
pressure functions satisfy

c1 (0) = c2 (0) and c1 (1) = c2 (1).

4 Numerical experiment

The domain Ω is the unit cube, decomposed into two subdomains with two rock
types (see figure 1). The mobilities and capillary pressure functions are given by

_>,8 (D) = D, 8 ∈ {1, 2}, c1 (D) = 5D2, and c2 (D) = 5D2 + 1.
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The initial condition is that the domain contains some quantity of gas, situated
only within Ω1, more precisely, D0 (x) = 0.9 for G1 < 0.4 and 0 otherwise. The
domain is discretized by a mesh of 20 × 20 × 20 elements, the time discretization
is non–conforming, with constant time steps in each subdomain XC1 = 10−3, and
XC2 =

1
8 10−2.

The full discretization is carried out with a two–point finite volume scheme [4].
The method is implemented with the Matlab Reservoir Simulation Toolbox [11].
The nonlinear subdomain problem is solved with Newton’s method. The only change
required to the finite volume scheme to cope with a non–conforming time scheme
is the projection of the right hand side of the transmission condition on the grid
of the current subdomain, as shown on eq. (11). This is what makes the choice
of a DG formalism important, together with a global in time DD method. The
resulting scheme is non-conforming in time, and the equivalence with the physical
transmission conditions no longer holds.

Fig. 1: Test case 1: Saturation D (C) for C = 0.3 and C = 3

The evolution of the saturation at two time steps is shown in Fig. 1. We remark
that at the beginning of the simulation, approximately until C ≈ 0.02, the gas cannot
penetrate to the domain Ω2, since the capillary pressure is lower than the threshold
value c2 (0) = 1, which is known as the entry pressure. The saturation of the trapped
gas inΩ1 as well as the capillary pressure increase until the capillary pressure reaches
the entry pressure.

We study the convergence behavior of the NL–OSWR algorithm. The tolerance
for Newton’s method is fixed to 10−8. The tolerance of the NL–OSWR algorithm is
10−6. The Robin parameters are chosen for the two subdomains so as to minimize
the convergence rate of a linearized version of the problem. Precisely, we take in the
model problem the capillary pressure as unknown, then linearize the nonlinear terms,
leading to determine the optimal Robin parameters for a linear diffusion problem
with discontinuous coefficients similar to that in [8, 10]. We show in Fig. 2 (right) the
relative residuals comparing the convergence history with the parameters calculated
numerically by minimizing the convergence factor for the linearized problem and
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that of with the best parameters located in the zone giving the smaller errors after
the same number of iterations (see Fig. 2 left).

Fig. 2: Test case 1: Left: Level curves for the residual error obtained after 10 iterations for various
values of the parameters U1 and U2. The star (in magenta) marked the parameters obtained with the
minimization process of the convergence factor applied to the linearized problem which is close to
the best one marked by times symbol (in black). Right: The convergence curves.

We now analyze the efficiency in time of the method with nonconforming time
steps. We compute a reference solution as the converged multidomain solution with
conforming fine time grids XC 5 = 1

4 10−3, and where the relative residual is taken
smaller than 10−12. We then compare the solution obtained with the nonconforming
time steps, as described above with two solutions computed first with conforming
fine time steps (XC1 = XC2 = 10−3) and then with conforming coarse time steps
((XC1 = XC2 = 1

8 10−2)). Fig. 3 shows the error in the saturation along a line orthogonal
to the interface at three different time steps. One can see that the nonconforming
solution as well as the solution with conforming and fine steps are in close agreement
with the reference solution, whereas the solution with coarse time steps has a larger
error. This confirms that nonconforming time grids with respect to the rock type
numerically preserve the accuracy in time of the multidomain solution.

Fig. 3: Test case 1. Error in saturation along a line orthogonal to the interface, nonconforming and
conforming (coarse and fine) time-steps. Left ) = )5 /20, right, ) = )5 .

Other examples with more physical content can be found in [1].
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A Two-level Overlapping Schwarz Method Using
Energy Minimizing Multiscale Finite Element
Functions

Hyea Hyun Kim, Eric T. Chung, and Junxian Wang

1 Introduction

In this paper, a two-level overlapping Schwarz algorithm is proposed for solving
finite element discretization of the following model problem,∫

Ω

d(G)∇D(G) · ∇E(G) 3G =
∫
Ω

5 (G)E(G) 3G, ∀E(G) ∈ �1
0 (Ω), (1)

where D(G) is in the Sobolev space�1
0 (Ω), the space of integrable functionswith their

weak derivatives of the first order being square integrable. The coefficient d(G) can
be highly varying and randomwith high contrast insideΩ. For such model problems,
the standard coarse problem in the two-level overlapping Schwarz algorithm often
fails and a more robust coarse problem is required.

A new idea here is that we will form the coarse problem by utilizing multiscale
finite element functions proposed in [2]. The multiscale finite element functions
are obtained by solving certain constrained energy minimizing problems where the
constraints are formed by using a set of selected eigenvectors from a generalized
eigenvalue problem in each overlapping subdomain. The generalized eigenvalue
problem is similar to that considered in [4]. In their work, the eigenvectors are
directly used to form the coarse basis functions and the resulting preconditioner is
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shown to have a condition number robust with respect to the contrast of the coefficient
but dependent on the overlapping width in the subdomain partition.

The advantage in our new method is that the resulting coarse basis functions
provide a more robust coarse problem and thus the condition number of the resulting
preconditioner becomes robust to the overlapping width as well as the contrast in
the model coefficient. The idea was originated from [2] where it was shown that
such constrained energy minimizing finite element functions can approximate the
solution of the model problem with the errors dependent on the coarse mesh size
but independent of the contrast in the model coefficient. One disadvantage of our
approach is that the constrained minimization problem needs to be solved in the
whole domain. To overcome this heavy cost, we can localize the minimization
problem on each subregion and use the solution to form the coarse basis functions.
In [2], it was shown that the error between the full minimization solution and the
localized one decays exponentially as a function of the subregion size. From that
result, we can expect that the proposed preconditioner with these localized coarse
basis functions also share the same good quality, i.e., is robust with respect to the
overlappingwidth as well as the contrast in the coefficient.More detailed analysis and
extensive numerical tests will be given later in a full version of this short proceeding
paper [14].

We note that the similar idea, enriching the coarse problem by using adaptively
chosen eigenvectors from generalized eigenvalue problems on each subdomain or
on each subdomain interface, has been also extensively developed for other types
of domain decomposition algorithms, such as, FETI(-DP), BDD(C), and additive-
Schwarz algorithms, see [10, 3, 9, 1, 8, 11, 13, 5, 6, 7].

2 Multiscale finite element basis functions

For finite element approximation of the solution of the model problem (1), we
introduce a piecewise linear conforming finite element space +ℎ (⊂ �1

0 (Ω)) defined
for a triangulation Tℎ ofΩ. We assume that the triangulation is fine enough to resolve
the variation in the coefficient d(G) in the following sense,

max
g∈Tℎ

maxG∈g d(G)
minG∈g d(G) ≤ �, (2)

for a given constant �.
We partition the domain Ω into overlapping subdomains {Ω8}#8=1 where each Ω8

is a connected union of triangles in Tℎ . For a given overlapping subdomain partition,
we introduce a partition of unity {\8 (G)}#8=1, where

∑#
8=1 \8 (G) = 1 and each \8 (G) is

supported in Ω8 .
We consider the following generalized eigenvalue problem in each subdomain

Ω8:
08 (q (8)9 , F) = _ (8)9 B8 (q (8)9 , F), ∀F ∈ + (Ω8),
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where + (Ω8) is the restriction of the functions in +ℎ to the subdomain Ω8 and the
local bilinear forms are defined as

08 (E, F) :=
∫
Ω8

d(G)∇E · ∇F 3G, B8 (E, F) :=
∫
Ω8

d(G) |∇\8 (G) |2E F 3G.

We let the eigenvalues _ (8)
9

be arranged in ascending order and choose the eigenvec-
tors q (8)

9
with their associate eigenvalues _ (8)

9
smaller than a given tolerance value Λ,

i.e., _ (8)
9
< Λ. We use the notation ;8 for the number of such eigenvectors.

We first form an auxiliary multiscale finite element space by collecting all the
selected eigenvectors

+0DG :=
{
q
(8)
9
| 8 = 1, · · · , #, 9 = 1, · · · , ;8

}
.

We introduce the following definition for a function E in +ℎ: E is q (8)
9
-orthogonal

if B8 (E, q (8)9 ) = 1 and B: (E, q (:); ) = 0 for : ≠ 8, ; = 1, · · · , ;: , : = 8, ; =

1, · · · , 9 − 1, 9 + 1, · · · , ;8 . We obtain a set of coarse basis functions k (8)
9

as the
solution of the following constrained minimization problem:

k
(8)
9
= argmin{0(k, k) | k ∈ +ℎ , k is q (8)

9
-orthogonal.}, (3)

where
0(D, E) :=

∫
Ω

d(G)∇D · ∇E 3G.

The coarse space+6;1 defined as a span of these functions k (8)9 can be shown to have
the following property: +6;1 is the orthogonal complement of +̃ with respect to the
bilinear form 0(·, ·), where the space +̃ is defined by

+̃ := {E ∈ +ℎ | B8 (E, q (8)9 ) = 0, 8 = 1, · · · , #, 9 = 1, · · · , ;8}. (4)

As proposed in [2], we can consider a more practical relaxed constrained energy
minimizing problem:

k
(8)
A , 9
= argmin

{
0(k, k) + B(ck − q (8)

9
, ck − q (8)

9
) | ∀k ∈ +ℎ

}
, (5)

where

ck :=
#∑
8=1

;8∑
9=1

B8 (k, q (8)9 )q (8)9 , B(E, F) =
#∑
8=1

B8 (E, F).

We note that the function k (8)
A , 9

in (5) will satisfy the same orthogonal property with
respect to the resulting coarse space as that from (3) and it can be found by solving
the following problem: find k (8)

A , 9
in +ℎ such that
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0(k (8)
A , 9
, E) + B(ck (8)

A , 9
, cE) = B(q (8)

9
, cE), ∀E ∈ +ℎ . (6)

Let+6;1 be the coarse space obtained from the k (8)
A , 9

of the above relaxed constrained
problem. From (6), the following orthogonal property holds

0(k (8)
A , 9
, E) = 0, ∀E ∈ +̃

and we thus obtain
+ℎ = +̃ ⊕ +6;1 .

We note that+ℎ = +⊥6;1 ⊕+6;1 and that +̃ is contained in+⊥
6;1

. Since the dimension of
+⊥
6;1

is equal to the dimension of +̃ , see (4), we have +̃ = +⊥
6;1

. In the following, we
will use the space +6;1 defined by the k (8)A , 9 in (6) as the coarse space of the two-level
overlapping Schwarz algorithm.

3 Two-level overlapping Schwarz algorithm

In this section, we propose a two-level overlapping Schwarz preconditioner for the
finite element discretization of the model problem in (1), i.e.,

�D = 1.

We introduce the local finite element space +0 (Ω8), which is the restriction of
functions in +ℎ to Ω8 and vanishing on mΩ8 . We define the local problem matrix by

〈�8E, F〉 :=
∫
Ω8

d(G)∇E · ∇F 3G,∀E, F ∈ +0 (Ω8).

We introduce the restriction '8 from +ℎ to +0 (Ω8) and denote by ')
8
the extension

from +0 (Ω8) by zero to +ℎ . We define the coarse problem matrix by

�0 = 0(k (8)A , 9 , k (:)A ,@), 8, : = 1, · · · , #, and 9 = 1, · · · , ;8 , @ = 1, · · · , ;: .

We note that the size of the matrix �0 is identical to the dimension of +6;1 . We
introduce '0 as the matrix with rows consisting of the nodal values of k (8)

A , 9
in +6;1

and define the two-level overlapping Schwarz preconditioner as

')0 �
−1
0 '0 +

#∑
8=1

')8 �
−1
8 '8 . (7)

For the overlapping Schwarz method, the upper bound estimate can be obtained
from a coloring argument. We will only need to work on the following lower bound
estimate, see [12]:
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Lemma 1 Let the triangulation Tℎ satisfy the assumption in (2). For any given D in
+ℎ , there exists {D8}#8=0, D8 ∈ +0 (Ω8), 8 ≥ 1 and D0 ∈ +6;1 , such that

D = D0 +
#∑
8=1

D8

and

0(D0, D0) +
#∑
8=1

0(D8 , D8) ≤ �2
00(D, D)

with the constant�0 independent of d(G) and the overlapping width in the subdomain
partition.

Proof For the proof we will choose D0 as the solution of

0(D0, E) = 0(D, E), ∀E ∈ +6;1
and choose D8 as

D8 = �
ℎ (\8 (D − D0)),

where �ℎ (E) denotes the nodal interpolant of E to the space +ℎ . We note that D − D0
is in +⊥

6;1
and also in +̃ since +⊥

6;1
= +̃ .

We can see that D8 is supported in Ω8 by construction and then obtain

#∑
8=1

0(D8 , D8) =
#∑
8=1

∫
Ω8

d |∇�ℎ (\8 (D − D0)) |2 3G

≤ ��
#∑
8=1

∫
Ω8

d |∇(\8 (D − D0)) |2 3G

≤ 2��
#∑
8=1

(∫
Ω8

d |∇(D − D0) |2 3G +
∫
Ω8

d |∇\8 |2 (D − D0)2 3G
)

≤ 2��
#∑
8=1
(1 + Λ−1)

∫
Ω8

d |∇(D − D0) |2 3G

where the constant �� depends on the stability of the interpolation �ℎ and the
constant � depends on the number of overlapping subdomains intersecting with
Ω8 . In the above, we used the assumption (2) on Tℎ in the first inequality, and also
that D − D0 in +⊥

6;1
(= +̃) and thus get the third inequality with Λ−1. Using that

0(D − D0, D − D0) + 0(D0, D0) = 0(D, D), we obtain the resulting bound. �

Theorem 1 For the proposed preconditioner, the condition number bound is ob-
tained as

^((')0 �−1
0 '0 +

#∑
8=1

')8 �
−1
8 '8)�) ≤ �1�

−2
0 ,
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where�1 is the constant in the coloring argument, and�0 is the constant in Lemma 1.

We note that the constant �2
0 = 2��� (1 +Λ−1) is independent of d(G) as well as the

overlapping width, which is improvement over the previous work in [4].
On the other hand, the computation of k (8)

A , 9
requires us to solve the relaxed

constrained minimization problem in the global space +ℎ . In practice, we can solve
the same problem in a subspace of +ℎ , where the functions are restricted to a
subregion Ω̃8 containing Ω8 . In more detail, we solve

k
(8)
9 ,<B

= argmin
{
0(k, k) + B(c(k) − q (8)

9
, c(k) − q (8)

9
) | ∀k ∈ +ℎ

⋂
�1

0 (Ω̃8)
}
.

From the above minimization problem, we obtain k (8)
9 ,<B

and denote by Ψ(8)
9 ,<B

, the
extension of k (8)

9 ,<B
by zero to a function in +ℎ . We then define +<B by

+<B := span{Ψ(8)
<B, 9
| 8 = 1, · · · , #, 9 = 1, · · · , ;8}.

We can propose the following more practical preconditioner

"−1
<B =

#∑
8=1

')8 �
−1
8 '8 + ')0,<B�−1

0,<B'0,<B , (8)

where �0,<B and '0,<B are defined similarly as before by replacing +6;1 with +<B .

4 Numerical results

In Table 1, we present some numerical results for a 2D model problem. We use
the coarse problem obtained from the more practical space +<B . Though we do not
have an estimate of the condition numbers for this case, we can expect a similar
performance to that with +6;1 . The domain Ω is a unit square partitioned into # × #
uniform squares. Each square is partitioned into uniform triangles with < elements
on each edge of a square where the triangles form amesh,Tℎ . Each square is extended
by 3 layers of fine triangles and the extended squares form the overlapping subdomain
partition. In our experiment, we consider a random coefficient with its value varying
between 10−3 to 103 inside the domain, and show the number of iterations and
the number of primal unknowns for various subdomain partitions and for various
overlapping width 3. The minimization problem is solved in a smaller region Ω̃8 ,
which is obtained by extending each square by only one layer of neighboring squares.
We can observe that the proposed method is robust with respect to the overlapping
width 3 as well as the variation in d(G).
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Machine Learning in Adaptive FETI-DP – A
Comparison of Smart and Random Training
Data

Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

The convergence rate of classical domain decomposition methods for diffusion or
elasticity problems usually deteriorates when large coefficient jumps occur along or
across the interface between subdomains. In fact, the constant in the classical condi-
tion number bounds [11, 12] will depend on the coefficient jump. Therefore, several
adaptive approaches to enrich the coarse space with additional coarse modes or
primal constraints, which are constructed from the solutions of localized eigenvalue
problems, have been developed to overcome this limitation, e.g., [7, 6, 13, 14, 2, 3].
For many realistic coefficient distributions, however, only a few adaptive constraints
on a few edges or faces are necessary for robustness. Although some heuristic ap-
proaches [6, 7] exist to reduce the number of eigenvalue problems that have to be
solved, in general, we do not know in advance on which edges or faces additional
adaptive constraints are needed to obtain a robust algorithm.

To overcome this issue, we consider an approach to train a neural network to
predict the geometric location of adaptive constraints in a preprocessing step, i.e., to
make the decision whether or not we have to solve a certain eigenvalue problem. First
results using this machine learning based strategy in the context of adaptive domain
decomposition methods for a concrete and carefully designed set of training data
can be found in [5]. Here, in addition to [5], we test the feasibility of using randomly
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generated training data for the neural network. Random training data can be easily
generated without any knowledge of the considered model problem, and therefore,
the approach discussed here is more general compared to [5]; however, a larger set
of training data may be required; cf. section 4. We provide numerical results for four
different sets of training data to train the neural network and compare the robustness
of the resulting algorithms both with respect to the training and validation data as
well as for a concrete test problem.

We focus on a stationary diffusion problem in two dimensions and a certain adap-
tive coarse space technique for the FETI-DP (Finite Element Tearing and Intercon-
necting - Dual-Primal) algorithm [13, 14]. The adaptive coarse space is implemented
using a balancing preconditioner. Let us remark that all strategies introduced here
and in [5] can be generalized for arbitrary adaptive domain decomposition methods
in two dimensions.

2 Model Problem and Adaptive FETI-DP

As a model problem, we use a stationary diffusion problem in two dimensions with
various highly heterogenous coefficient functions d : Ω :=[0, 1] × [0, 1] → R, i.e.,
the weak formulation of

div (d∇D) = −1 in Ω
D = 0 on mΩ. (1)

In this paper, we apply the proposed machine learning based strategy to a certain
adaptive FETI-DP method. We thus decompose the domain Ω into # ∈ N nonover-
lapping subdomains Ω8 , 8 = 1, . . . , # . Due to space limitations, we do not explain
the standard FETI-DP algorithm in detail. For a detailed description of the FETI-DP
algorithm, see, e.g., [12]. Note that we choose all vertices as primal variables.

As already mentioned, for arbitrary and complex coefficient functions d, using
solely primal vertex constraints is not sufficient to obtain a robust algorithm or con-
dition number bound, respectively. Additional adaptive constraints, resulting from
the solution of localized eigenvalue problems, are needed to enrich the coarse space
and guarantee robustness. In our case, the adaptive constraints are implemented in
FETI-DP by using a balancing preconditioner. For a detailed description of projec-
tor or balancing preconditioning, see [10]. In all our computations, we exclusively
use d-scaling. Please note that also other approaches are possible to enforce coarse
constraints, e.g., a transformation of basis approach [12].

The main idea of the concrete adaptive FETI-DP algorithm [13, 14] is to solve
a local generalized eigenvalue problem for each edge between two neighboring
subdomains. For a detailed description of the specific local edge eigenvalue problem
as well as the resulting enforced coarse constraints, see [13, 14]. Usually, it is not
known in advance on which edges additional coarse components are necessary.
Although the solution of the different eigenvalue problems and thus the computation
of the adaptive constraints can be parallelized, building the adaptive coarse space
can make up the larger part of the overall time to solution. As already mentioned,
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Fig. 1: Sampling of the coefficient function d; white color corresponds to a low coefficient and red
color to a high coefficient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Figure from [5, Fig. 2].

we suggest a machine learning based approach to avoid the solution of unnecessary
eigenvalue problems in order to save compute time.

3 Machine Learning for Adaptive FETI-DP

Our approach is to train a neural network to automatically make the decision whether
an adaptive constraint needs to be enforced on a specific edge, or not, to retain the
robustness of the algorithm, depending on a user-given tolerance )$!.

Supervised machine learning in general approximates nonlinear functions, which
associate input and output data. The training of a neural network in supervised
machine learning corresponds to the solution of a high-dimensional nonlinear op-
timization problem. In this paper, we use a dense feedfoward neural network, or
more precisely, a multilayer perceptron. For more details on multilayer perceptrons,
see, e.g., [15, 1, 16]. As input data for our neural network, we use samples of the
coefficient functions within the two subdomains adjacent to an edge; cf. Figure 1.We
use a sampling approach which is independent of the finite element discretization.
In particular, we use a fixed number of sampling points for all mesh resolutions but
assume the sampling grid to resolve all geometric details of the coefficient function.
Our sampling grid is oriented to the tangential and orthogonal direction of an edge.
Therefore, our approach is also valid for more general subdomain geometries than
square subdomains; see also [5]. As output of the neural network, we save the infor-
mation whether an adaptive coarse constraint has to be computed for the considered
edge or not. Our neural network consists of three hidden layers with 30 neurons
each. For all hidden layers, we use the ReLU function as an activation function and
a dropout rate of 20%. For the training of the neural network, we use the stochastic
gradient descent algorithm with an adaptive scaling of the learning rate and a batch
size of 100. As an optimizer for the stochastic gradient descent method, we use
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Fig. 2: Nine different types of coefficient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coefficient are displaced, modified
in sized, and mirrored with respect to the edge in order to generate the complete training data set.

the Adam (Adaptive moments) optimizer. All the aforementioned parameters result
from applying a grid-search algorithm with cross-validation over a discrete space of
hyper-parameters for the neural network; see [5] for more details on the parameters.

For the numerical results presented in this paper, we only train on two regular
subdomains sharing a straight edge. Regarding the coefficient functions, we use
different sets of coefficient distributions to generate different sets of training data.
For the first set of training data, we use a total of 4,500 configurations varying the
coefficient distributions as shown in Figure 2. These coefficient distributions are
inspired by those used in [8, 2], and all coefficient distributions shown in Figure 2
are varied in size, location, and orientation to obtain the full set of training data. We
refer to this set of training data, which already has been used in [5], as smart data.

Next, we consider random data to train the neural network. Let us note that a com-
pletely random coefficient distribution is not appropriate since in this case coefficient
jumps appear at almost all edges. Thus, for almost every edge an eigenvalue problem
has to be solved. This yields a neural network which overestimates the number of
eigenvalue problems needed and thus leads to a large number of false positive edges
in the test data which here is given by the microsection problem.

Thus, as a second set of training data, we use a slightly more structured set of
randomly generated coefficients with a varying ratio of high and low coefficient
values. For the first part of this training set, we randomly generate the coefficient
for each pixel, consisting of two triangular finite elements, independently and only
control the ratio of high and low coefficient values. Here, we use 30%, 20%, 10%, and
5% of high coefficient values. For the second part, we also control the distribution
of the coefficients to a certain degree by randomly generating either horizontal
or vertical stripes of a maximum length of four or eight pixels, respectively; see
Figure 3. Additionally, we generate new coefficient distibutions by superimposing
pairs of horizontal and vertical coefficient distributions. We refer to this second set
of training data as random data.

To generate the output data that is necessary to train the neural network, we solve
the eigenvalue problems as described in [13, 14] for all the aforementioned training
and validation configurations. Here, we basically propose two different classification
approaches as already considered in [5]. The first approach is referred to as ’two-class
classification’ and classifies an edge to belong to class 0 if no adaptive constraint
needs to be added to the coarse space for the respective edge, depending on the
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Fig. 3: Examples of three different randomly distributed coefficient functions obtained by using the
same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

user-based tolerance )$!. It is classified to belong to class 1 if at least one adaptive
constraint needs to be added.We further provide a second approach, which is referred
to as ’three-class classification’. Here, besides class 0, we further distinguish between
class 1, for edges where exactly one adaptive constraint needs to be added to the
coarse space, and class 2, for edges where more than one constraint is necessary. For
class 1, we replace the eigenvalue problem and the resulting eigenvector by a single
edge constraint designed using d, which therefore also avoids the solution of some
eigenvalue problems. These edge constraints can be interpreted as a generalization
of the weighted edge averages suggested in [9] and are robust for a broader range of
heterogeneities; see [4] for a detailed discussion. For all our training and validation
data, we use a tolerance of )$! = 100 to generate the output for each edge.

4 Numerical Results

In this section, we compare the performance of the proposed machine learning
based adaptive strategy for the FETI-DP algorithm using different sets of training
and validation data to train our neural network. In particular, we use a set of 4,500
smart data configurations (denoted by ’S’) and sets of 4,500 and 9,000 random data
configurations (denoted by ’R1’ and ’R2’, respectively) each individually as well
as a combination of 4,500 smart and 4,500 random data configurations, which will
be denoted by ’SR’. Note that we did not observe a significant improvement for the
larger number of 18,000 random data configurations.

First, we will present results for the whole set of training data using cross-
validation and a fixed ratio of 20% as validation data to test the generalization
properties of our neural network. Please note that due to different heterogeneity of
the various training data, the accuracies in Table 1 are not directly comparable with
each other. However, the results in Table 1 serve as a sanity check to prove that
the trained model is able to generate appropriate predictions. We will then use 10
different randomly chosen subsections of a microsection of a dual-phase steel as
shown in Figure 4 (right) as a test problem for the trained neural network. In all
the computations, we consider d = 146 in the black part of the microsection and
d = 1 elsewhere. Here, we use a regular decomposition of the domain Ω into 64
square subdomains, a subdomain size of �/ℎ = 64, and a tolerance of )$! = 100.
Please note, that also other mesh resolutions of the finite element mesh can be
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Table 1: Results on the complete training data set; the numbers are averages over all training
configurations. We show the ML-threshold (g), the number of false positives (fp), the number of
false negatives (fn), and the accuracy in the classification (acc). We define the accuracy as the
number of true positives and true negatives divided by the total number of training configurations.

class
training configuration g fp fn acc 0 1 2

4,500 smart data S, two-class 0.45 8.8% 1.9% 89.2% 67% 33% -0.5 5.4% 5.1% 89.5%

4,500 smart data S, three-class 0.4 5.1% 1.0% 93.9% 67% 20% 13%0.5 3.2% 2.3% 94.5%

4,500 random data R1, two-class 0.45 11.4% 6.7% 81.9% 49% 51% -0.5 8.8% 9.0% 82.2%

4,500 random data R1, three-class 0.4 9.1% 7.1% 83.8% 49% 39% 12%0.5 8.9% 7.0% 84.1%

9,000 random data R2, two-class 0.45 9.6% 5.3% 85.1% 53% 47% -0.5 7.2% 7.5% 85.3%

9,000 random data R2, three-class 0.4 10.7% 4.4% 84.9% 53% 28% 19%0.5 7.4% 6.9% 85.7%

4,500 smart + 4,500 random data SR, two-class 0.45 5.1% 2.1% 92.8% 58% 42% -0.5 3.4% 3.5% 93.1%

4,500 smart + 4,500 random data SR, three-class 0.4 5.2% 2.0% 92.8% 58% 29.5% 12.5%0.5 4.3% 2.2% 93.5%

Fig. 4: Left: Subsection of amicrosection of a dual-phase steel obtained from the image on the right.
We consider d = 146 in the black part and d = 1 elsewhere. Right: Complete microsection of a
dual-phase steel. Right image: Courtesy of Jörg Schröder, University of Duisburg-Essen, Germany,
orginating from a cooperation with ThyssenKruppSteel.

used without affecting the accuracy of our classification algorithm as long as the
coefficient function is constant on each finite element; see also [5]. For the test data,
we will only compute the local eigenvalue problems on edges which are classified
as critical (class 1 or 2) by the neural network. On all uncritical edges (class 0), we
do not enforce any constraints. We use an ML (Machine Learning) threshold g of
0.5 and 0.45 for the two-class classification as well as 0.5 and 0.4 for the three-class
classification, respectively, for the decision boundary between critical and uncritical
edges. A lower threshold decreases the false negative rate of the predictions and thus
increases the robustness of our algorithm. All computations are performed using the
machine learning implementations in TensorFlow and Scikit-learn as well as our
Matlab implementation of the adaptive FETI-DP method.
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Table 2: Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular
domain decompositions for the two-class model, for 10 different subsections of the microsection
in Figure 4 (right). Here, training data is denoted as T-Data. We show the ML-threshold (g),
the condition number (cond), the number of CG iterations (it), the number of solved eigenvalue
problems (evp), the number of false positives (fp), the number of false negatives (fn), and the
accuracy in the classification (acc). We show the average values as well as the maximum values (in
brackets).

Alg. T-Data g cond it evp fp fn acc
standard - - 1.5e6 (2.2e6) >300 0 - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - -

ML S 0.5 8.6e4 (9.7e4) 39.5 (52) 45.0 ( 57) 1.6 ( 2) 1.9 (3) 0.97 (0.96)
S 0.45 11.0 ( 15.9) 34.6 (38) 46.9 ( 59) 4.4 ( 6) 0 (0) 0.96 (0.94)

R1 0.5 1.3e5 (1.6e5) 49.8 (52) 43.2 ( 44) 7.4 ( 8) 3.8 (4) 0.88 (0.87)
R1 0.45 11.0 ( 15.9) 34.6 (38) 53.8 ( 58) 14.6 (16) 0 (0) 0.86 (0.84)
R2 0.5 1.5e5 (1.6e5) 50.2 (51) 40.4 ( 41) 5.6 ( 6) 3.4 (4) 0.91 (0.89)
R2 0.45 11.0 ( 15.9) 34.6 (38) 50.4 ( 52) 11.2 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.6e4 (9.8e4) 45.8 (48) 38.2 ( 39) 1.8 ( 2) 1.6 (2) 0.96 (0.95)
SR 0.45 11.0 ( 15.9) 34.6 (38) 43.4 ( 44) 4.8 ( 5) 0 (0) 0.96 (0.94)

Table 3: Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular
domain decompositions for the three-class model, for 10 different subsections of the microsection
in Figure 4 (right). Here, training data is denoted as T-Data. By e-avg we denote the generalized
edge average described at the end of Section 3. See Table 2 for the column labeling. We show the
average values as well as the maximum values (in brackets).

Alg. T-Data g cond it evp e-avg fp fn acc
standard - - 1.5e6 (2.2e6) >300 0 - - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - - -

ML S 0.5 147.4 (271.4) 48.8 (58) 4.2 ( 10) 43.6 (46) 1.8 ( 3) 1.4 (3) 0.97 (0.95)
S 0.4 12.4 ( 16.4) 34.8 (39) 16.0 ( 24) 24.2 (28) 10.6 (16) 0 (0) 0.90 (0.85)

R1 0.5 1.8e4 (1.8e4) 70.4 (72) 7.4 ( 8) 31.4 (33) 1.8 ( 2) 1.2 (2) 0.97 (0.94)
R1 0.4 12.4 ( 16.4) 34.8 (39) 28.2 ( 30) 20.4 (26) 16.4 (21) 0 (0) 0.84 (0.83)
R2 0.5 2.2e4 (2.5e4) 69.4 (72) 5.8 ( 7) 28.8 (31) 1.6 ( 2) 1.2 (2) 0.96 (0.95)
R2 0.4 12.4 ( 16.4) 34.8 (39) 23.6 ( 24) 17.0 (18) 15.6 (17) 0 (0) 0.84 (0.83)
SR 0.5 142.5 (286.3) 52.4 (66) 7.2 ( 9) 30.6 (32) 1.8 ( 2) 1.8 (2) 0.96 (0.94)
SR 0.4 12.4 ( 16.4) 34.8 (39) 18.2 ( 20) 16.2 (18) 10.0 (12) 0 (0) 0.90 (0.89)

Results on the training data: With respect to the training data, the results in
terms of accuracy in Table 1 show that, besides training the neural network with the
set of smart data, also the training with randomly generated coefficient functions as
well as with a combination of both training sets lead to an appropriate model. Thus,
it is reasonable to apply all of the trained models to our test problem in form of
microsection subsections.

Results on microsection subsections: For the mircosections and the two-class
classification, see Table 2, all four different training data sets result in a robust
algorithm when using an ML threshold g = 0.45. For all these approaches, we
obtain no false negative edges, which are critical for the convergence of the algorithm.
However, the usage of 4,500 and 9,000 random data (see R1 and R2) results in a
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higher number of false positive edges compared to the sole use of 4,500 smart data,
resulting in a larger number of computed eigenvalue problems. Also for the three-
class classification, see Table 3, the usage of all four aforementioned training data
sets results in zero false negative edges when using the ML threshold g = 0.4. In this
case, we further obtain a quantitatively smaller difference between the training data
S and R1 or R2, respectively, in terms of false positive edges than for the two-class
classification.

As a conclusion, we observe that we were able to achieve comparable results
when using randomly generated coefficient distributions as training data compared
to the manually selected smart data; this is beneficial since the random data can
be generated without a priori knowledge. However, we need a higher number of
random data and a slight structure in the random coefficient distributions to achieve
the same accuracy as for the smart data. It also seems possible to slightly improve
the performance of the neural network trained using a combination of smart data and
random data for the training.
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Nonoverlapping Additive Schwarz Method for
hp-DGFEM with Higher-order Penalty Terms

Piotr Krzyżanowski and Marcus Sarkis

1 Introduction

Let us consider a second order elliptic equation

− div(r∇D) = 5 in Ω and D = 0 in mΩ. (1)

The problem is discretized by an h-p symmetric interior higher-order [4] discon-
tinuous Galerkin finite element method. In a  -th order multipenalty method, one
penalizes the jumps of scaled normal higher-order derivatives up to order  across
the interelement boundaries — so the standard interior penalty method corresponds
to taking  = 0. The idea to penalize the discontinuity in the flux ( = 1) of the
discrete solution was introduced by Douglas and Dupont [6]. It addresses the ob-
servation that the flux (which is an important quantity in many applications) of the
accurate solution is continuous. Giving the user a possibility to control the inevitable
violation of this principle makes the discretization method more robust and conser-
vative. Recently, flux jump penalization has been used to improve stability properties
of an unfitted Nitsche’s method [5], the case  > 1 was also considered in [1] for
the immersed finite element method to obtain higher-order discretizations.

A nonoverlapping additive Schwarz method [7], [3] is applied to precondition
the discrete equations. For more flexibility and enhanced parallelism, we formulate
our results addressing the case when the subdomains (where the local problems are
solved in parallel) are potentially smaller than the coarse grid cells [8]. By allowing
small subdomains of diameter � ≤ H , the local problems are cheaper to solve and
the amount of concurrency of the method is substantially increased. A by-product of
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this approach is more flexibility in assigning subdomain problems to processors for
load balancing in coarse grain parallel processing.

The paper is organized as follows. In Section 2, the differential problem and its
discontinuous Galerkin multipenalty discretization are formulated. In Section 3, a
nonoverlapping two-level, three-grid additive ASM for solving the discrete problem
is designed and analyzed under the assumption that the coarse mesh resolves the
discontinuities of the coefficient, that the variation of the mesh size and of the
polynomial degree are locally bounded, and that the original problem satisfies some
regularity assumption. Section 4 presents some numerical experiments.

For nonnegative scalars G, H, we shall write G . H if there exists a positive constant
�, such that G ≤ �H with � independent of: G, H, the fine, subdomain and coarse
mesh parameters ℎ, �,H , the orders of the finite element spaces ?, @, the order of
the multipenalty method ( , !), and of jumps of the diffusion coefficient r as well.
If both G . H and H . G, we shall write G ' H.

The norm of a function 5 from the Sobolev space �: (() will be denoted by
| | 5 | |:,( , while the seminorm of 5 will be denoted by | 5 |:,( . For short, the !2-norm
of 5 will then be denoted by | 5 |0,( .

2 High-order penalty h-p discontinuous Galerkin discretization

Let Ω be a bounded open convex polyhedral domain in '3 , 3 ∈ {2, 3}, with a
Lipschitz boundary mΩ. We consider the following variational formulation of (1):
Find*∗ ∈ �1

0 (Ω) such that for a prescribed 5 ∈ !2 (Ω) and r ∈ !∞ (Ω)

0(*∗, E) = ( 5 , E)Ω, ∀E ∈ �1
0 (Ω), (2)

where
0(D, E) =

∫
Ω

r ∇D · ∇E 3G, ( 5 , E)Ω =
∫
Ω

5 E 3G.

We assume that there exists a constant U such that 1 ≤ r ≤ U a.e. in Ω so that (2) is
well–posed. We also assume that r is piecewise constant, i.e. Ω can be partitioned
into nonoverlapping polyhedral subregions with the property that r restricted to any
of these subregions is some positive constant, see assumption (5) later on.

Let Tℎ = {g1, . . . , g#ℎ } denote an affine nonconforming partition of Ω, where g8
are either triangles in 2-D or tetrahedra in 3-D. For g ∈ Tℎ we set ℎg = diam(g).
By E in

ℎ
we denote the set of all common (internal) faces (edges in 2-D) of elements

in Tℎ , such that 4 ∈ Ein
ℎ
iff 4 = mg8 ∩ mg9 is of positive measure. We will use the

symbol Eℎ to denote the set of all faces (edges in 2-D) of the fine mesh Tℎ , that is
those either in E in

ℎ
or on the boundary mΩ. For 4 ∈ Eℎ we set ℎ4 = diam(4). We

assume that Tℎ is shape- and contact–regular, that is, it admits a matching submesh
Tℎ̂ which is shape–regular and such that for any g ∈ Tℎ the ratios of ℎg to diameters
of simplices in Tℎ̂ covering g are uniformly bounded by an absolute constant. As a
consequence, if 4 = mg8 ∩ mg9 is of positive measure, then ℎ4 ' ℎg8 ' ℎg 9 .We shall
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refer to Tℎ as the “fine mesh”. Throughout the paper we will assume that the fine
mesh is chosen in such a way that r |g is already constant for all g ∈ Tℎ .

We define the finite element space + ?
ℎ
in which problem (2) is approximated,

+
?

ℎ
= {E ∈ !2 (Ω) : E |g ∈ P?g for g ∈ Tℎ} (3)

where P?g denotes the set of polynomials of degree not greater than ?g . We shall
assume that 1 ≤ ?g and that polynomial degrees have bounded local variation, that
is, if 4 = mg8 ∩ mg9 ∈ Ein

ℎ
, then ?g8 ' ?g 9 .

On 4 ∈ Ein
ℎ
such that 4 = mg+ ∩ mg−, we define

r =
r+ + r−

2
, l± =

r±

r+ + r− , r =
2r+r−

r+ + r−

with the standard notation d± = d |g± , and then define weighted averages

{r∇D} = l− r+∇D+ + l+ r−∇D− =
r

2
(∇D+ + ∇D−)

and jumps
[D] = D+=+ + D−=−,

where =± denotes the outward unit normal vector to g±. We note that when r+ =
r− = 1, then r = r = 1 and the weighted average reduces to the usual arithmetic
average. We set

W0 =
?2

ℎ
X0, W: =

ℎ2:−1

?2: X: , W̃: =
ℎ2:−1

?2: X̃: ,

with
ℎ = min{ℎ+, ℎ−}, ? = max{?+, ?−}.

where for simplicity we write ℎ±, ?± for ℎg± (or ?g± , respectively). The parameters
X0 > 0 and X: , X̃: ≥ 0 where : ≥ 1 are some prescribed constants. We collect all X:
in a multi-parameter X = (X0, X1, X̃1, . . .).

On 4 which lies on mΩ and belongs to the face of g ∈ Tℎ , we prescribe r = r and

{r∇D} = r∇D, [D] = D=, W0 =
?2
g

ℎg
X0, W: =

ℎ2:−1
g

?2:
g

X: , W̃: =
ℎ2:−1
g

?2:
g

X̃: .

Inspired by [1], we discretize (2) by the symmetric weighted interior ( , !)-th
order multipenalty discontinuous Galerkin method: Find D∗ ∈ + ?

ℎ
such that

A ?, !

ℎ
(D∗, E) = ( 5 , E)Ω −

!∑
:=1

∑
4∈Ein

ℎ

W̃:+2
r
〈[r m

: 5

m=:
], [r m

:ΔE

m=:
]〉4, , ∀E ∈ + ?

ℎ
,

(4)
where
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A ?, !

ℎ
(D, E) = �?, !

ℎ
(D, E) − � ?

ℎ
(D, E) − � ?

ℎ
(E, D)

and

�
?, !

ℎ
(D, E) =

∑
g∈Tℎ
(r ∇D,∇E)g +

∑
4∈Eℎ

W0r〈[D], [E]〉4

+
 ∑
:=1

∑
4∈Ein

ℎ

W:

r
〈[r m

:D

m=:
], [r m

:E

m=:
]〉4 +

!∑
:=1

∑
4∈Ein

ℎ

W̃:+2
r
〈[r m

:ΔD

m=:
], [r m

:ΔE

m=:
]〉4,

�
?

ℎ
(D, E) =

∑
4∈Eℎ
〈{r∇D} , [E]〉4 .

Here for g ∈ Tℎ and 4 ∈ Eℎ we use the standard notation: (D, E)g =
∫
g
D E 3G and

〈D, E〉4 =
∫
4
D E 3f. This discretization generalizes the multipenalty method, intro-

duced by Arnold in [4] with ! = 0, to the case of discontinuous coefficient and takes
into account the explicit dependence on the polynomial degree ?. In particular, for
( , !) = (0, 0), a standard symmetric weighted interior penalty method is restored,
with

�
?,00
ℎ
(D, E) =

∑
g∈Tℎ
(r ∇D,∇E)g +

∑
4∈Eℎ

W0r〈[D], [E]〉4 .

Moreover, for r ≡ 1 and ( , !) = (1, 0), problem (4) corresponds to the method by
Douglas and Dupont [6]. The case of ! > 0 has been considered e.g. in [1]. It is
known [4] that for sufficiently large penalty constant X0 problem (4) is well–defined.

3 Nonoverlapping additive Schwarz method

Let us introduce the subdomain grid T� as a partition of Ω into #� disjoint open
polygons (polyhedrons in 3-D) Ω8 , 8 = 1, . . . , #� , such that Ω̄ =

⋃
8=1,...,#� Ω̄8

and that each Ω8 is a union of certain elements from the fine mesh Tℎ . We shall
retain the common notion of “subdomains” while referring to elements of T� . We
set �8 = diam(Ω8) and � = (�1, . . . , �#� ). We assume that there exists a reference
simply-connected polygonal (polyhedral in 3-D) domain Ω̂ ⊂ '3 with Lipschitz
boundary, such that every Ω8 is affinely homeomorphic to Ω̂ and that the aspect
ratios of Ω8 are bounded independently of ℎ and �. Moreover, we assume that the
number of neighboring regions in T� is uniformly bounded by an absolute constant
N .

Next, let TH be a shape-regular affine triangulation by triangles in 2-D or tetra-
hedra in 3-D, with diameter H . We denote the elements of TH by �= and we call
this partition the “coarse grid” and assume that r is piecewise constant on TH :

r |�= = r= ∀1 ≤ = ≤ #H . (5)
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Let us define the standard decomposition of + ?
ℎ
, cf. [3], [8]:

+
?

ℎ
= +0 ++1 + . . . ++#� , (6)

where the coarse space consists of functions which are polynomials inside each
element of the coarse grid:

+0 = {E ∈ + ?ℎ : E |�= ∈ P@ for all = = 1, . . . , #H} (7)

where 1 ≤ @ ≤ min{?g : g ∈ Tℎ}. Next, for 8 = 1, . . . , #� we set

+8 = {E ∈ + ?ℎ : E |Ω 9 = 0 for all 9 ≠ 8}.

One can view +0 as a rough approximation to + ?
ℎ

(using coarser grid and lower
order polynomials), cf. condition (11). Note that+ ?

ℎ
already is a direct sum of spaces

+1, . . . , +#� and when TH = T� , this decomposition coincides with [3]. Next, with
fixed 0 ≤ A ≤  and 0 ≤ B ≤ !, we define inexact solvers )8 : + ?

ℎ
→ +8 , by

�
?,AB

ℎ
()8D, E) = A ?, !

ℎ
(D, E) ∀E ∈ +8 , 0 ≤ 8 ≤ #� , (8)

so that for 1 ≤ 8 ≤ #� one has to solve only a relatively small system of linear
equations on subdomain Ω8 (a “local problem”) for D8 = )8D |Ω8 . These subdomain
problems are independent of each another and can be solved in parallel. The precon-
ditioned operator is

) = )0 + )1 + . . . + )#� . (9)

Obviously, ) is symmetric with respect to A ?, !

ℎ
(·, ·). For �= in TH let us define

an auxiliary seminorm

| | |D | | |2�= ,in =
∑

g∈Tℎ (�=)
r= |∇D |20,g +

∑
4∈Ein

ℎ
(�=)

W0r= | [D] |20,4, (10)

where E in
ℎ
(�=) = {4 ∈ Eℎ : 4 ⊂ �̄= \ m�=}.

Theorem 1 Let us set A = B = 0 in (8) and assume that for each D ∈ + ?
ℎ
there exists

D (0) ∈ +0 satisfying

#H∑
==1

(
r=@

2
=

H2
=

|D − D (0) |20,�= + || |D − D (0) | | |
2
�= ,in

)
. A ?,00

ℎ
(D, D). (11)

Then the operator ) defined in (9) satisfies

V−1A ?, !

ℎ
(D, D) . A ?, !

ℎ
()D, D) . ( +!+1)A ?, !

ℎ
(D, D) ∀D ∈ + ?

ℎ
, (12)

where

V = max
==1,...,#H

{
H2
=

@=
max

8:Ω8⊂�=

{
?2
8

ℎ
8
�8

}}
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with ℎ
8
= min{ℎg : g ∈ Tℎ (Ω8)} and ?8 = max{?g : g ∈ Tℎ (Ω8)}. Therefore, the

condition number of ) is $ (V · ( + ! + 1)).

Proof According to the general theory of ASM [11], it suffices to check three
conditions. The strengthened Cauchy–Schwarz inequality holds with a constant in-
dependent of the parameters, due to our assumption that the number of neighbouring
subdomains is bounded by an absolute constant.

For the local stability condition, it suffices to prove that for any :∑
4∈Ein

ℎ

W:

r
| [r m

:D

m=:
] |20,4 . �?,00

ℎ
(D, D) and

∑
4∈Ein

ℎ

W̃:+2
r
| [r m

:ΔD

m=:
] |20,4 . �?,00

ℎ
(D, D).

(13)
We prove the first inequality, the other can be proved analogously. On 4 = mg+∩mg−,
we have (denoting by = either =+ or =−)

1
r
| [r m

:D

m=:
] |20,4 .

(r+)2
r
| m
:D+

m=:
|20,4 +

(r−)2
r
| m
:D−

m=:
|20,4 . r+ |

m:D+

m=:
|20,4 + r− |

m:D−

m=:
|20,4,

since (r±)2/r = l±r± ≤ r±. Now, by the trace inequality [4], we have | m
:D

m=:
|20,4 .

1
ℎg
|D |2
:,g
+ ℎg |D |2:+1,g , so applying : times the inverse inequality we arrive at

1
r
| [r m

:D

m=:
] |20,4 . r+

?2:+
ℎ2:−1+

|D+ |21,g+ + r−
?2:−
ℎ2:−1−

|D− |21,g− ,

which yields∑
4∈Ein

ℎ

W:
1
r
〈[r m

:D

m=:
], [r m

:D

m=:
]〉4 .

∑
g∈Tℎ

r |D |21,g . �?,00
ℎ
(D, D).

Summing (13) over : , we complete the stability estimate

A ?, !

ℎ
(D, D) . ( + ! + 1) �?,00

ℎ
(D, D) ∀D ∈ +8 , ∀0 ≤ 8 ≤ #� ,

from which the right inequality in (12) already follows.
Finally, to prove the existence of a stable decomposition, from [9] we have that

there exists a decomposition of D =
∑#�
8=0 D

(8) , with D (8) ∈ +8 , such that

#�∑
8=0

�
?,00
ℎ
(D (8) , D (8) ) . VA ?,00

ℎ
(D, D) ∀D ∈ + ?

ℎ
.

Since A ?,00
ℎ
(D, D) ≤ A ?, !

ℎ
(D, D), we conclude that

∑#�
8=0 �

?,00
ℎ
(D (8) , D (8) ) .

VA ?, !

ℎ
(D, D), which gives us the left inequality in (12). �
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Remark 1 Analogous result holds if, instead of the simplified form �
?,00
ℎ
(·, ·), we

choose �?, !
ℎ
(·, ·) while defining local and coarse solvers )8 , 8 = 0, 1, . . . , #� , as

we do in the following section.

Remark 2 In [10], sufficient conditions are provided for (11) to hold.

4 Numerical experiments

Let us choose the unit square [0, 1]2 as the domain Ω and consider (2) with r = 1
in Ω. We do not investigate the influence of the intermediate grid T� , referring the
reader to [9] for these results. Instead, we set T� = TH and use two levels of nested
grids on Ω. For a prescribed integerM, we divide Ω into #H = 2M × 2M squares
of equal size. This coarse grid TH is then refined into a uniform fine triangulation Tℎ
based on a square 2< × 2< grid (< ≥ M) with each square split into two triangles
of identical shape. Hence, the grid parameters are ℎ = 2−<, H = � = 2−M . We
set ! = 0 and discretize problem (2) on the fine mesh Tℎ using (4) with X0 = 8,
X1 = . . . = X = 2 (if not specified otherwise) and equal polynomial degree ?
across all elements in Tℎ . For the coarse problem, we set @ = ?. We always take
(A, B) = ( , !) = ( , 0) while defining the inexact solvers, which seems to give
preferable constants in (12). Our implementation makes use of the FEniCS [2] and
MATLAB software packages.

In the following tables we report the number of Preconditioned Conjugate Gra-
dient iterations for the operator ) required to reduce the initial norm of the precon-
ditioned residual by a factor of 108 and (in parentheses) the condition number of )
estimated from the PCG convergence history. We always choose a random vector for
the solution and a zero as the initial guess.

H iter (cond)
1/2 120 (328)
1/4 90 (157)
1/8 64 (71)
1/16 60 (60)

Table 1: Dependence on the coarse mesh
size H. Fixed ℎ = 1/64, ? = 3,  = 3.

? iter (cond)
1 26 (11)
2 34 (21)
3 42 (34)
4 50 (50)
5 59 (70)

Table 2: Dependence on the polynomial de-
gree ?. Fixed ℎ = 1/16, H = 1/4,  = 1.

While the results with respect toH and ? smoothly follow the theory developed,
cf. Tables 1 and 2, the dependence on  is less regular, initially with superlinear
increase, as reported in Table 3.Moreover, fromTable 4we observe that higher values
of the penalization parameters X: , : ≥ 1, adversely influence the convergence rate
which is a drawback of this, otherwise simple and efficient, domain decomposition
method.



 iter (cond)
0 61 (81)
1 59 (70)
2 81 (124)
3 142 (389)
4 214 (902)
5 222 (1016)

Table 3: Dependence on the number of
penalty terms  . Fixed ℎ = 1/16, H = 1/4,
? = 5.

X1 iter (cond)
2 · 100 29 (15)
2 · 101 41 (29)
2 · 102 102 (217)
2 · 103 305 (2096)

Table 4:Dependence on the flux penalty pa-
rameter W1. Fixed ? = 3,  = 1.
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A Closer Look at Local Eigenvalue Solvers for
Adaptive FETI-DP and BDDC

Axel Klawonn, Martin J. Kühn, and Oliver Rheinbach

1 Introduction

In order to obtain a scalable domain decomposition method (DDM) for elliptic
problems, a coarse space is necessary and an associated coarse problem has to be
solved in each iteration. In the presence of arbitrary, large coefficient jumps or in
case of almost incompressible elastic materials, the convergence rate of standard
DDM deteriorates. In recent years, many authors have proposed the use of different
(local, generalized) eigenvalue problems to develop problem dependent, adaptive
coarse spaces in order to ensure or accelerate the convergence of the method; see,
e.g., [2, 17, 6, 18, 5, 4, 22, 23, 14, 9, 10, 1, 19, 3, 20]. These methods are very robust
and in many cases, a condition number estimate of the form

cond ≤ � TOL (1)

exists. Here, TOL is an a priori, user defined tolerance for the solution of the eigen-
value problems and � > 0 a constant that only depends on geometric parameters,
e.g., maximum number of edges of a subdomain; cf., (3). However, in order to make
their use feasible, many issues have to be considered in the parallel implementation.
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In [16, 13], we have seen that the computational overhead of the solution process of
the local eigenvalue problems in adaptive FETI-DP is not negligible. Consequently,
in this paper, we focus on some aspects of the local eigenvalue solution process that
have not been studied or documented elsewhere. Certainly, load balancing of the
eigenvalue problems is a very important task but this issue is out the scope of this
paper and will be discussed in detail in [13].

2 Model problem, domain decomposition, and notation

As a model problem, we consider three-dimensional linear elasticity, discretized
with piecewise quadratic conforming finite elements. The domain is decomposed
into nonoverlapping subdomains. Due to page restrictions, for further details, we
refer to [10, Section 2] or [11, Section 2].

As it is standard in FETI-DP, we assemble the local stiffness matrices  (8) and
compute the local Schur complements ( (8) on the interface, 8 = 1, . . . , # . Starting
with the block-diagonal matrix ( built from the the local Schur complements, we
get the global matrix (̃ by finite element subassembly in only a few a priori chosen
primal variables (i.e., all vertices). In order to enforce continuity on the remaining a
priori dual degrees of freedom on the interface, we introduce a jump operator � as
well as a scaled variant �� . Different scaling choices are available in the literature.
We then obtain the FETI-DP system, which is reduced to the Lagrange multipliers
enforcing continuity in the a priori dual variables,

"−1
� � := ��(�)��(̃

−1�_ = ��(�
)
�3 = "

−1
� 3

with corresponding right hand side 3; see, e.g., [11, Section 3] for further details.

3 Adaptive FETI-DP

In adaptive FETI-DP, as proposed in two dimensions in [17], and in three dimensions
in [10], local generalized eigenvalue problems are solved on each pair of subdomains
Ω8 and Ω 9 sharing either a face Z = F or an edge Z = E. By extracting all the
rows of � and �� corresponding to dual degrees of freedom of Ω8 and Ω 9 and
belonging to the closure of Z, we can define the localized variants �Z , ��,Z
and %�,Z := �)

�,Z�Z . The localized Schur complement is defined as (8 9 :=
blockdiag

(
( (8) , ( ( 9)

)
. The local generalized eigenvalue problem then writes: find

F8 9 ∈ (ker (8 9 )⊥ with `8 9 > TOL, such that

(%�,Z8 9 E8 9 , (8 9%�,Z8 9F8 9 ) = `8 9 (E8 9 , (8 9F8 9 ) ∀E8 9 ∈ (ker (8 9 )⊥, (2)
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cf. [17, Sections 3 and 4] and [10, Section 5] or [16, Section 5] for a more detailed
description.

The constraints obtained on a local basis can then be enforced by different tech-
niques. Here, we use the generalized transformation-of-basis approach proposed
in [12] and obtain the preconditioner "̂−1

)
, the modified system matrix �̂, and the

condition number bound

^("̂−1
) �̂) ≤ 4 max{#F , #E"E}2TOL, (3)

where #F denotes the maximum number of faces of a subdomain, #E the maximum
number of edges of a subdomain,"E the maximummultiplicity of an edge; see [11].

4 Numerical results

Fig. 1: A composite material on the unit cube for 216 subdomains: 36 beams (left) and 64 beams
(right) of a stiff material with E2 = 14 + 6, shown in dark purple, are surrounded by a soft matrix
material with E1 = 1. A part of the mesh with 1/ℎ = 54 (left), 1/ℎ = 30 (right) and the irregular
decomposition using METIS is shown in different (half-transparent) colors.

Fig. 2: Stiff material in a foam-like structure with ∼15% (left) and ∼26% (right) high coefficients
with E2 = 14 + 6. The structure is surrounded by a soft matrix material with E1 = 1. The stiff
material is shown smoothed and half-transparent, the surrounding matrix material is not shown.

In the following, we consider the unit cube with zero Dirichlet boundary condi-
tions on the face with G1 = 0 and zero Neumann boundary conditions elsewhere.
The domain decomposition is obtained from the METIS partitioner using the op-
tions -ncommon=3 and -contig. We apply our adaptive method to four different
materials.
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The first material is considered for 1/ℎ ∈ {30, 54} and 36 beams with a Young
modulus of 1e+6 that run from the face with G1 = 0 to the face with G1 = 1; see Fig. 1
(left). The remaining part of the material has a Young modulus of one. In the second
material, we have a larger number of 64 thinner beams; see Fig. 1 (right).

The third and fourth materials are stiff foam-like materials surrounded by a soft
matrix material. They are obtained by using a pseudo-random number generator and
adjacency structures of the tetrehedra and they merely differ by the amount of stiff
material inside the unit cube; see Fig. 2.

We now focus on the solution process for the local eigenvalue problems. In recent
works, [10, 16, 13], we have developed heuristic strategies to discard eigenvalue
problems based on the coefficients, or in a more realistic setting, based on scaling
information or the entries of the stiffnessmatrix which aremore likely to be available.
In following, we will show that our most recent heuristic strategy (see [13]) is
successful in discarding unnecessary eigenvalue problems without, on the other
hand, discarding necessary ones.

Fig. 3: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the composite material with 36 beams; in absolute (left) and relative (right) numbers.

Fig. 4: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the composite material with 64 beams; in absolute (left) and relative (right) numbers.

In the present implementation, for every face or edge, we consider the diagonal
entries of the local subdomain stiffness matrices corresponding to interior nodes of
these faces or edges. We have two criteria. First, if the ratio of the smallest and the
largest entry is larger than a certain threshold or possibly second, if all entries are
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large, then the corresponding eigenvalue problem is solved. Otherwise it is discarded.
For a more detailed description, see [13].

There are different situations in which eigenvalue problems become superfluous
for the reduction of the condition number. One obvious reason is the nonexistence of
jumps in the neighborhood of the face or edge. One could then apply slab techniques;
see, e.g. [21, 7]. In our heuristics, we focus on these eigenvalue problems which we
classify as unnecessary.

Fig. 5: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the foam-like composite with ∼15% high coefficients; in abs. (left) and rel. (right) numbers.

Fig. 6: Number of eigenvalue problems for each subdomain: discarded by our heuristic strategy
[13] in yellow; solved and yielding constraints in blue; solved but not resulting in constraints in red;
for the foam-like composite with ∼26% high coefficients; in abs. (left) and rel. (right) numbers.

However, there might be eigenvalue problems on coefficient distributions which
satisfy all assumptions for weighted Poincare inequalities. For arbitrary situations,
the numerical necessity of certain eigenvalue problems becomes even more complex
and is not yet fully understood. In [8], we have presented a short numerical study
which gives a little more insight for typical situations but which might also raise new
questions since not all configurations introduce as many bad modes as expected.

In the case of 36 beams, we see that we can discard a large number of eigenvalue
problems (i.e., 37%) while 38% of eigenvalue problems yield large eigenvalues and
thus adaptive constraints; see Fig. 3. In the case of 64 beams, we see that we only
discard 16%of eigenvalue problems but, here,more than 70%of eigenvalue problems
yield large eigenvalues and thus adaptive constraints; see Fig. 4. In both cases, the
percentage of eigenvalue problems that were solved without yielding constraints is
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small, i.e., 25% and 14%. For both foam-like composites a little more than 50% of the
eigenvalue problems have to be solved to reduce the condition number to about TOL
(here TOL = 50 log

(
#/=8

)1/3, where =8 is the number of local nodes). Between 26%
and 39% of the eigenvalue problems were solved there without yielding constraints;
see Fig. 5 and Fig. 6. Still 10% to 20% of the eigenvalue problems are detected
as discardable, and thus the total algorithm is accelerated. We can summarize that
our strategy can successfully identify and discard many unnecessary eigenvalue
problems while keeping all necessary ones.

In order to give more insight into the eigenvalue problems that are solved, we
present the number of constraints yielded for each eigenvalue problem for each
material in four different pie charts; see Fig. 5 and Fig. 6. We see that the number
of constraints for each eigenvalue problem range from 1 to 28. However, a large
majority always gives between 2 and 12 constraints.

Fig. 7: Number of eigenvalue problems with given number of large eigenvalues for the composite
material with 36 (left) and 64 (right) beams. In these presentations, only the blue marked eigenvalue
problems of Fig. 3 and Fig. 4 are considered to give more details.

Fig. 8: Number of eigenvalue problems with given number of large eigenvalues for the foam-like
composite material with 15% (left) and 26% (right) high coefficients. In these presentations, only
the blue marked eigenvalue problems of Fig. 5 and Fig. 6 are considered to give more details.

Finally, we focus on the important topic of block sizes in the SLEPc Krylov-Schur
solver. As motivated by [17] and our tests in [10, 11], we have already opted for an
approximate solution of the eigenvalue problems by carrying out only a few steps
of the iterative block scheme. Justified by the idea that the LOBPCG block solver
of [15] could accelerate the convergence on extreme eigenvalues we have mostly
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used a block size of 10. Here, we study the timings of the global algorithms by
varying the block size of the local Krylov-Schur algorithm for our four materials.

In Table 1, we have presented iteration counts and estimated condition numbers
in order to show that the chosen block size does not effect the convergence of the
global PCG scheme. That means that the constraints obtained with different block
sizes do not differ in quality. In Fig. 9, we see that the use of smaller block sizes or
even a single vector iteration might be favorable with respect to time to solution.

block size 36 beams 64 beams ∼15% foam-like ∼26% foam-like
Krylov-Schur (1/ℎ = 36) (1/ℎ = 30) (1/ℎ = 30) (1/ℎ = 30)

^ its ^ its ^ its ^ its
1 5.48e+01 60 6.29e+1 62 7.21e+01 62 5.99e+01 63
3 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 62
6 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 61
9 5.48e+01 60 6.30e+1 63 7.21e+01 62 5.99e+01 64
12 5.48e+01 60 6.29e+1 62 7.21e+01 61 5.99e+01 61
15 5.48e+01 61 6.29e+1 62 7.21e+01 62 5.99e+01 61
18 5.49e+01 61 6.30e+1 63 7.21e+01 61 5.99e+01 61

Table 1:Condition number and iteration count of the global FETI-DP solver for different composite
materials for 216 subdomains with different block sizes for the iterative Krylov-Schur eigenvalue
solver and TOL = 50 log

(
# /=8

)1/3, where =8 is the number of local nodes.
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Fig. 9: Total global time and total local time needed by the Rayleigh-Ritz procedures in the Krylov-
Schur scheme to approximately compute the largest eigenvectors of the generalized eigenvalue
problems. Composite with 36 beams and 64 beams (left) and foam-like composite with ∼15% and
∼26% high coefficients (right).
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A New Parareal Algorithm for Time-Periodic
Problems with Discontinuous Inputs

Martin J. Gander, Iryna Kulchytska-Ruchka, and Sebastian Schöps

1 Introduction

Time-periodic problems appear naturally in engineering applications. For instance,
the time-periodic steady-state behavior of an electromagnetic device is often themain
interest in electrical engineering, because devices are operated most of their life-time
in this state. Depending on the size and complexity of the underlying system, the
search for a time-periodic solutionmight however be prohibitively expensive. Special
techniques were developed for the efficient computation of such solutions, like the
time-periodic explicit error correction method [9], which accelerates calculations by
correcting the solution after each half period, or the method presented in [1], which
leads to faster computations of periodic solutions by determining suitable initial
conditions.

The Parareal algorithm was invented in [10] for the parallelization of evolution
problems in the time direction. A detailed convergence analysis when applied to
linear ordinary and partial differential equations with smooth right-hand sides can
be found in [6], for nonlinear problems, see [3]. In [5], a new Parareal algorithm
was introduced and analyzed for problems with discontinuous sources. The main
idea of the method is to use a smooth approximation of the original signal as the
input for the coarse propagator. In [4], a Parareal algorithm for nonlinear time-
periodic problems was presented and analyzed. Our interest here is in time-periodic
steady-state solutions of problems with quickly-switching discontinuous excitation,
for which we will introduce and study a new periodic Parareal algorithm.
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2 Parareal for time-periodic problems with discontinuous inputs

We consider a time-periodic problem given by a system of ordinary differential
equations (ODEs) of the form

u′(C) = f (C, u(C)), C ∈ I, u(0) = u()), (1)

with the right-hand side (RHS) f : I × R= → R= and f (0, v) = f (), v) for all =-
dimensional vectors v and the solution u : I → R= on the time interval I := (0, )).

In power engineering, electrical devices are often excited with a pulse-width-
modulated (PWM) signal [2], which is a discontinuous function with quickly-
switching dynamics. For applications such as motors or transformers a couple of
tens of kHz might be used as the switching frequency [11]. To solve time-periodic
problems of the form (1) supplied with such inputs with our new periodic Parareal
algorithm, we assume that the RHS can be split into a sufficiently smooth bounded
function f̄ and the corresponding discontinuous remainder f̃ as

f (C, u(C)) := f̄ (C, u(C)) + f̃ (C), C ∈ I. (2)

Such a decomposition can be achieved by a Fourier series expansion of the time-
dependent input, then f̄ may be excited by a few principal harmonics, see [5].

We decompose [0, )] into # subintervals [)=−1, )=], = = 1, . . . , # with )0 = 0
and )# = ) , and introduce the fine propagator F (

)=, )=−1,U(:)=−1
)
which computes

an accurate solution at time )= of the initial-value problem (IVP)

u′= (C) = f (C, u= (C)), C ∈ ()=−1, )=], u= ()=−1) = [ (:)
=−1. (3)

The corresponding coarse propagator Ḡ (
)=, )=−1,U(:)=−1

)
computes an inexpensive

approximation at time )= of the corresponding IVP having the reduced RHS
f̄ (C, u(C)),

ū′= (C) = f̄ (C, ū= (C)), C ∈ ()=−1, )=], ū= ()=−1) = [ (:)
=−1. (4)

Our new periodic Parareal algorithm then computes for : = 0, 1, . . . and = =

1, . . . , #

U(:+1)0 = U(:)
#
, (5)

U(:+1)= = F (
)=, )=−1,U(:)=−1

) + Ḡ (
)=, )=−1,U(:+1)=−1

) − Ḡ (
)=, )=−1,U(:)=−1

)
, (6)

until the jumps at the synchronization points )=, = = 1, . . . , # − 1 as well as the
periodicity error between U(:)0 and U(:)

#
are reduced to a given tolerance. The initial

guesses U(0)= , = = 0, . . . , # for (5)-(6) can be computed by

[ (0)= := Ḡ (
)=, )=−1,[

(0)
=−1

)
, = = 1, . . . , #. (7)
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We note that the correction (5) does not impose a strict periodicity, but a relaxed one,
since the end value at the :th iterationU(:)

#
is used to update the initial approximation

U(:+1)0 at the next iteration. This approachwas introduced for time-periodic problems
in [4] and was named PP-IC (which stands for periodic Parareal with initial-value
coarse problem). In contrast to this method, where both coarse and fine propagators
solve the IVP (3), our iteration (5)-(6) uses a reduced dynamics on the coarse level,
described by (4). Convergence of the PP-IC algorithmwas analysed in [4].We extend
this analysis now to the new Parareal iteration (5)-(6), applied to a model problem.

3 Convergence of the new periodic Parareal iteration

We consider the linear time-periodic scalar ODE

D′(C) + ^D(C) = 5 (C), C ∈ (0, )), D(0) = D()), (8)

with a )-periodic discontinuous RHS 5 : [0, )] → R, a constant ^ ∈ R : ^ > 0, and
the solution function D : [0, )] → R we want to compute.

In order to investigate the convergence of the new periodic Parareal algorithm
(5)-(6) applied to (8), we introduce several assumptions. Let the time interval [0, )]
be decomposed into subintervals of equal length Δ) = )/# . We assume that the fine
propagator F is exact, and we can thus write the solution of the IVP for the ODE in
(8) at )=, starting from the initial value* (:)

=−1 at )=−1 as

F (
)=, )=−1,*

(:)
=−1

)
= 4−^Δ)* (:)

=−1 +
)=∫

)=−1

4−^ ()=−B) 5 (B)3B. (9)

Next, introducing a smooth and slowly-varying RHS 5̄ by 5 = 5̄ + 5̃ , we let the
coarse propagator Ḡ be a one-step method, applied to

D̄′= (C) + ^D̄= (C) = 5̄ (C), C ∈ ()=−1, )=], D̄= ()=−1) = * (:)=−1. (10)

Using the stability function R (^Δ)) of the one-step method, one can then write

Ḡ (
)=, )=−1,*

(:)
=−1

)
= R (^Δ))* (:)

=−1 + b=
(
5̄ , ^Δ)

)
, (11)

where function b= corresponds to the RHS discretized on [)=, )=−1] with the one-step
method. We also assume that

|R (^Δ)) | +
��4−^Δ) − R (^Δ))�� < 1. (12)

Using (9) and (11) and following [4], the errors 4 (:+1)= := D()=) − * (:+1)= of the
new periodic Parareal algorithm (5)-(6) applied to the model problem (8) satisfy for
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= = 1, 2, . . . , # the relation

4
(:+1)
= = D()=) − F

(
)=, )=−1,*

(:)
=−1

) − Ḡ (
)=, )=−1,*

(:+1)
=−1

) + Ḡ (
)=, )=−1,*

(:)
=−1

)
= 4−^Δ) D()=−1) +

∫ )=

)=−1

4−^ ()=−B) 5 (B)3B − 4−^Δ)* (:)
=−1 −

∫ )=

)=−1

4−^ ()=−B) 5 (B)3B

−
(
R (^Δ))* (:+1)

=−1 + b=
(
5̄ , ^Δ)

) ) + (
R (^Δ))* (:)

=−1 + b=
(
5̄ , ^Δ)

) )
= R (^Δ)) 4 (:+1)

=−1 +
(
4−^Δ) − R (^Δ))

)
4
(:)
=−1. (13)

Similarly, the initial error satisfies 4 (:+1)0 = 4
(:)
#

. A key observation here is that there
is no explicit reference to the right-hand sides 5 or 5̄ in (13): the corresponding
terms cancel both between the exact solution and the (exact) fine solver, and also
between the two coarse solvers! Collecting the errors in the error vector e (:) :=(
4
(:)
0 , 4

(:)
1 , . . . , 4

(:)
#

))
, we obtain from (13) the same fixed-point iteration as in [4]

e (:+1) = (e (:) , (14)

where the matrix ( is given by

( =


1 0

−R (^Δ)) 1
. . .

. . .

−R (^Δ)) 1


−1 

0 1
4−^Δ) − R (^Δ)) 0

. . .
. . .

4−^Δ) − R (^Δ)) 0


.

(15)
The asymptotic convergence factor of the fixed-point iteration (14) describing our
new periodic Parareal algorithm (5)-(6) applied to the periodic problem (8) is there-
fore given by

dasym (() = lim
:→∞

(
‖e (:) ‖/‖e (0) ‖

)1/:
. (16)

Theorem (Convergence estimate of the new periodic Parareal algorithm) Let
[0, )] be partitioned into # equal time intervals with Δ) = )/# . Assume the
fine propagator to be exact as in (9), and the coarse propagator to be a one-step
method as in (11) satisfying (12). Then the asymptotic convergence factor (16) of
the new periodic Parareal algorithm (5)-(6) is bounded for all ; ≥ 1 by

dasym (() < G; , with G; =

(
|R (^Δ)) | G;−1 +

��4−^Δ) − R (^Δ))��) #
#+1 and G0 = 1.

(17)

Proof Since the errors of the new periodic Parareal algorithm satisfy the same
relation (14) as in [4], the proof follows by the same arguments as in [4]. �

We note that under the assumption (12), the operator ( is a contraction [4], which
ensures convergence of the new periodic Parareal algorithm (5)-(6).
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Fig. 1: Left: PWM excitation (19) of 5 kHz (< = 100) and two coarse inputs (20), (21). Right:
convergence factor of the new periodic Parareal algorithm (5)-(6) with reduced coarse dynamics:
sinusoidal waveform (20) and step function (21), together with our theoretical bound.

4 Numerical experiments for a model problem

In this section we illustrate our convergence theory for the new periodic Parareal
algorithm with a periodic problem given by an RL-circuit model, namely

'−1q′(C) + !−1q(C) = 5< (C) , C ∈ (0, )), q(0) = q()), (18)

with the resistance ' = 0.01 Ω, inductance ! = 0.001 H, period ) = 0.02 s, and 5<
denoting the supplied PWM current source (in A) of 20 kHz, defined by

5< (C) =


sign
[
sin

(
2c
)
C

)]
, B< (C) −

����sin
(

2c
)
C

)���� < 0,

0, otherwise,
(19)

where B< (C) = <
)
C−

⌊<
)
C

⌋
, C ∈ [0, )] is the common sawtooth pattern with< = 400

teeth. An example of the PWM signal of 5 kHz is shown in Fig. 1 on the left. This
figure also illustrates the following two choices for the coarse excitation:

5̄sine (C) = sin
(

2c
)
C

)
, C ∈ [0, )] (20)

5̄step (C) =
{

1, C ∈ [0, )/2],
−1, C ∈ ()/2, )] . (21)

We note that the step function (21) is discontinuous only at C = )/2. This does not
lead to any difficulties, since we use Backward Euler for the time discretization and
we choose the discontinuity to be located exactly at a synchronization point.

The coarse propagator Ḡ then solves an IVP for the equation '−1q′(C)+!−1q(C) =
5̄ (C), C ∈ (0, )], where the RHS 5̄ is one of the functions in (20) or (21). We
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illustrate the estimate (17) by calculating the numerical convergence factor dnum :=(‖e ( ) ‖/‖e (0) ‖)1/ with the ;∞-norm of the error e (:) at iteration : ∈ {0,  }
defined as

‖e (:) ‖ = max
0≤=≤#

|q()=) −Φ(:)= |. (22)

Here q denotes the time-periodic steady-state solution of (18) having the same
accuracy as the fine propagator, andΦ( )= is the solution obtained at the  th iteration
when (5)-(6) converged up to a prescribed tolerance. The stability function used for
G; in (17) in case of Backward Euler is R

(
'
!
Δ)

)
=

(
1 + '

!
Δ)

)−1
.

On the right in Fig. 1, we show the measured convergence factor of the new
Parareal iteration (5)-(6) for the two choices of the coarse excitation (20) and (21).
The fine step size is chosen to be X) = )/218 ∼ 7.63−8, while the coarse step varies
as Δ) = )/2? , ? = 1, 2, . . . , 17. We also show on the right in Fig. 1 the value of G256
to be the bound in (17). The graphs show that the theoretical estimate is indeed an
upper bound for the numerical convergence factor for both coarse inputs (sine and
step). However, one can observe that G256 gives a sharper estimate in the case of the
sinusoidal RHS (20), compared to the one defined in (21). We also noticed that the
number of iterations required till convergence of (5)-(6) was the same (9 iterations
on average for the values of Δ) considered) for both choices of the coarse input,
while the initial error ‖e (0) ‖ was bigger with the step coarse input (21) than with the
sinusoidal waveform (20). This led to a slightly smaller convergence factor in case
of the step coarse input due to the definition of dnum.

5 Numerical experiments for an induction machine

We now test the performance of our new periodic Parareal algorithm with reduced
coarse dynamics for the simulation of a four-pole squirrel-cage induction motor,
excited by a three-phase PWM voltage source switching at 20 kHz. The model of
this induction machine was introduced in [8]. We consider the no-load condition,
when the motor operates with synchronous speed.

The spatial discretization of the two-dimensional cross-section of the machine
with = = 4400 degrees of freedom leads to a time-periodic problem represented by
the system of differential-algebraic equations (DAEs)

MdCu(C) +K (u(C)) u(C) = f (C), C ∈ (0, )), (23)
u(0) = u()), (24)

with unknown u : [0, )] → R=, (singular) mass matrix M ∈ R=×=, nonlinear
stiffness matrix K (·) : R= → R=×=, and the )-periodic RHS f : [0, )] → R=,
) = 0.02 s. The three-phase PWM excitation of period ) in the stator under the
no-load operation causes the )-periodic dynamics in u which allows the imposition
of the periodic constraint (24). For more details regarding the mathematical model
we refer to [5]. We would like to note that equation (23) is a DAE of index-1,
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Fig. 2: Left: PWM excitation (19) of 5 kHz and three-phase sinusoidal voltage source of 50 Hz,
used as the coarse input in our new periodic Parareal algorithm (5)-(6). Right: comparison of the
computational costs calculated in terms of the effective number of linear algebraic systems solved
for different approaches to obtain the periodic steady-state solution of the induction machine model.

which in case of discretization with Backward Euler can be treated essentially like
an ODE [12].

We now use our new periodic Parareal algorithm (5)-(6) to find the solution of
(23)-(24). The fine propagator F is then applied to (23) with the original three-phase
PWM excitation of 20 kHz, discretized with the time step X) = 10−6 s. The coarse
solver Ḡ uses a three-phase sinusoidal voltage source with frequency 50 Hz of the
form (20), discretized with the time step Δ) = 10−3 s. Phase 1 of the PWM signal
switching at 5 kHz as well as the applied periodic coarse excitation on [0, 0.02] s
are shown on the left in Fig. 2.

Both coarse and fine propagators solve the IVPs for (23) using Backward Euler,
implemented within the GetDP library [7]. We used # = 20 time subintervals for
the simulation of the induction machine with our new periodic Parareal algorithm,
which converged after 14 iterations. Within these calculations 194 038 solutions of
linearized systems of equations were performed effectively, i.e, when considering
the fine solution cost only on one subinterval (due to parallelization) together with
the sequential coarse solves.

On the other hand, a classical way to obtain the periodic steady-state solution is
to apply a time integrator sequentially, starting from a zero initial value at C = 0. This
computation reached the steady state after 9 periods, thereby requiring 2 176 179
linear system solves. Alternatively, one could apply the Parareal algorithm with
reduced coarse dynamics, introduced in [5], to the IVP for (23) on [0, 9)]. In this
case the simulation needed effectively 583 707 sequential linear solutions due to
parallelization. However, in practice one would not know the number of periods
beforehand and one could not optimally distribute the time intervals. We visualize
this data on the right in Fig. 2. These results show that our new periodic Parareal
algorithm (5)-(6) with reduced coarse dynamics (Parareal: TP) directly delivers the
periodic steady-state solution about 11 times faster than the standard time integration
(Sequential), and 3 times faster than the application of Parareal with the reduced
dynamics (Parareal: IVP) to an IVP on [0, 9)].



6 Conclusions

We introduced a new periodic Parareal algorithm with reduced dynamics, which
is able to efficiently handle quickly-switching discontinuous excitations in time-
periodic problems. We investigated its convergence properties theoretically, and
illustrated them via application to a linear RL-circuit example. We then tested the
performance of our new periodic Parareal algorithm in the simulation of a two-
dimensional model of a four-pole squirrel-cage induction machine, and a significant
acceleration of convergence to the steady state was observed. In particular, with our
new periodic Parareal algorithm with reduced dynamics it is possible to obtain the
periodic solution 11 times faster than when performing the classical time stepping.
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Asymptotic Analysis for Different Partitionings
of RLC Transmission Lines

Martin J. Gander, Pratik M. Kumbhar, and Albert E. Ruehli

1 Introduction

Among many applications of parallel computing, solving large systems of ordinary
differential equations (ODEs) which arise from large scale electronic circuits, or
discretizations of partial differential equations (PDEs), form an important part. A
systematic approach to their parallel solution are Waveform Relaxation (WR) tech-
niques, which were introduced in 1982 as a tool for circuit solvers (see [5]). These
techniques are based on partitioning large circuits into smaller sub-circuits, which
are then solved separately over multiple time steps, and the overall solution is ob-
tained by an iteration between the sub-circuits. However, these techniques can lead
to non-uniform and potentially slow convergence over large time windows. To over-
come this issue, optimized waveform relaxation techniques (OWR) were introduced,
which are based on optimizing parameters. The application of OWR to RC circuits
and its asymptotic analysis can be found in [2]. We introduce overlap and analyze
these methods for an RLCG transmission line type circuits with� = 0, which corre-
sponds to no current loss in the dielectricmedium. For the one node overlapping case,
see [1]. We show that these circuit equations represent Yee scheme discretizations
of the well known Maxwell equations in 1D, and give some asymptotic results.
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Fig. 1: RLC Transmission Line of length N.

2 Circuit Equations

We consider an infinitely long RLC transmission line where the constants ', !, �
represent resistance, inductance, and capacitance per unit length of the line. The
circuit equations are specified using Modified Nodal Analysis [4], whose principal
element is Kirchhoff’s circuit law. These circuit equations for an RLC transmission
line (see Fig 1), with the length of the circuit, N, going to infinity, lead to a system
of differential equations in time,

¤x =



. . .
. . .

. . .

0 1 −0
−2 0 2

0 1 −0
−2 0 2

. . .
. . .

. . .


x + f, (1)

where the entries in the above tridiagonal matrix are

0 =
1
!
, 1 = −'

!
, 2 = − 1

�
,

with an unknownvector x(C) := (. . . , G−1 (C), G0 (C), G1 (C), . . . )) and f (C)=(�B (C)/�, 0,
. . . , 0)) . The unknowns in x(C) are the voltages E(C) and currents 8(C) at the nodes
aligned in a systematic way, G2 9 (C) = 8 9 (C) and G2 9−1 = E 9 (C) for 9 ∈ Z. Thus the even
index rows, which have 0 and 1 elements correspond to current unknowns while the
odd index rows correspond to voltage unknowns. We assume that all the constants
', !, � are bounded to have a well posed problem.

Before analyzing the WR algorithm, we link these circuit equations to the well
known Maxwell’s equations in 1D. The coupled differential equations of system (1)
can be explicitly written as

mG2<
mC

= 0G2<−1 + 1G2< − 0G2<+1 and
mG2<+1
mC

= −2G2< + 2G2<+2,

for< ∈ Z. The parameters ',�, ! are defined per unit length, ' = ')ΔG,� = �)ΔG
and ! = !)ΔG. Hence, substituting the values of the constants 0, 1, 2 and interpreting
the differences as derivatives, we arrive at
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m8

mC
+ 1
!)

mE

mG
= −')

!)
8 and

mE

mC
+ 1
�)

m8

mG
= 0.

Comparing with the Maxwell’s equations in 1D,

m�

mC
+ 1
n

m�

mG
= −f

n
� and

m�

mC
+ 1
`

m�

mG
= 0,

we see that 8 ∼ � , E ∼ �, !) ∼ n , �) ∼ ` and ') ∼ f.

3 The Classical WR Algorithm

In this section, we apply the classical waveform relaxation algorithm to an RLC
transmission line of infinite length and analyze its convergence. To start with this
algorithm, we divide system (1) into two subsystems with unknowns x(B1) and x(B2),
where both unknowns depend on time C but for simplicity, we have removed C from
the notation. Since the system (1) consists of two different equations, one for current
and the other for voltage, the type of partitioning is interesting. We first partition
the system at an odd row, say at G−1 (C), and overlap = nodes of the circuit (which
corresponds to an overlap of 2= nodes of the two subsystems in (2) below). Thus,
initially, both the subsystems have equal length and then we increase the size of x(B1)
by 2= − 1 to include the overlap while the size of x(B2) remains unchanged. This
leads to two new subsystems of differential equations

¤x:+1 (B1) =

. . .

. . .
. . .

0 1 −0
−2 0

 x:+1 (B1) +

...

52=−4
52=−3

 +


...

0
2G:+12=−2 (B1)

 ,
¤x:+1 (B2) =


0 2

0 1 −0
. . .

. . .
. . .

 x:+1 (B2) +

5−1
50
...

 +

−2G:+1−2 (B2)

0
...

 ,
(2)

where : is the iteration index and the unknowns G:+12=−2 (B1) and G:+1−2 (B2) are given by
transmission conditions,

G:+12=−2 (B1) = G:2=−2 (B2), G:+1−2 (B2) = G:−2 (B1), (3)

which exchange only current at the interfaces. For the convergence study, we consider
the homogeneous problem f = 0 and zero initial conditions x(0) = 0. The Laplace
transform with B ∈ C for the subsystems (2) yields
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Bx̂:+1 (B1) =

. . .

. . .
. . .

0 1 −0
−2 0




...

Ĝ:+12=−4 (B1)
Ĝ:+12=−3 (B1)

 +


...

0
2Ĝ:2=−2 (B2)

 ,
Bx̂:+1 (B2) =


0 2

0 1 −0
. . .

. . .
. . .



Ĝ:+1−1 (B2)
Ĝ:+10 (B2)

...

 +

−2Ĝ:−2 (B1)

0
...

 .
(4)

Theorem 1 The convergence factor of the classical algorithm for an RLC transmis-
sion line of infinite length with n nodes overlap is

d2;0 (B, 0, 1, 2) =
{
(_1)2= , |_1 | < 1,
(_2)2= , |_1 | > 1,

(5)

where _1,2 := 202−B (B−1)±
√
(202−B (B−1))2−40222

202 with the property _1_2 = 1.

Proof Solving the first subsystem of (4) corresponds to solving coupled recurrence
equations, for 9 = = − 2, . . . , 0,−1,−2, . . .

−0Ĝ:+12 9−1 (B1) + (B − 1)Ĝ:+12 9 (B1) + 0Ĝ:+12 9+1 (B1) = 0,
2Ĝ:+12 9 (B1) + BĜ:+12 9+1 (B1) − 2Ĝ:+12 9+2 (B1) = 0.

To simplify, we introduce the new notations ?̂:+1
9

:= Ĝ:+12 9 (B1) and @̂:+19
:= Ĝ:+12 9+1 (B1)

for 9 = = − 2, . . . , 0,−1, . . . to get

−0@̂:+19−1 + (B − 1) ?̂:+19 + 0@̂:+19 = 0 and 2?̂:+19 + B@̂:+19 − 2?̂:+19+1 = 0. (6)

Solving the first equation for ?̂:+1
9

and substituting it into the second equation yields
02@̂:+1

9−1 + [B(B− 1) − 202]@̂:+1
9
+ 02@̂:+1

9+1 = 0. The general solution of this recurrence
equation is

@̂:+19 = �:+1_ 91 + �:+1_
9

2,

where _1,2 := 202−B (B−1)±
√
(202−B (B−1))2−40222

202 are the roots of the characteristic
equation and �:+1, �:+1 are constants to be determined. We first consider the case
|_1 | < 1. Since |_2 9−1

1 | → ∞ as 9 → −∞ and @̂:+1
9

are bounded, we have �:+1 = 0.
The coupled equations (6) gives @̂:+1

9
= �:+1_ 92 and ?̂:+1

9
= 0�:+1

B−1 [_
9−1
2 − _ 92].

Similarly, from the second subsystem of (4), for 9 = 0, 1, 2, . . . , we define D̂:+1
9

:=
Ĝ:+12 9 (B2) and F̂:+19

:= Ĝ:+12 9−1 (B2) to arrive at F̂:+1
9

= �:+1_ 91 and D̂:+1
9

= 0�:+1
B−1 [_

9

1 −
_
9+1
1 ]. To determine the constants �:+1 and �:+1, we use transmission conditions

in (3). The last equation of the first subsystem of (4) gives 2?̂:+1
=−2 + B@̂:+1=−2 = 2D̂

:
=−1.

Using the properties _1_2 = 1 and _1+_2 = 2− B (B−1)
02

, we have �:+1 = −�: (_2
1)=−1.

Similarly, the first equation of the second subsystem of (4) gives �:+1 = −�:_2
1.

Therefore, we have �:+1 = (_1)2=�:−1 and �:+1 = (_1)2=�:−1 which implies
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Ĝ:+1
9
(B1) = (_1)2=Ĝ:−1

9
(B1), and Ĝ:+19

(B2) = (_1)2=Ĝ:−1
9
(B2). Similarly, we have the

same convergence factor when |_1 | > 1. �

We observe that the convergence factor is the same for all the nodes irrespective of
which subsystem they belong to. Also, the convergence becomes faster by increasing
the number of nodes in the overlap. Note also that, if we partition the system at an
even row corresponding to a current equation, we still obtain the same convergence
factor.

4 Optimized WR Algorithm

It has been observed that increasing the number of nodes in the overlap does not
increase the convergence speed very much, especially for large time windows. This
forces us to look for better transmission conditions to make the exchange of informa-
tion between the subsystems more effective. Thus, we propose general transmission
conditions for splitting the circuit at a voltage node,

G:+12=−2 (B1) + UG:+12=−3 (B1) = G:2=−2 (B2) + UG:2=−3 (B2),
G:+1−1 (B2) + VG:+1−2 (B2) = G:−1 (B1) + VG:−2 (B1), (7)

where U and V are weighting factors. We can have similar transmission conditions
for splitting at a current node. These transmission conditions can be viewed as Robin
transmission conditions which transfer both current and voltage at the boundary.
Under the condition, U = 0, and V = ∞, we recover the classical transmission
conditions (3).

Theorem 2 The convergence factor of the OWR algorithm for an RLC transmission
line of infinite length with n nodes overlap and with splitting at a voltage node is
given by

dE= (B, 0, 1, 2, U, V) =

(
B−U2 (_2−1)
B+U2 (1−_1)

) (
VB+2 (_2−1)
VB−2 (1−_1)

) (
_1

)2=
, |_1 | < 1,(

B−U2 (_1−1)
B+U2 (1−_2)

) (
VB+2 (_1−1)
VB−2 (1−_2)

) (
_2

)2=
, |_1 | > 1.

(8)

Similarly, for the splitting at a current node, the convergence factor d2= (B, 0, 1, 2, U, V)
is

d2= (B, 0, 1, 2, U, V) =

(
B−1+0U(_2−1)
B−1−0U(1−_1)

) (
V (B−1)−0 (_2−1)
V (B−1)+0 (1−_1)

) (
_1

)2=
, |_1 | < 1,(

B−1+0U(_1−1)
B−1−0U(1−_2)

) (
V (B−1)−0 (_1−1)
V (B−1)+0 (1−_2)

) (
_2

)2=
, |_1 | > 1.

(9)

Proof The proof is similar to the proof of Theorem 1, with the change in the
transmission conditions which are now given by the new transmission conditions
(7). For V ≠ 0,
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G:+12=−2 (B1) = G:2=−2 (B2) + UG:2=−3 (B2) − UG:+12=−3 (B1),

G:+1−2 (B2) = G:−2 (B1) + G:−1 (B1)/V − G:+1−1 (B2)/V.
Performing similar operations for both cases, |_1 | < 1 and |_1 | > 1, we obtain the
new convergence factor (8). Similarly for splitting at a current node one can obtain
the convergence factor (9). �

The analysis to find optimizedU and V for both convergence factors dE= (B, 0, 1, 2, U, V)
and d2= (B, 0, 1, 2, U, V) is similar. Hence, in this article we present the analysis for the
convergence factor obtained by splitting at a voltage node, i.e for dE= (B, 0, 1, 2, U, V).
Corollary The optimized waveform relaxation algorithm for splitting at a voltage
node converges in two iterations, independently of the initial waveforms if

U>?C :=
B

2(_2 − 1) and V>?C :=
2(1 − _2)

B
.

Proof Equating the convergence factor (8) with zero provides us the expressions for
the optimal U and V. �

Note that U>?C , V>?C are complicated functions of B, which would lead to non-
local transmission conditions in time. Hence one searches for the optimized U, V by
approximating them by a constant. For this, we solve the min-max problem

min
U,V

(
max
B
|dE= (B, 0, 1, 2, U, V) |

)
. (10)

By equating the denominator of dE= (B, 0, 1, 2, U, V) with zero, we can show, provided
that U < 0 and V > 0, that dE= (B, 0, 1, 2, U, V) is an analytic function in the right
half of the complex plane. We also prove that dE= (B, 0, 1, 2, U, V) → 0 as B → ∞.
These proofs are technical and will appear in [3]. The maximum principle states
that the maximum of |dE= (B, 0, 1, 2, U, V) | lies on the imaginary axis, i.e. B = 8l.
Further, dE= (B, 0, 1, 2, U, V) is an even function of l. From Corollary 1, we observe
that V>?C = −1

U>?C
. This motivates to choose V = −1

U
, which means that the current in

both sub-circuits at the point of partition is equal but opposite in direction. All these
results and assumptions reduce our optimization problem (10) to

min
U<0

(
max

l<8=<l<l<0G
|dE= (l, 0, 1, 2, U) |

)
, (11)

wherel<8= := 2c
)

andl<0G := 2c
ΔC

with) as the total timewindowwe are computing
and ΔC as the time discretization parameter.

Theorem 3 For splitting at a voltage node, and for small l<8= = n > 0, if U∗E =
 En

1/3, where  E = (02/(2=122))1/3, then the convergence factor dE= satisfies

|dE= (l, 0, 1, 2, U∗E ) | ≤ |dE= (l<8=, 0, 1, 2, U∗E ) | ∼ 1 + 2
√

20l1/6
<8=

 E
√
12

+ O(l1/2
<8=
). (12)
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Fig. 2: Convergence for long time ) = 100 (left) and convergence factor in Laplace space (right).

Similarly, for a splitting at a current node and with = > 1, if U∗2 =  2n−1/3, where
 2 = ((2(= − 1)122)/02)1/3, then the convergence factor d2= satisfies

|d2= (l, 0, 1, 2, U∗2) | ≤ |d2= (l<8=, 0, 1, 2, U∗2) | ∼ 1 + 2
√

20 2l1/6
<8=√

12
+ O(l1/2

<8=
).

Proof We observe numerically (see right plot of Figure 2) that a solution of our
min-max problem (11) is given by equioscillation of |dE= (l, 0, 1, 2, U) | forl = l<8=
and l = l̃ and hence can be found by solving the coupled equations dE= (l<8= =
n, 0, 1, 2, U∗E ) = dE= (l̄E , 0, 1, 2, U∗E ) and m

ml
dE= (l̄E , 0, 1, 2, U∗E ) = 0, where l<8= <

l̄E ≤ l<0G . Asymptotic calculations for n → 0, yield U∗E ∼  En
1/3 and l̄E ∼

2 E2
=
n1/3. Similar calculations yield expressions for U∗2 and l̄2 . The details of this

proof are complicated and too long to present in this short paper and will appear in
[3]. �

Theorem 4 The convergence of OWR is faster for the splitting at a voltage node.

Proof We substitute the values of  2 and  E into the expression of d2= (l<8= =
n, 0, 1, 2, U∗2) and dE= (l<8= = n, 0, 1, 2, U∗E ) respectively to prove d2= (l<8= =

n, 0, 1, 2, U∗2) > dE= (l<8= = n, 0, 1, 2, U∗E ). The details of this proof will also ap-
pear in [3]. �

5 Numerical Results

We consider an RLC transmission line of length # = 149 with ' = 2 Ω/2<,
! = 4.95 × 10−3`�/2< and � = 0.021?�/2<. For the time discretization, we
use backward Euler with ΔC = )/5000, where ) is the total time. We first compare
the classical WR and OWR algorithm for large time ) = 100. The left plot in
Figure 2 clearly shows the improvement in the convergence factor when optimized
transmission conditions are used. The dashed and dotted lines show the results for
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Fig. 3: Comparison of different splittings in time (left) and of values of optimized alpha (right).

classical WR while solid lines represent the OWR algorithm. We also see the effect
of overlapping nodes (e.g. WR1 denotes the WR algorithm with one node overlap).
Increasing the overlap increases the convergence speed. However, the gain is very
small. The right plot of Figure 2 compares the convergence factor for OWR in
Laplace space for both splittings, at a current node and a voltage node. The dotted
black line is for WR with single node overlap while the other lines are for OWR. For
OWR, the splitting at a voltage node leads to faster convergence. This is also true in
the time domain, see the left plot of Figure 3. But for classical WR, splitting does not
matter, see Theorem 1. Finally, the right plot of Figure 3 validates our asymptotic
result (12). Both numerically computed and asymptotically derived values of the
optimal U for splitting at a voltage node are very close.

6 Conclusion

This is the first analysis of WR and OWR for an RLC transmission line with overlap
and with splitting either at a current or voltage node. We show that using optimized
transmission conditions, we can achieve a drastic improvement in the convergence
rate. Note that our analysis is in the Laplace domain since the analysis is easier and
the convergence in the Laplace domain implies convergence in the time domain, see
Remark 1 in [2]. We also see that overlapping nodes increase the convergence rate
for both WR and OWR algorithms but the improvement (by the factor of (_1)2=)
is not large. Further, for OWR, the splitting at a voltage node leads to a little faster
convergence than the splitting at a current node, while this splitting does not effect
the convergence of WR. We finally compared the values of the optimized U found
numerically and by asymptotic analysis and they are very close.
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Optimized Schwarz-based Nonlinear
Preconditioning for Elliptic PDEs

Yaguang Gu and Felix Kwok

1 Introduction

In this paper, we consider the following nonlinear elliptic equation,{
[D − ∇ · (0(G, D,∇D)∇D) = 5 in Ω,

BD = ℎ on mΩ, (1)

where [ ≥ 0, 0(G, D,∇D) is a positive scalar function uniformly bounded away
from zero, and BD represents boundary conditions (e.g. Dirichlet or Neumann) such
that the problem is well posed. This type of equation often arises from the implicit
discretization of a time-dependent problem or from a steady state calculation, for
example the Forchheimer equation [5] in porous media flow.

Once the problem (1) is discretized, there are many ways to solve the large non-
linear algebraic problem by domain decomposition methods. A classical approach
is to use the Newton-Krylov-Schwarz method [1]: the problem is first attacked
by Newton’s method, and within each Newton iteration, the linearized problem is
solved using a Krylovmethodwith a Schwarz domain decomposition preconditioner.
Alternative approaches consist of applying these components in a different order.
One such possibility, known as the Nested Iteration approach, was formulated in
[7, 8] for nonlinear parabolic PDEs: the solution (in space and time) is first rewritten
as the fixed point of a parallel Schwarz waveform relaxation iteration. Next, using the
interface values as primary unknowns, one derives the fixed point equation, which
is then solved using Newton’s method. Within each Newton iteraiton, the Jacobian
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Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, e-mail:
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Felix Kwok
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong e-mail:
felix_kwok@hkbu.edu.hk

260



Optimized Schwarz-based Nonlinear Preconditioning for Elliptic PDEs 261

systems are solved by a Krylov method, where each matrix-vector multiplication
corresponds to the solution of a linear parabolic problem.

For elliptic problems, the authors of [3] introduced the Restricted Additive
Schwarz Preconditioned Exact Newton (RASPEN) method, which can be regarded
as the Newton-accelerated version of the Restricted Additive Schwarz (RAS)method
with classical (Dirichlet) transmission conditions. Similar to Nested Iteration, the
RASmethod is first written in fixed point form, and the resulting fixed point equation
is solved by Newton’s method, using a Krylov method as linear solver for calculating
the Newton step. Unlike the ASPIN method [2], which uses approximate Jacobians,
RASPEN uses exact Jacobians: it was shown in [3] that the product of the exact
Jacobian matrix with an arbitrary vector can be obtained using components already
computed during the subdomain solves, so the Newton corrections can be calcu-
lated cheaply. Thus, RASPEN is a true Newton method and converges quadratically
close to the solution. Nonetheless, the Krylov solver within each Newton itera-
tion converges relatively slowly, which is typical of classical RAS methods with
Dirichlet transmission conditions. In this paper, we propose an optimized RASPEN
(ORASPEN) method, where a zeroth order optimized (i.e. Robin) transmission con-
dition is used to communicate information across subdomain interfaces. This allows
us to take advantage of the extra Robin parameter to obtain faster convergence in the
Krylov solver, just like in optimized Schwarz methods for linear problems.

2 The ORASPEN method

In this section, we derive the ORASPEN method and explain how the matrix-vector
multiplication by the Jacobian can be performed by reusing components from the
subdomain solves. We first recall the RASPEN method with classical transmisison
conditions, as defined in [3]. Assume that the physical domainΩ is decomposed into
overlapping subdomains Ω =

⋃ 
8=1Ω8 . Then given the =-th iterate D=, the restricted

Additive Schwarz (RAS) method first calculates D=+1
8

= �8 (D=), 8 = 1, 2, . . . ,  ,
where�8 is the local solution operator which produces solutions to local subdomain
problems by freezing degrees of freedom outside Ω8 . More concretely, suppose we
use a finite element discretization of (1) to obtain for the ℓ-th degree of freedom

�ℓ (D) =
∫
Ω

([Dqℓ + 0(G, D,∇D)∇D · ∇qℓ) 3G −
∫
Ω

5 qℓ 3G = 0, (2)

where qℓ ∈ �1
0 (Ω) denotes the ℓ-th finite element basis function. Let � (D) =

(�1 (D), �2 (D), . . .)) be the set of all such equations, so that the global nonlinear
problem has the form � (D) = 0. If D= is a finite element function whose trace on
mΩ8 is used as Dirichlet values for the subdomain solve on Ω8 , then the subdomain
solution D=+1

8
= �8 (D=) ∈ +8 can be obtained by solving the equation

'8� (%8�8 (D=) + (� − %8'8)D=) = 0 (3)
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for the unknown �8 (D=), where '8 is the restriction operator from the finite element
space+ ⊂ �1

0 (Ω) to the subspace+8 = + ∩�1
0 (Ω8), and %8 = ')8 is the prolongation

operator. Note that the subdomain solution D=+1
8

is none other than the solution to
the following problem when we apply the parallel classical Schwarz method for (1):

[D=+1
8
− ∇ · (0(G, D=+1

8
,∇D=+1

8
)∇D=+1

8
) = 5 in Ω8 ,

BD=+1
8

= ℎ on mΩ8 ∩ mΩ,
D=+1
8

= D=
9

on mΩ8 ∩ Ω̄ 9 , 9 ∈ I8 ,
(4)

where I8 contains the indices of all the subdomains that have overlap with Ω8 .
Once the �8 (D=) are calculated for each 8, the new global iterate is formed using

the relation

D=+1 =
 ∑
8=1

%̃8�8 (D=). (5)

Here, %̃8 is the restricted prolongation operator, formed from the %8 above and a
partition of unity, so that the relation

∑ 
8=1 %̃8'8 = � holds; see detailed definitions

in [3]. When the iteration (5) converges, it does so linearly in general. The RASPEN
idea consists of forming the fixed point equation

F̃ (D) =
 ∑
8=1

%̃8�8 (D) − D = 0 (6)

and applying Newton’s method to solve (6). This requires calculating the Jacobian
F̃ ′(D), which in turn requires the derivative � ′

8
(D). The latter can be obtained by

differentiating (3).
We now derive the ORASPEN algorithm by showing how to incorporate opti-

mized transmission conditions. In the ORASPEN algorithm, we still solve (6) by
Newton, except that the underlying fixed point iteration (5) is replaced by the op-
timized RAS method of [9], so the local solution operator �8 (D) is now based on
Robin transmission conditions rather than Dirichlet.

Let D∗
8
= '8D

∗ be the restriction of D∗ to Ω8 , D∗ being the solution to (1). Given
a set of initial guesses (D0

8
) 
8=1, the parallel optimized Schwarz method generates a

sequence (D=
8
) 
8=1, = = 0, 1, . . . , that approximate (D8) 8=1 by

[D=+1
8
− ∇ · (0(G, D=+1

8
,∇D=+1

8
)∇D=+1

8
) = 5 in Ω8 ,

BD=+1
8

= ℎ on mΩ8 ∩ mΩ,
0(G, D=+1

8
,∇D=+1

8
) mD

=+1
8

mn8 + ?D=+18
= 0(G, D=

9
, ∇D=

9
) mD

=
9

mn8 + ?D=9 on mΩ8 ∩ Ω̄ 9 , 9 ∈ I8 ,
(7)

where ? is the Robin parameter and n8 is the unit outward-pointing normal vector. If
finite elements are used to discretize (7), then for each basis function q8

ℓ
with support

in Ω8 , the corresponding residual function becomes

�8ℓ (D=+18 ) = �8ℓ (D=+18 ) −
∫
Ω8

5 q8ℓ 3G −
∫
Γ8

6q8ℓ 3B, (8)
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where 6 =
(
0(D=

9
,∇D=

9
) m
mn8 + ?

) (D=
9
), Γ8 = mΩ8 \ mΩ, and

�8ℓ (D8) =
∫
Ω8

([D8q8ℓ + 0(G, D8 ,∇D8)∇D8 · ∇q8ℓ) 3G +
∫
Γ8

?D8q
8
ℓ 3B.

The evaluation of 6, which involves Robin traces and must be taken in the weak
sense, is non-trivial. Therefore, we mimic the approach in [4] for the linear case and
exploit the equivalence between optimized parallel Schwarz and optimized RAS: we
update the local solution via the full approximation scheme

�8 (D=+18 ) − �8 ('8D=) = −'8� (D=), (9)

where �8 (D8) = (�81 (D8), �82 (D8), . . .)) , and � (D=) = (�1 (D=), �2 (D=), . . .)) is the
global residual as defined in (2). Under the usual coercivity assumptions, (9) defines
a mapping �8 : D= ↦→ D=+1

8
. The fixed point iteration is completed by the update

formula D=+1 =
∑ 
8=1 %̃8�8 (D=), as in (5). It is clear from (9) that if D= = D∗ is the

exact solution of � (D) = 0, then D=+1
8

= '8D
=, so the exact solution is a fixed point

of the iteration. Thus, the ORASPEN approach consists of solving (6), but with the
�8 now defined by (9) instead of (3).

To calculate the Newton steps necessary for the solution of (6), one must solve
linear systems involving the Jacobian matrix F̃ ′(D). Since (O)RASPEN uses Krylov
methods for solving such linear systems, we need to know how to multiply F̃ ′(D) by
an arbitrary vector E. Differentiating (6) with respect to D and multiplying the result
by E gives

F̃ ′(D=)E =
 ∑
8=1

%̃8�
′
8 (D=)E − E. (10)

To evaluate � ′
8
(D=)E, we let D=+1

8
= �8 (D=) in (9) and differentiate implicitly to

obtain
m�8

mD
(D=+18 )� ′8 (D=) −

m�8

mD
('8D=)'8 = −'8� ′(D=).

Isolating � ′
8
(D=) in the above and substituting into (10) yields

F̃ ′(D=)E =
 ∑
8=1

%̃8

(
m�8

mD
(D=+18 )

)−1 (
m�8

mD
('8D=)'8E − '8� ′(D=)E

)
− E. (11)

Note that m�8

mD
(D=+1
8
) is none other than the Jacobian matrix for the subdomain

problem (9). If Newton’s method was used to solve these subdomain problems, this
Jacobianwould have already been formed and factored during the calculation of D=+1

8
,

so the multiplication by
(
m�8

mD
(D=+1
8
))−1 in (11) requires only a forward-backward

substitution involving the precomputed LU factors. Thus, the Krylov iterations have
relatively low computational cost.

To understand the convergence of the Krylov method, it is instructive to consider
the linear case, when 0(G, D,∇D) ≡ 0(G) is independent of D, and m�8

mD
=: �8 is
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independent of D=+1
8

. In that case, (11) simplifies to

F̃ ′(D=)E = −
 ∑
8=1

%̃8�
−1
8 '8�

′(D=)E,

which is identical to the preconditioned matrix for optimized RAS [9]. Therefore,
for well-chosen Robin parameters, we expect ORASPEN to exhibit much faster con-
vergence than classical RASPEN in terms of inner Krylov iterations, even when the
number of outer Newton iterations remains similar. This will be verified experimen-
tally in the next section.

3 Numerical Results

In this section, we illustrate the behaviour of ORASPEN by comparing it with
classical one-level RASPEN, as defined in [3], for two model problems. All tests in
this section are discretized using the P1 (conforming piecewise linear) finite element
method. In the first test, we show results for the nonlinear diffusion problem

−∇ · ((1 + D2)∇D) = G sin(H) in Ω = [0, 1] × [0, 1],
D = 1 on G = 1,
mD
m=
= 0 elsewhere,

(12)

with the initial guess D0 = 1.
We compare the linear and nonlinear iteration counts needed by ORASPEN with

those needed by RASPEN for the 4 × 4 subdomain test case, using different Robin
parameters ? and mesh ratios �/ℎ. In Table 1, we report the following numbers:

• Nits, the number of outer Newton iterations required for convergence to within a
tolerance of 10−8;

• Lits, the number of linearized subdomain problems that must be solved. This
number includes (i) all linear solves within the subdomain problems, and (ii) all
multiplications by the matrix (m�8/mD)−1 within GMRES due to Equation (11);

• Avg Lits, the average number of linear iterations per Neweton step; and
• ?, the Robin parameter that leads to the lowest iteration counts for each mesh

ratio �/ℎ.
We also include the number of unpreconditioned classical Newton iterations re-

quired for convergence. Although one cannot use these numbers to directly compare
classical Newton with (O)RASPEN (we must also consider which preconditioner to
use, and how many preconditioned GMRES iterations are required by the Jacobian
solves within each Newton step), such numbers are useful for determining the dif-
ficulty of the unpreconditioned problem. Here, we observe that ORASPEN always
requires the fewest nonlinear iterations, compared to classical Newton and RASPEN.
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Fig. 1: Numerical results for the nonlinear diffusion problem. Left: Newton iteration counts for
4 × 4 subdomains with �/ℎ = 10, � being the diameter of the subdomain. Right: Total linear
iteration counts for the 4 × 4 subdomain case with different Robin parameters and mesh sizes.

We show in Figure 1 the linear and nonlinear iteration counts as a function of the
Robin parameter ? for different ratios �/ℎ. We can see that the Robin parameter
? has a large impact on the linear and nonlinear iteration counts. Observe that
when ORASPEN is used with the optimal Robin parameter, the average number of
linear iterations per Newton becomes much lower for ORASPEN than for RASPEN,
and this number does not grow as quickly as for RASPEN when we refine the
mesh. Moreover, with the optimal Robin parameter ?, ORASPEN converges in
two Newton iterations, which is slightly better than the three iterations required by
RASPEN. Note that these extra savings are tolerance dependent: if we change TOL
in the stopping criterion from 10−8 to 10−10, then it will take at least three Newton
iterations for ORASPEN to converge. Nevertheless, since ORASPEN needs fewer
linear iterations per Newton step than RASPEN, ORASPEN will still outperform
RASPEN, even when both methods take three Newton iterations to converge.

Next, we fix the ratio �/ℎ and vary the number of subdomains; see the results
in Table 2. We observe that ORASPEN again requires fewer linear iterations to
converge than RASPEN, which is consistent with the linear case [6]. However, the
iteration counts for both methods grow with the number of subdomains, as the inner
subdomains move farther and farther away from the physical boundary.

For the second set of tests, we consider the same Forchheimer problem as in [3]:
−∇ · q = 0 in Ω = [0, 1] × [0, 1],

q · n = 0 on mΩ \ (Γ30 ∪ Γ31),
D = 0 on Γ30, D = 1 on Γ31,

(13)

where
q =

2Λ(G, H)∇D
1 +

√
1 + 4V |Λ(G, H)∇D |

,

Γ30 = {(G, H) ∈ mΩ; G + H < 0.2} and Γ31 = {(G, H) ∈ mΩ; G + H > 1.8}. The
permeabilityΛ(G, H) is equal to 1000 except in the two inclusions [0, 0.5]× [0.2, 0.4]
and [0.5, 1] × [0.6, 0.8], where it is equal to 1. The nonlinearity of the Forchheimer
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Table 1: Linear and nonlinear iteration counts for 4 × 4 subdomains for the nonlinear diffusion
problem with different mesh sizes. An overlap of 4-cell widths and a stopping criterion of 10−8 are
used for all tests.

�/ℎ
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits ? Nits Lits Avg Lits
10 4 3 113 37.67 22 2 51 25.50
20 4 3 152 50.67 23 2 57 28.50
40 4 3 208 69.33 25 2 66 33.00

Table 2:Linear and nonlinear iteration counts for different numbers of subdomains for the nonlinear
diffusion problemwith the fixed ratio�/ℎ = 10. An overlap of 4-cell widths and a stopping criterion
of 10−8 are used for all tests.

# × #
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits ? Nits Lits Avg Lits
2 × 2 4 3 59 19.67 12 2 34 17.00
4 × 4 4 3 113 37.67 22 2 51 25.50
8 × 8 4 3 211 70.33 28 3 133 44.33

16 × 16 4 3 418 139.33 31 3 247 82.33

equation is much stronger than in the first test problem, due to the appearance of
∇D in the denominator of q and the large contrast in Λ(G, H). Therefore, we adopt
the continuation approach, where we solve (13) first for V = 0 (which is a linear
problem), then for V = 0.1 and V = 1, using the solution for the previous V as the
initial guess for the next one. (Without continuation, classical Newton takes 15–20
iterations to converge, whereas (O)RASPEN takes only 4–8 in our examples.) For
the fixed fine mesh shown in Figure 2, we vary the number of subdomains and
show the iteration counts for ORASPEN and RASPEN in Table 3. We again observe
significantly lower linear iteration counts in ORASPEN than in classical RASPEN.
Finally, we remark that the performance of ORASPEN is sensitive to the Robin
parameter ?, as can be seen from Figure 3. A poor choice of the Robin parameter
may lead to a higher number of nonlinear iterations compared to classical RASPEN,
negating the benefits of faster linear convergence. A good parameter choice for this
problem, and more generally for ORASPEN, is therefore the subject of ongoing
work.

NONLINEAR SCHWARZ PRECONDITIONING A21

Table 4499

Numerical results with one- and two-level RASPEN and ASPIN for the nonlinear diffusion
problem.

500

501

One-level Two-level

N ×N n lsGn lsinn lsmin
n LSn lsGn lsinn lsmin

n LSn

2 × 2 1 15(20) 4(4) 3(3) 13(23) 4(4) 3(3)

2 17(23) 3(3) 3(3) 59(78) 15(26) 3(3) 3(3) 54(86)

3 18(26) 2(2) 2(2) 17(28) 2(2) 2(2)

4 × 4 1 32(37) 3(3) 3(3) 18(33) 3(3) 3(3)

2 35(41) 3(3) 2(2) 113(132) 22(39) 3(3) 2(2) 74(126)

3 38(46) 2(2) 2(2) 26(46) 2(2) 2(2)

8 × 8 1 62(71) 3(3) 2(2) 18(35) 3(3) 3(2)

2 67(77) 3(3) 2(2) 211(240) 23(44) 3(3) 2(2) 77(139)

3 74(84) 2(2) 1(2) 28(53) 2(2) 2(1)

16 × 16 1 125(141) 3(3) 2(2) 18(35) 3(3) 3(2)

2 136(155) 2(2) 2(2) 418(471) 23(44) 2(2) 2(2) 75(140)

3 150(167) 2(2) 1(1) 27(54) 2(2) 2(1)

Fig. 9. Left: Fine grid for the 4 × 4 subdomain test case. The orange and black inclusions
correspond to low-permeability regions. Middle: Coarse grid used for two-level methods. Right:
Exact solution for the discretized 2D Forchheimer problem for the grid shown on the left.

502

503

504

Table 5513

Number of nonlinear iterations required for convergence by various algorithms for the 2D Forch-
heimer problem, as a function of problem size. Divergence of the method is indicated by “div”.

514

515

β = 0.1 β = 1
2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

Newton 19 19 19 38 44 48
ASPIN 6 div. div. 6 div. div.
ASPIN2 5 6 7 6 7 9
RASPEN 5 4 4 5 5 5
RASPEN2 4 4 4 5 5 6

degrees of freedom per subdomain is approximately constant in each case. Neighboring507

subdomains have an overlap of one mesh size h. For the two-level methods, the coarse508

function F0 consists of a P1 discretization of the problem over the coarse grid shown509

in the middle panel of Figure 9. In all our experiments, we report the number of iter-510

ations required for convergence to the discrete fine grid solution to within a tolerance511

of 10−8.512

To measure the difficulty of this problem, we run our nonlinear algorithms (stan-519

dard Newton, one- and two-level ASPIN, one- and two-level RASPEN) on the problem520

Fig. 2: Fixed grid for the 2 × 2, 4 × 4 and 8 × 8 subdomain test cases, and the solution profile for
the Forchheimer problem.
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Fig. 3: Newton and linear iteration counts for the Forchheimer problem as a function of ?.

Table 3: Linear and nonlinear iteration counts for the Forchheimer problem, with a continuation
sequence of V = 0, 0.1, 1. An overlap of 4-cell widths and a stopping criterion of 10−8 are used for
all tests.

V # × #
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits ? Nits Lits Avg Lits

0.1
2 × 2 5 3 112 37.33 1800 3 70 23.33
4 × 4 5 3 158 52.67 2000 3 103 34.33
8 × 8 5 3 236 78.67 2200 4 218 54.50

1.0
2 × 2 4 3 109 36.33 200 2 43 21.50
4 × 4 4 2 101 50.50 950 2 69 34.50
8 × 8 4 3 232 77.33 1050 3 161 53.67
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Coarse Spaces for Nonlinear Schwarz Methods
on Unstructured Grids

Alexander Heinlein and Martin Lanser

1 Introduction

We are concerned with the solution of nonlinear problems

� (D) = 0 (1)

in some finite element space + . The function � : + → + ′ is obtained by a finite
element discretization of a nonlinear partial differential equation (PDE) on a do-
main Ω ⊂ R3 , 3 = 2, 3. To solve (1), we consider nonlinear domain decomposition
methods of the Schwarz type, e.g., ASPIN (Additive Schwarz Preconditioned In-
exact Newton) [1, 10] or RASPEN (Restricted Additive Schwarz Preconditioned
Exact Newton) [3]. More precisely, we suggest a new approach to implement a sec-
ond level or coarse level into RASPEN, which is different to FAS-RASPEN (Full
Approximation Scheme - RASPEN) introduced in [3]. The coarse space is applied
multiplicatively, similar to the application of multiplicative nonlinear corrections
in MSPIN (Multiplicative Schwarz Preconditioned Inexact Newton); see, e.g., [9].
Therefore, we consider a standard Lagrangian coarse space as well as multiscale
coarse spaces that can also be constructed for unstructured meshes and unstruc-
tured domain decompositions, e.g., decompositions obtained using METIS [8]. We
compare our new approaches for the example of homogeneous and heterogeneous
?-Laplace equations; see section 2. In section 3, we first describe the one level
RASPEN method and our approach to implement a multiplicative second level for
ASPIN and RASPEN. Second, we define three different coarse spaces - one based on
a P1 discretization on a coarse mesh and the other two based on MsFEM (Multiscale

Alexander Heinlein and Martin Lanser
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Fig. 1: Left:Definition ofΩ' (black part);Right:Solution of equation (2)with coefficient functions
defined in (3).

Finite Element Method) [7] type discretizations on the subdomains. The MsFEM
coarse spaces can easily be used in the case of unstructured decompositions and differ
only in the chosen extensions from the interface to the interior parts of the nonover-
lapping domain decomposition. Finally, we present numerical results considering
homogeneous and heterogeneous model problems in section 4.

2 Model Problem

We consider the nonlinear model problem:

−UΔ?D − VΔ2D = 1 in Ω
D = 0 on mΩ, (2)

with the scaled ?-Laplace operator UΔ?D := div(U |∇D |?−2∇D) for ? ≥ 2 and the
coefficient functions U, V : Ω → R. For all computations in this paper, we always
use the unit square Ω = [0, 1] × [0, 1] as the computational domain. However,
our approach is not restricted to this case. We consider two different coefficient
distributions: a homogeneous ?-Laplace equation, i.e., U(G) = 1 and V(G) = 0 for
all G ∈ Ω, and a heterogeneous problem with a channel and two circular inclusions
carrying different coefficients than the remainder of Ω, i.e.,

U(G) =
{

1 000 if G ∈ Ω',
0 elsewhere, V(G) =

{
0 if G ∈ Ω',
1 elsewhere. (3)

The set Ω' and the solution of the corresponding heterogeneous model problem are
depicted in Figure 1. If not stated otherwise, ? is always chosen as 4.

With a standard finite element discretization of a variational formulation of (2),
we can derive the nonlinear discrete problem

 (D) − 5 = 0 :⇔ � (D) = 0. (4)

Let us remark that (4) is linear for ? = 2. We define the corresponding equation
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 ;8=D − 5 = 0, (5)

where  ;8= is equivalent to the stiffness matrix of the (scaled) diffusion equation.

3 The RASPEN Method

In this section, we provide a brief description of the RASPEN method, which is
based on the ASPIN algorithm; see [1, 3] for a more detailed description and a local
convergence analysis. As all nonlinear domain decomposition approaches, RASPEN
is based on a reformulation of (1) using a decomposition of the underlying nonlinear
PDE. In the case of RASPEN, a nonlinear system

� (� (D)) =: F (D) = 0 (6)

is derived, where the nonlinear left-preconditioner � is given implicitly. We con-
sider a decomposition ofΩ into nonoverlapping subdomainsΩ8 , 8 = 1, ..., #, and, by
adding layers of finite elements, we obtain overlapping subdomains Ω′

8
, 8 = 1, ..., # .

We denote the local finite element spaces associatedwith the overlapping subdomains
by +8 , 8 = 1, ..., # . With standard restriction operators '8 : + → +8 and correspond-
ing prolongation operators %8 := ')

8
we can define nonlinear local corrections )8 (D)

by
'8� (D − %8)8 (D)) = 0, 8 = 1, ..., #. (7)

Using restricted prolongation operators %̃8 , 8 = 1, ..., # , which fulfill the condition∑#
8=1 %̃8'8 = �, we can define the nonlinear reformulation

F'�(D) :=
#∑
8=1

%̃8)8 (D). (8)

of (1). Let us remark that (8) and (1) have the same solution; see [1, 3]. In the
RASPEN method, (8) is solved using Newton’s method, i.e., using the iteration

D (:+1) = D (:) −
(
�F'�(D (:) )

)−1
F'�

(
D (:)

)
, (9)

with the jacobian

�F'� (D) =
#∑
8=1

%̃8�)8 (D) =
#∑
8=1

%̃8 ('8�� (D8)%8)−1 '8�� (D8) =:
#∑
8=1

&8 (D8).
(10)

Here, we have D8 = D−%8)8 (D) and �)8 (D) is obtained by deriving (7). Let us remark
that, in eachNewton iteration and on each overlapping subdomain, the local nonlinear
problem (7) has to be solved for )8 (D (:) ). This can again be done using Newton’s
method. The necessary local Newton iterations can be carried out in parallel. We
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distinguish in this paper between outer iterations, i.e., global Newton iterations as
in (9), and inner iterations, i.e., local Newton iterations on the subdomain problems
to compute the local nonlinear corrections )8 (D8).

3.1 A Multiplicative Coarse Space

In general, there are several approaches to implement a second level for RASPEN
or ASPIN. A simple additive coarse space is suggested in [10] for ASPIN, and a
multiplicative coarse space using an FAS approach is used in [3]. We choose a
slightly different multiplicative approach not relying on FAS. Our coarse correction
is applied after the local corrections, but different variants, i.e., applying the coarse
correction before the local corrections as well as a symmetric variant doing both are
suggested in [6]. All these variants can analogously be applied to ASPIN, but, for the
moment, we restrict ourselves to RASPEN due to space limitations. In [6], we also
discuss the differences between our proposed methods and, e.g., FAS-RASPEN,
in detail. Now, let +0 be a discrete coarse space, '0 : + → +0 a corresponding
restriction, and %0 := ')0 . Note that the columns of %0 are just representations of
the coarse basis functions on the fine mesh. The nonlinear coarse problem is given
by '0� (%0D0) using a simple Galerkin approach. The nonlinear coarse correction
)0 (D) is then implicitly given by

'0� (D − %0)0 (D)) = 0. (11)

Let us remark that the coarse correction )0 (D) is computed using Newton’s
method in our implementation. The corresponding residual and tangential matrix of
equation (11) have to be assembled on the fine grid, which can of course be done in
parallel on the subdomains. Also the restriction of the residual as well as the Galerkin
product necessary to form the coarse tangential matrix can be efficiently computed
in parallel; see, e.g., [5, Sections 4.4 and 4.5]. There, it is also described how the
coarse basis functions, i.e., the columns of %0, can be computed in a scalable fashion;
in particular, [5, Section 4.4] deals with GDSW coarse basis functions, however the
coarse basis functions introduced in section 3.2 can be computed in parallel in the
same way.

We can now define the two-level RASPEN method by

F2; (D) :=
#∑
8=1

%̃8)8 (D) + %0)0 (D −
#∑
8=1

%̃8)8 (D)). (12)

Note that the coarse correction is here applied multiplicatively after the local cor-
rections )8 (D8). A linearization with Newton’s method leads to

D (:+1) = D (:) −
(
�F2; (D (:) )

)−1
F2;

(
D (:)

)
,
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where

�F2; (D) =
#∑
8=1
%̃8�)8 (D) + %0�)0 (D −

#∑
8=1
%̃8)8 (D))

(
� −

#∑
8=1
%̃8�)8 (D)

)
=
#∑
8=1
&8 (D8) +&0 (E0) (� −

#∑
8=1
&8 (D8))

= &0 (E0) + (� −&0 (E0))
#∑
8=1
&8 (D8).

(13)

Here, we have E0 = D−
∑#
8=1 %8)8 (D) −%0)0 (D−

∑#
8=1 %8)8 (D)) and D8 = D−%8)8 (D).

The projection operators &8 (D8), 8 = 1, ..., # are defined in (10) and

&0 (E0) := %0 ('0�� (E0)%0)−1 '0�� (E0)

is defined analogously and obtained by deriving (11). Additionally to the local
Newton iterations, Newton’s method is used to compute the coarse correction (11)
in each outer iteration. We refer to this iterations as coarse iterations.

3.2 Different Coarse Basis Functions

We consider three different coarse spaces. The simplest one is a Lagrangian coarse
space based on a coarse triangular mesh. Therefore, for a structured domain decom-
position into square subdomains, each subdomain is split into two triangular finite
elements. The coarse basis functions are just piecewise linear (P1) nodal basis func-
tions corresponding to this triangulation. In general, this coarse space relies on the
availability of a suitable coarse triangulation. Therefore, we only use it for structured
domain decompositions.

For arbitrary domain decompositions, we consider energy-minimizing coarse
spaces of MsFEM [7] type. They are also related to reduced dimension GDSW
coarse spaces [2]. As in those approaches, we use a nodal basis, i.e., containing one
basis function Φ( 9) , 9 = 1, ..., #+ , corresponding to each of the #+ vertices of the
domain decomposition. Collecting the vectors Φ( 9) as columns in the matrix Φ, we
obtain the restriction to the coarse space '0 := Φ) . In particular, we construct the
coarse basis functions such that they formapartition of unity on all subdomainswhich
do not touch the Dirichlet boundary. This can be achieved by building a partition of
unity on the interface of those subdomains and then extending the interface values
to the interior in an energy-minimizing way.

To define the interface part Φ( 9)
Γ

of the basis function Φ( 9)) = (Φ( 9))
�

,Φ
( 9))
Γ
)

corresponding to a vertex V9 , let E: be one of the adjacent open edges and V;
the other vertex adjacent to E: . Then, we set Φ( 9)

Γ
(V9 ) = 1 and Φ( 9)

Γ
(G) = 1 −

| |G−V9 | |
| |G−V9 | |+ | |G−V; | | for any G ∈ E: . We proceed equivalently with all other edges
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adjacent to V9 and define Φ( 9)
Γ

as zero on the remaining interface. This results in a
partition of unity on the interface, even for a METIS decomposition.

As already stated, the interior values Φ( 9)
�

are then computed by energy-
minimizing extensions. In order to do so, we propose the use of energy functionals
corresponding to related linear problems. In the first alternative, we compute discrete
harmonic extensions with respect to the linear operator  ;8=; see (5). Therefore, we
consider the block structure

 ;8= =

(
 ;8=
� �

 ;8=
�Γ

 ;8=
Γ�

 ;8=
ΓΓ

)
and compute the values in the interior degrees of freedom by

Φ
(8)
�
= −

(
 ;8=� �

)−1
 ;8=�Γ Φ

(8)
Γ
, 8 = 1, ..., #+ .

Alternatively, we use the tangential matrix for the initial value D (0) , i.e.,

� (D (0) ) =
(
� (D (0) )� � � (D (0) )�Γ
� (D (0) )Γ� � (D (0) )ΓΓ

)
,

to compute the energy-minimizing extensions. In particular, we then define the
extension to the interior of the subdomains by

Φ
(8)
�
= −

(
� (D (0) )� �

)−1
� (D (0) )�ΓΦ(8)Γ , 8 = 1, ..., #+ .

In general, this is advantageous since it only depends on the nonlinear operator �
and no linear Laplacian has to be assembled additionally.

Let us remark that the energy-minimizing basis functions can be computed lo-
cally by the solution of linear problems on the interior part of the nonoverlapping
subdomains. Also, they are zero on all subdomains not adjacent the corresponding
vertex by construction, and therefore, no extensions have to be computed on the
remaining subdomains. All three coarse spaces build a partition of unity on all sub-
domains which do not touch the Dirichlet boundary. This property is crucial for a
good linear coarse space. All coarse spaces have the same size and therefore have
the same computational cost per nonlinear or linear iteration; only the costs for the
construction of the energy-minimizing coarse basis functions are higher.

4 Numerical Results

For all tests and all methods, we choose the same initial value D (0) (G, H) =
GH(G − 1) (H − 1) and the same relative stopping tolerance, i.e., we stop the outer
iteration if � (D (:) )/� (D (0) ) < 14 − 6. All inner or, respectively, coarse iterations
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Table 1: Homogeneous ?-Laplace: Comparison of different coarse spaces for regular and METIS
domain decompositions; best results for the largest experiment are marked in bold; outer it. gives the
number of global Newton iterations; inner it. gives the number of local Newton iterations summed
up over the outer Newton iterations (average over subdomains); coarse it. gives the number of
nonlinear iterations on the second level summed up over the outer Newton iterations; GMRES it.
gives the number of GMRES iterations summed up over the outer Newton iterations.

?-Laplace homogeneous
? = 4; �/ℎ = 32 for regular domains; overlap X = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)
- 5 25.9 - 99 7 41.4 - 238

9 P1 5 30.2 17 88 - - - -
� (D (0) ) ext. 5 30.7 16 83 5 31.3 22 123

 ;8= ext. 5 29.9 16 83 5 30.7 19 121
- 14 73.8 - 358 11 62.8 - 458

16 P1 6 32.4 20 122 - - - -
� (D (0) ) ext. 7 38.9 30 140 7 36.8 27 180

 ;8= ext. 5 30.6 18 99 6 32.5 21 152
- 6 28.4 - 201 12 57.6 - 578

25 P1 5 27.4 18 116 - - - -
� (D (0) ) ext. 5 27.6 19 108 5 28.6 20 126

 ;8= ext. 5 27.2 18 108 6 31.4 22 151
- 15 66.9 - 563 11 53.1 - 617

36 P1 6 30.6 21 145 - - - -
� (D (0) ) ext. 7 34.3 30 164 6 30.4 23 155

 ;8= ext. 5 28.7 19 117 6 30.0 21 152
- 6 29.0 - 268 13 60.9 - 811

49 P1 5 27.3 18 126 - - - -
� (D (0) ) ext. 5 27.4 19 121 7 32.0 27 178

 ;8= ext. 5 27.2 18 122 6 29.4 21 152

are stopped with an equivalent relative residual criterion in the corresponding local
or, respectively, coarse finite element space, after a reduction of 14 − 3 is reached.
This is sufficient since the inner and coarse initial values get more and more accurate
while the outer loop converges. As a linear solver for the tangential systems, we use
GMRES (Generalized Minimal RESidual) iterations with a relative stopping toler-
ance of 14−8. Of course, in particular, in the first Newton steps, we might over-solve
the linear systems, and choosing the forcing terms correctly could be beneficial for
all methods; see [4].

We first consider a numerical scalability study for the homogeneous ?-Laplace for
? = 4; see Table 1. Here, for regular domain decompositions, we choose �/ℎ = 32
and therefore 2 048 triangular finite elements per nonoverlapping subdomain. For the
METIS decompositions, the global problem sizes are identical to the corresponding
regularly decomposed problems. We present the number of outer or global New-
ton iterations, which is up to 2.5 times higher in the one level RASPEN method
compared with the best of the two-level approaches. All three coarse levels show
a similar performance for the regular domain decomposition and both extension
based coarse spaces perform well for the METIS decompositions. In general, the
two-level RASPENmethod needs less inner iterations and significantly less GMRES
iterations, especially for irregular domain decompositions.
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Table 2: Heterogeneous ?-Laplace: See Table 1 for description of column labels and Fig. 1 for
the coefficient distribution.

?-Laplace heterogeneous (channel + 2 circles)
? = 4; �/ℎ = 32 for regular domains; overlap X = 2;

Regular METIS
RASPEN outer inner coarse GMRES outer inner coarse GMRES

N Coarse Space it. it. (avg.) it. it. (sum) it. it. (avg.) it. it. (sum)
- 5 14.3 - 321 5 14.2 - 346

36 P1 5 15.6 17 139 - - - -
� (D (0) ) ext. 5 15.1 16 139 5 15.2 18 125

 ;8= ext. 4 12.7 13 108 5 15.5 18 128

For the chosen heterogeneous problem (see Table 2), the number of outer Newton
iterations is similar for all methods. Nevertheless, the linear convergence, i.e. the
number of GMRES iterations, is superior in the two-level variants. All in all, our
experiments show that our multiplicative second level with the chosen coarse basis
functions has a superior linear convergence and, in some cases, also a better nonlinear
convergence - regardless if regular or METIS decompositions are used.

In general, the discrete extension using  ;8= shows a slightly better performance
than the extension with the tangent � (D (0) ), but the latter one will always be
available, also for different nonlinearmodel problemswhere a suitable linear operator
 ;8= cannot be found easily. Considering, e.g., nonlinear hyperlelasticity or elasto-
plasticity problems, the linear elasticity model or a multi-dimensional Laplacian
could be used to form  ;8=, but for large loads or highly plastic behavior, � (D (0) )
might be a better choice.

5 Conclusion

Wehave presented a new approach to implement amultiplicative coarse space forAS-
PIN or RASPEN, which is robust for the considered model problems. Additionally,
we presented two different coarse spaces usable for irregular domain decompositions
and compared both against the one level RASPEN method and, for regular domain
decompositions, also against a classical P1 coarse space. Both coarse spaces are
competitive and cheap to compute.
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A Reynolds Number Dependent Convergence
Estimate for the Parareal Algorithm

Martin J. Gander and Thibaut Lunet

1 The Parareal algorithm

Time parallel time integration has received substained attention over the last decades,
for a review, see [2]. More recently, renewed interest in this area was sparked by the
invention of the Parareal algorithm [5] for solving initial value problems like

3u

3C
= Lℎ (u(C), C), u(0) = u0, C ∈ [0, )], (1)

with Lℎ : R? × R+ → R? , u(C) ∈ R? , u0 ∈ R? , ? being the total number of
degrees of freedom and ) a positive real value. Problem (1) often arises from
the spatial discretization of a (non-)linear system of partial differential equations
(PDEs) through the method-of-lines. For Parareal, one decomposes the global
time interval [0, )] into # time subintervals [)=−1, )=] of size Δ) , = = 1, · · · , # ,
where # is the number of processes to be considered for the time parallelization. In
the following, we denote by[= the approximation of u at time )=, i.e. ,[= ≈ u()=).
Let F XC

)=−1→)=
([=−1) denote the result of approximately integrating (1) on the time

subinterval [)=−1, )=] from a given starting value [=−1 using a fine propagator F
with time step XC. Similarly, Parareal also needs a coarse propagator G (with time
step ΔC), which has to be much cheaper than F resulting in less accuracy.

The Parareal algorithm consists of a prediction step and a correction iteration.
In the prediction step, Parareal computes an inital guess of the starting values [0

=

at the beginning of each time subinterval using the coarse propagator,
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∀= = 1, · · · , #, [0
= = GΔC

)=−1→)=
([0

=−1), [0
0 = u0. (2)

A correction iteration is then applied in Parareal, using concurrently the fine
propagator F on each time subinterval:

[:= = F XC
)=−1→)=

([:−1
=−1) + GΔC

)=−1→)=
([:=−1) − GΔC

)=−1→)=
([:−1

=−1), (3)

where [:= denotes the approximation of u at time )= at the :-th iteration of Para-
real (: = 1, · · · ,  , = = 1, · · · , #). While the application of F can be performed
independently for each time subinterval, Parareal remains limited by the sequential
nature of the coarse integration performed by GΔC

)=−1→)=
in (3). Parareal will thus

reduce the total computational time compared to a direct time-serial integration only
if the application of G is cheap enough and if the total number of iterations  of
Parareal is small. We will use the following result, which is an extension of [4,
Th. 4.9] following indications of [4, Sec. 4.5] for the Dahlquist test equation

3D

3C
= _D, _ ∈ C, D(0) = D0 ∈ C. (4)

Theorem 1 (Linear convergence bound - Dahlquist test equation) Let G be a
one-step time-integration method, and F be the same time integrator, but using <
time-steps instead of a single one (i.e. ΔC = Δ) = <XC). If G is used such that _ΔC
is in its region of absolute stability, then

sup
=>0
|DF= −*:= | ≤ d(_Δ)):sup

=>0
|DF= −*0

= |, (5)

where DF= is the fine solution at time )=, and the convergence factor is given by

d(_Δ)) = |'(_Δ)/<)
< − '(_Δ)) |

1 − |'(_Δ)) | , (6)

with ' the stability function of the coarse (and fine) solver.

2 Semi-discretization of the advection-diffusion problem

We are interested in the linear advection-diffusion equation on a one-dimensional
spatial domain [0, !]

mD

mC
= −0 mD

mG
+ a m

2D

mG2 + 5 (G, C), D(G, 0) = D0 (G), (7)

with 0, a ∈ R∗+ the advection and diffusion coefficients, 5 : R × R+ → R a source
term, and periodic boundary conditions for the spatial domain
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∀C ∈ [0, )], D(0, C) = D(!, C). (8)

We discretize [0, !] using a uniform mesh [G1, ..., G?]) for ? unknowns, which
gives a mesh size XG = !/?. We use centered finite differences of order 2 (FD-
C2) for the diffusion operator in (7), and also use either a FD-C2 discretization for
the advection operator, or a 1BC order upwind scheme (FD-U1). This leads to the
semi-discrete system of ODEs

3u

3C
(C) = �u(C) + f (C), u(0) = u0, (9)

where � ∈ R?×? and f : R→ R? represents the source term.
Two dimensionless numbers can be defined to characterize this problem:

'4 :=
0!

a
, '4XG :=

0XG

a
, (10)

where '4 is the Reynolds number1 and '4XG is the mesh Reynolds number ('4 =
?'4XG ). '4 indicates by its large (resp. small) value a major influence of advection
(resp. diffusion) on the solution D(G, C). As '4 compares this advection/diffusion
ratio with the characteristic length ! (that can be chosen differently for a different
situation), '4XG compares this ratio to the mesh size. Decreasing the diffusion
coefficient will increase '4, as the advection becomes more dominant. It does not
necessarily induce an increase of '4XG , as XG can also be decreased to keep a
constant value for '4XG . This mesh refinement when '4 increases is commonly
done for Direct Numerical Simulation (DNS) of the Navier-Stokes equations [6,
Chap. 4], or also for stationary forms of (9) with Dirichlet boundary conditions, to
keep a certain accuracy in the approximate solution (solutions become qualitatively
wrong when '4XG ≥ 2 for FD-C2 dicretizations of the advection term [1, Sec. 2,
§ 5]).

The mesh Reynolds number '4XG is useful to formulate convergence results for
Parareal. In particular, we can use it to express the eigenvalues of � in (9):

Lemma 1 (Eigenvalues of the spatial advection-diffusion operator)
For the FD-C2 discretization of the diffusion termwith periodic boundary conditions,
the eigenvalues of the discrete spatial operator � with FD-C2 discretization of the
advection are

_^ = − 0
XG

[
8 sin

(
2^c
?

)
+ 2
'4XG

(
1 − cos

(
2^c
?

))]
, ^ ∈ {0, 1, ..., ? − 1}, (11)

with 8 :=
√
−1. For the FD-U1 discretization of the advection, the eigenvalues are

_^ = − 0
XG

[
1 − 4−8 2^ c

? + 2
'4XG

(
1 − cos

(
2^c
?

))]
, ^ ∈ {0, 1, ..., ? − 1}. (12)

1 What we call here the Reynolds number is in fact the Peclet number, since there is no non-linear
advective term in (7). However, we prefer to use Reynolds number, since our analysis is a first step
toward Navier-Stokes equations, and this links our results to those already in the literature.
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Fig. 1: Influence of '4XG on the eigenvalues of the advection-diffusion problem when varying a
only and keeping 0 and XG fixed. For the advection term, we used FD-C2 (left) and FD-U1 (right),
with ? = 20, 0 = 1, ! = 1, and for the axes, we used _̃^ := XG/0_^ .

Proof For the FD-C2 discretization of the advection term, the space operator matrix
is given by

� := − 0

2XG

©«
0 1 −1

−1
. . .

. . .

. . .
. . . 1

1 −1 0

ª®®®®®¬
+ a

X2
G

©«
−2 1 1

1
. . .

. . .

. . .
. . . 1

1 1 −2

ª®®®®®¬
, (13)

where the eigenvalues of each matrix are well known (see, e.g. [6, Chap. 3]). Each
circulant matrix is diagonalized by the same Fourier basis, and hence the eigenvalues
_^ of � are just the sum of the eigenvalues of each matrix in (13), i.e.

_^ = −8 02XG
sin(2^c/?) + 2

a

X2
G

(
1 − cos

(
2^c
?

))
. (14)

Extracting the common factor 0/XG and using the definition of '4XG then leads to
(11). The result for FD-U1 in (12) is obtained similarly. �

In Fig. 1, we show the eigenvalues for both discretizations, FD-C2 and FD-U1,
and their dependency on '4XG when varying a only. We see that the eigenvalues
are distributed along an ellipse that flattens toward the imaginary axis when '4XG
increases. For small '4XG , the eigenvalues are very similar, but for large '4XG , the
flattening toward the imaginary axis is more pronounced for FD-C2 than for FD-U1,
which comes from the numerically more diffusive nature of FD-U1.

3 Linear bound of Parareal for advection-diffusion

Theorem 2 (Linear convergence bound - Advection-diffusion equation) Let G
be a one-step time-integration method, F be the same time integrator using < time-
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steps, and uF= be the fine sequential solution at)=. If _^Δ) is in the region of absolute
stability of G for each eigenvalue _^ of �, then the error in the Parareal algorithm
satisfies the linear error bound

� :∞ := sup
=>0

uF= −[:=2
≤ d:03�0

∞, �
0
∞ =

√∑̂
sup
=>0

���D̂F= (^) − *̂0
= (^)

���2 (15)

where D̂(^) is the ^Cℎ Fourier component of u and d03 denotes the linear convergence
factor of Parareal,

d03 = sup
_^

[d(_^Δ))] = sup
_^

[ |'(_^Δ)/<)< − '(_^Δ)) |
1 − |'(_^Δ)) |

]
, (16)

with ' the stability function of the coarse (and fine) solver. In particular, Parareal
convergence is ensured if d03 < 1.

Proof As the unitary Discrete Fourier Transform (DFT) matrix transforms � into
diagonal form, (9) is then a combination of decoupled Dahlquist equations in Fourier
space. Using Theorem 1, we can bound the Parareal error of each Fourier compo-
nent for all time subintervals,

∀= ∈ N, |D̂F= (^) − *̂:= (^) | ≤ sup
=>0
|D̂F= (^) − *̂:= (^) | ≤ d(_^Δ)):sup

=>0
|D̂F= (^) − *̂0

= (^) |.
(17)

For each ^, d(_^Δ)) can be bounded by sup
_^

[d(_^Δ))]. Then, taking the power 2

of each extremal part of the inequality, summing on ^ and computing the square root
gives ûF= − [̂:=2

≤ sup
_^

[d(_^Δ))]:�0
∞ (18)

Using the Parseval-Plancherel theorem and bounding the left term for = ∈ N then
leads to (15). �

As we saw previously, the eigenvalues _^ are fully characterized by '4XG and
0/XG . Hence, we can define a dimensionless number,

CFLP =
0Δ)

XG
, (19)

which we call Courant-Friedrichs-Lewy (CFL) number for Parareal (as if the
algorithm were simply considered as a standard time integration method with time-
step Δ)). It is worth mentioning that CFLP is the CFL number of the coarse solver,
and < times the CFL number of the fine solver, and we obtain the following result:

Lemma 2 For a given mesh with ? mesh points, the linear convergence factor d03 of
Parareal for the advection-diffusion equation in (16) depends only on '4XG , CFLP ,
and the coarse/fine solver settings, i.e. the stability function ' and the number of
time-steps < per time subinterval.
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Fig. 2: Dependence of d03 on '4XG and CFLP , for Backward Euler (< = 30 for F), and FD-C2
(left) and FD-U1 (right). Dotted black line: d03 = 1. White squares are ('4XG , CFLP ) tuples used
in Sec. 4. White dotted lines are ('4XG , CFLP ) values for some given constant ratio 02Δ) /a.

Proof Looking for example at the FD-C2 discretization for advection, combining
(19) with (11), we get

_^Δ) = −CFLP
[
8 sin

(
2^c
?

)
+ 2
'4XG

(1 − cos
(

2^c
?

)]
, ^ ∈ {0, 1, ..., ?−1}, (20)

which depends only on ^, '4XG and CFLP . As d03 is a maximum bound over all ^,
we obtain the result from (16). The proof is similar for FD-U1. �

We present the dependency proved in Lemma 2 graphically using contour plots
for d03 in Fig. 2, with a Backward Euler time integrator for F and G, using < = 30
and ? = 5000. For both discretizations, we observe an increase of d03 with both
'4XG andCFLP , in agreement with numerical results in the literature (see, e.g. , [3]).
Our analysis quantifies this convergence deterioration, and shows how d03 depends
precisely on '4XG and CFLP . Furthermore, for sufficient space resolution (small
'4XG ), d03 is determined by CFLP'4XG = 02Δ)/a (white dotted lines in Fig. 2).
In particular, convergence is only ensured when 02Δ)/a is less than a given value
(around 10 in our case). This implies that Δ) must be in the order of a/02, or in
other words, the coarse time step must be small enough for G to capture the diffusion
time-scale, requiring that G has an F -like resolution.

Using the FD-U1 discretization only changes the convergence factor for large
values of '4XG , which may not be of use since '4XG >> 1 can lead to an important
loss of accuracy for the numerical solution, as we will see in Sec. 4.

4 Numerical experiments

Weperform now numerical experiments similar to those already in the literature (see,
e.g. , [7, 3]), wherewe use a fixed number ofmesh points ?, and decrease the diffusion
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Fig. 3: Space-time numerical solution with the F solver using FD-C2 for the advection discretiza-
tion. Left: a = 0.1 ('4 = 20), right: a = 0.01 ('4 = 200).
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Fig. 4: Influence of an increase of '4XG by lowering a on Parareal convergence, using FD-C2
for the advection discretization (left) and FD-U1 (right), linear bounds in plain lines.

coefficient a to obtain larger values of '4, for a fixed value 0 = 1 of the advection.
Numerical simulations are done with ! = 2 and ? = 48, until ) = 4. Backward Euler
is used for the F and G solvers, with < = 30. Since we use # = 8 time subintervals
for Parareal, this implies a fine time step XC = 1/60 and CFLP = 12. We use a
Gaussian as initial condition, D0 (G) = 4−20(G−1)2 , and no source term. Three different
viscosity coefficients are chosen, a ∈ {1, 0.1, 0.01}. Numerical solutions are shown
in Fig. 3 for the two smaller values of a; for the largest value a = 1, the solution
is almost purely diffusive, and is constant for C > 1. We show in Fig. 4 the error
against the fine solution at each Parareal iteration, using the FD-C2 and FD-U1
discretizations. For each '4XG value corresponding to the chosen '4, the linear
bound is indicated by the plain lines, and the corresponding (CFLP , '4XG ) tuples
are indicated with the white squares in Fig. 2. We observe for both discretizations a
degradation of the Parareal convergence when a decreases and thus '4 and '4XG
increase, which is well predicted by the linear convergence bound (plain lines in
Fig. 4). The use of the FD-U1 discretization lessens this convergence degradation a
little for high '4XG numbers (low a), which is due to the artificial dissipation brought
by the Upwind scheme that makes the problem (wrongly) more diffusive.

This loss of accuracy is particularly visible when comparing the fine solu-
tion to the analytical solution of (7) with periodic boundary conditions, D(G, C) =



Table 1:Main parameters for the numerical experiments

a '4 '4XG n) ,( (FD-C2) n) ,( (FD-U1)

1 2 0.042 0.006 0.005
0.1 20 0.42 0.040 0.096
0.01 200 4.2 0.321 0.724

1√
4caC

∫ +∞
−∞ D0 (b) exp(− (G−0C−b )24aC )3b. We define the numerical error "in time and

space" of the fine solution n) ,( := 1
#BC4?

∑#BC4?

8=1 | |uA4 5 (8XC ) − uF (8XC ) | |2, where
#BC4? is the number of time steps for the fine solver to cover [0, )] (in our case,
#BC4? = 240), and uA4 5 is the analytical solution computed at each mesh point. We
give n) ,( for each discretization and '4XG in Tab. 1. One can see that the accuracy
decreases dramatically when '4 and '4XG increase, the effect being more impor-
tant for the FD-U1 discretization, compared to the FD-C2 discretization. In order
to reduce this error, a mesh refinement would be necessary, which would have led
to lower '4XG values for the chosen '4, but also to corresponding higher values
of CFLP , thus not changing anything in the convergence behavior of the method
(cf. white dotted lines in Fig. 2).

In conclusion, both our theoretical results and our numerical experiments show
that Parareal algorithm convergence deteriorates when the ratio 02Δ)/a becomes
large, this ratio being proportional to the Reynolds number when time-step and mesh
size are kept constant. One also has to be careful when using numerically diffusive
schemes not to jump to false conclusions: truly transport dominated solutions are
hard to approximate effectively with the classical Parareal algorithm.

References

1. Birkhoff, G., Gartland Jr, E., Lynch, R.: Difference methods for solving convection-diffusion
equations. Computers & Mathematics with Applications 19(11), 147–160 (1990)

2. Gander, M.J.: 50 years of time parallel time integration. In: T. Carraro, M. Geiger, S. Körkel,
R. Rannacher (eds.) Multiple Shooting and Time Domain Decomposition Methods, pp. 69–114.
Springer (2015)

3. Gander, M.J.: Five decades of time parallel time integration, and a note on the degradation of
the performance of the Parareal algorithm as a function of the Reynolds number. Oberwolfach
Report (2017)

4. Gander, M.J., Vandewalle, S.: Analysis of the Parareal time-parallel time-integration method.
SIAM J. Sci. Comput. 29(2), 556–578 (2007)

5. Lions, J.L., Maday, Y., Turinici, G.: A ”Parareal” in time discretization of PDE’s. C. R. Math.
Acad. Sci. Paris 332(7), 661–668 (2001)

6. Lunet, T.: Stratégies de parallélisation espace-temps pour la simulation numérique des écoule-
ments turbulents. Ph.D. thesis, Toulouse, ISAE (2018)

7. Steiner, J., Ruprecht, D., Speck, R., Krause, R.: Convergence of Parareal for the Navier-Stokes
equations depending on the Reynolds number. In: A. Abdulle, S. Deparis, D. Kressner, F. Nobile,
M. Picasso (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, vol.
103, pp. 195–202. Springer (2015)



The Domain Decomposition Method of Bank
and Jimack as an Optimized Schwarz Method

Gabriele Ciaramella, Martin J. Gander, and Parisa Mamooler

1 Bank-Jimack Domain Decomposition Method

In 2001 Randolph E. Bank and Peter K. Jimack [1] introduced a new domain decom-
position method for the adaptive solution of elliptic partial differential equations,
see also [2]. The novel feature of this algorithm is that each of the subproblems is
defined over the entire domain. To describe the method, we consider a linear elliptic
PDE on a domain Ω, and two overlapping subdomains Ω1 and Ω2, Ω = Ω1 ∪ Ω2.
Discretizing the problem on a global fine mesh leads to a linear system  u = f ,
where  is the stiffness matrix, u is the vector of unknown nodal values on the global
fine mesh, and f is the load vector. We partition now the vector u =

[
u1, uB , u2

]) ,
where u1 is the vector of unknowns on the nodes in Ω1 \ Ω2, uB is the vector of
unknowns on the nodes in Ω1 ∩ Ω2, and u2 is the vector of unknowns on the nodes
in Ω2 \Ω1. We can then write the linear system in block matrix form,

�1 �1 0
�)1 �B �

)
2

0 �2 �2



u1
uB
u2

 =

f 1
f B
f 2

 . (1)

The idea of the Bank-Jimack method is to consider two further meshes on Ω, one
identical to the original fine mesh in Ω1, but coarse on Ω\Ω1, and one identical to
the original fine mesh inΩ2, but coarse onΩ\Ω2. This leads to the two further linear
systems
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�1 �1 0
�)1 �B �2
0 �̃2 �̃2



v1
vB
v2

 =


f 1
f B

"2 f 2

 ,

�̃1 �̃1 0
�1 �B �

)
2

0 �2 �2



w1
wB
w2

 =

"1 f 1
f B
f 2

 , (2)

where we introduced the restriction matrices " 9 to restrict f 9 to the corresponding
coarse meshes.The Bank-Jimack method is then performing the following iteration:

Algorithm 1: Bank-Jimack Domain Decomposition Method:
1: Set : = 0 and choose an initial guess u0.
2: Repeat until convergence

2.1

r :1
r :B
r :2

 :=

f 1
f B
f 2

 −

�1 �1 0
�)1 �B �

)
2

0 �2 �2



u:1
u:B
u:2


2.2 (>;E4


�1 �1 0
�)1 �B �̃

)
2

0 �̃2 �̃2



v:+11
v:+1B

v:+12

 =


r :1
r :B
"2r

:
2

 ,

�̃1 �̃1 0
�̃)1 �B �

)
2

0 �2 �2



w:+11
w:+1B

w:+12

 =

"1r

:
1

r :B
r :2


2.3


u:+11
u:+1B

u:+12

 :=

u:1
u:B
u:2

 +


v:+11
1
2 (v:+1B + w:+1B )

w:+12


2.4 : := : + 1

To get more insight into the Bank-Jimack method, and to relate it to Schwarz
methods using optimized Schwarz theory, we consider the concrete example of the
1D Poisson equation

−DGG = 5 in Ω = (0, 1), D(0) = D(1) = 0. (3)

We define a global fine mesh with # mesh points (see Figure 1 (top row)), and mesh
size ℎ := 1

#+1 . Using a finite difference discretization, we find the linear system

0 <ℎ ;ℎ 1

=1 =B =2

ℎ

0 <ℎ ;ℎ 1

=1 =B <2

ℎ1ℎ

0 <ℎ ;ℎ 1
Ω1 Ω2

<1 =B =2

ℎ2 ℎ

Fig. 1: Global fine mesh, and two partially coarse meshes.
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 u = f ,  :=

�1 �1 0
�)1 �B �

)
2

0 �2 �2

 =
1
ℎ2


2 −1

−1 2
. . .

. . .
. . .

 ,
where �1 ∈ R=1×=1 , �1 ∈ R=1×=B , �B ∈ R=B×=B , �2 ∈ R=2×=B and �2 ∈ R=2×=2 , and
# = =1 + =B + =2 (Fig. 1). For the Bank-Jimack method, we also need the two further
meshes shown in Figure 1, one with #1 := =1 + =B +<2 mesh points which is fine on
Ω1 with mesh size ℎ and coarse on Ω\Ω1 with mesh size ℎ1, which leads to a linear
system of equations of the form (2) (left), with system matrix


�1 �1 0
�)1 �B �2
0 �̃2 �̃2

 :=



2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−1
ℎ2

2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−2

ℎ (ℎ+ℎ1 )
2
ℎℎ1

−2
ℎ1 (ℎ+ℎ1 )−1

ℎ2
1

2
ℎ2

1

−1
ℎ2

1

−1
ℎ2

1

2
ℎ2

1

. . .

. . .
. . .



, (4)

and one with #2 = <1 + =B + =2 mesh points on Ω which is fine on Ω2 with mesh
size ℎ, and coarse onΩ\Ω2, with coarse mesh size ℎ2, which leads to a linear system
of equations of the form (2) (right), with system matrix


�̃1 �̃1 0
�1 �B �

)
2

0 �2 �2

 :=



2
ℎ2

2

−1
ℎ2

2

−1
ℎ2

2

. . .
. . .

. . .
. . . − 1

ℎ2
2

− 2
ℎ2 (ℎ+ℎ2 )

2
ℎℎ2

−2
ℎ (ℎ+ℎ2 )−1

ℎ2
2
ℎ2

−1
ℎ2

−1
ℎ2

2
ℎ2

. . .

. . .
. . . −1

ℎ2
−1
ℎ2

2
ℎ2

−1
ℎ2

− 1
ℎ2

2
ℎ2

. . .

. . .
. . .



. (5)

For this example, " 9 are the transpose of linear interpolation matrices from the
fine grid (Fig. 1, top row) to the coarse grids (Fig. 1, second and third row). We
find them using an algorithm which is similar to the algorithm introduced in [6] for
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finding the interface matrices for non-matching grids in one dimension. Running the
Bank-Jimack method on this example does not lead to a convergent method1, see
Fig. 2 (left) in the numerical experiments Section 4. This is due to the averaging used
in the overlap in step 2.3 of the method, and can be fixed using a specific partition
of unity given by the diagonal matrices �̃1 and �̃2 such that

�̃1 = 3806(1,×, . . . ,×, 0), �̃2 = 3806(0,×, . . . ,×, 1), �̃1 + �̃2 = �=B (6)

One then has to replace step 2.3 in the the method of Bank-Jimack by
u:+11
u:+1B

u:+12

 :=

u:1
u:B
u:2

 +


v:+11
�̃1v

:+1
B + �̃2w

:+1
B

w:+12

 . (7)

We now present an important property of the Bank-Jimack method with (7):

Lemma 1 The Bank-Jimack Algorithm with step 2.3 replaced by (7) produces for
any initial guess u0 and arbitrary partitions of unity satisfying (6) for : = 1, 2, . . .
zero residual components outside the overlap, r:1 = r:2 = 0.

Proof From step 2.1 in the Bank-Jimack method, we obtain

r:1 = f 1 − (�1u
:
1 + �1u

:
B )

= f 1 − �1 (u:−1
1 + v:1 ) − �1 (u:−1

B + �̃1v
:
B + �̃2w

:
B ) (step 2.3 at : − 1 and (7))

= f 1 − �1u
:−1
1 − �1u

:−1
B − �1v

:
1 − �1 (�̃1v

:
B + �̃2w

:
B ) (rearrange)

= r:−1
1 − �1v

:
1 − �1 (�̃1v

:
B + �̃2w

:
B ) (using step 2.1)

= �1v
:
B − �1 (�̃1v

:
B + �̃2w

:
B ),

since r:−1
1 − �1v

:
1 = �1v

:
B because of the first system satisfied in step 2.3 at : − 1.

Now using the definition of �1 from (4), we have

−�1�̃1v
:
B =

1
ℎ2

1




1
×
. . .

×
0




E:
B,1
...
...

E:B,=B


=

1
ℎ2


0
...

0
E:
B,1


,

independently of the middle elements of �̃1, and thus �1v
:
B − �1�̃1v

:
B = 0. On the

other hand

1 Bank and Jimack used the method as a preconditioner for a Krylov method.
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−�1�̃2w
:
B =

1
ℎ2

1




0
×
. . .

×
1




F:
B,1
...
...

F:B,=B


=


0
...
...

0


,

also independently of the middle elements of �̃2, which proves that r:1 = 0 for
: = 1, 2, . . .. The proof for r:2 is similar. �

2 Optimized Schwarz Methods

Optimized Schwarz Methods (OSMs) use more effective transmission conditions
than the classical Schwarz methods, for an introduction, see [4], and for their relation
to sweeping and other more recent domain decomposition methods, see [7]. We now
apply a parallel OSM with Robin transmission conditions to our Poisson equation
(3) for two subdomains as shown in Fig. 1,

−mGGD:1= 5 in Ω1, −mGGD:2= 5 in Ω2,
D:1=0 G = 0, D:2=0 G = 1,

mD:1
m=1
+ ?12D

:
1=

mD:−1
2
m=1
+ ?12D

:−1
2 G = ;ℎ,

mD:2
m=2
+ ?21D

:
2=

mD:−1
1
m=2
+ ?21D

:−1
2 G = <ℎ.

(8)

Theorem 1 (Special case of Theorem 2 in [3]) If ?12 =
1

1−;ℎ and ?21 =
1
<ℎ

, then
the OSM (8) converges independently of the initial guess in 2 iterations, and is thus
an optimal Schwarz method.

Discretizing the OSM using the same mesh with # grid points as for the method of
Bank-Jimack, we obtain

1
ℎ2


2 −1

−1
. . .

. . .

. . . 2 −1
−1 1 + ?12ℎ



D:1,1
...
...

D:1,;


=


51
...
...

5; + ( ?12
ℎ
− 1
ℎ2 )D:−1

2,=B +
1
ℎ2 D

:−1
2,=B+1


,

1
ℎ2


1 + ?21ℎ −1

−1 2
. . .

. . .
. . . −1
−1 2



D:2,1
...
...

D:2,#−<


=


5< + ( ?21

ℎ
− 1
ℎ2 )D:−1

1,< + 1
ℎ2 D

:−1
1,<−1

...

...

5#


.

(9)
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3 Bank-Jimack’s Method as an Optimized Schwarz Method

We now prove that the method of Bank-Jimack is an optimized Schwarz method
with a special choice of the Robin parameter. To do so, we reformulate the matrix
systems in step 2.2 of the method: using Lemma 1, we have "2r

1
2 = "1r

1
1 = 0, and

thus one can eliminate the corresponding parts from the equations to obtain[
�1 �1
�)1 �B − �2 �̃

−1
2 �̃2

] [
v1

1
v1
B

]
=

[
r1

1
r1
B

]
,

[
�B − �1 �̃

−1
1 �̃1 �

)
2

�2 �2

] [
w1
B

w1
2

]
=

[
r1
B

r1
2

]
, (10)

andwe are interested in the structure of the Schur complementmatrices �B−�2 �̃
−1
2 �̃2

and �B − �1 �̃
−1
1 �̃1.

Lemma 2 (See [9]) The elements of the inverse of the tridiagonal matrix

) =


01 11

21 02
. . .

. . .
. . . 1=−1
2=−1 0=


are ()−1)8 9 =


(−1)8+ 918 . . . 1 9−1\8−1q 9+1/\= 8 < 9 ,

\8−1q 9+1/\= 8 = 9 ,

(−1)8+ 92 9 . . . 28−1\ 9−1q8+1/\= 8 > 9 ,

where \0 = 1, \1 = 01, and \8 = 08\8−1− 18−128−1\8−2 for 8 = 2, . . . , =, and q=+1 = 1,
q= = 0=, and q8 = 08q8+1 − 1828q8+2 for 8 = = − 1, . . . , 1.

Lemma 3 The matrices �2 �̃
−1
2 �̃2 and �1 �̃

−1
1 �̃1 in the Schur complements in (10)

are given by

�2 �̃
−1
2 �̃2 =

1
ℎ2


0

. . .
<2ℎ1
ℎ+<2ℎ1

 , �1 �̃
−1
1 �̃1 =

1
ℎ2


<1ℎ2
ℎ+<1ℎ2

0
. . .

 .
Proof Using the sparsity of �2 and �̃2, we obtain

�2 �̃
−1
2 �̃2 =


0
. . .

−1
ℎ2 0

 �̃
−1
2


0 −2

ℎ (ℎ+ℎ1)
. . .

0

 =
1
ℎ2


0

. . .
2

ℎ (ℎ+ℎ1) ( �̃−1
2 )11

 ,
and we thus need to find the first entry of �̃−1

2 . For convenience, we find the first entry
of (ℎ2

1 �̃2)−1, and then we multiply it by ℎ2
1. Using Lemma 2, we have (ℎ2

1 �̃
−1
2 )11 =

\0q2
\<2

where \0 = 1, and

\<2 = 2\<2−1 − \<2−2 = 2(2\<2−2 − \<2−3) − \<2−2 = 3\<2−2 − 2\<2−3 (11)

= . . . = (<2 − 1) ( 4ℎ1
ℎ
− 2ℎ1
ℎ + ℎ1

) − (<2 − 2) 2ℎ1
ℎ
=

2ℎ1 (<2ℎ1 + ℎ)
ℎ(ℎ + ℎ1) ,
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and

q2 = 2q3 − q4 = 2(2q4 − q5 − q4) = 3q4 − 2q5 · · · = 2(<2 − 1) − (<2 − 2) = <2.

We thus obtain \0q2
\<2

=
<2ℎ (ℎ+ℎ1)

2ℎ1 (<2ℎ1+ℎ) , which shows the first claim. The second one is
proved similarly. �

Theorem 2 The Bank-Jimack method in 1D with the partition of unity (7) is an
optimized Schwarz method with the parameters chosen as ?12 =

1
ℎ+<2ℎ1

and ?21 =
1

ℎ+<1ℎ2
.

Proof It suffices to compare the matrix systems of the OSM (9) with the matrix
systems in step 2.3 of theBank-Jimackmethod, rewritten as in (10), since in stationary
iterations, the standard form and the correction form are equivalent [8, Section
11.2.2]. The system matrices can be made identical by choosing ?12 such that
1 + ?12ℎ = 2 − <2ℎ1

ℎ+<2ℎ1
and ?21 such that 1 + ?21ℎ = 2 − <1ℎ2

ℎ+<1ℎ2
. �

Since the parameters ?12 and ?21 are positive in Theorem 2, it follows from optimized
Schwarz theory that the Bank-Jimack method with a partition of unity of the form
(7) converges to the monodomain solution, and the convergence is independent of
the particular values chosen in the partition of unity, see [5].

Corollary 1 The Bank-Jimack method in 1D with the partition of unity (7) is an
optimal Schwarz method: it selects the best possible Robin parameter, independently
of how coarse the mesh is in the remaining parts outside of the subdomains, and
thus converges in two iterations.

Proof From Theorem 2 we can see that the Robin parameters ?12 and ?21 chosen
by the method of Bank-Jimack are independent of the choice of the coarse grid
parameters ℎ1 and ℎ2, ?12 =

1
ℎ+<2ℎ1

= 1
1−;ℎ and ?21 =

1
ℎ+<1ℎ2

= 1
<ℎ
, which are

precisely the optimal choices in Theorem 1 for the OSM. �

4 Numerical Experiments

We first show numerical experiments in one spatial dimension. We discretize the
Poisson equation (3) using # = 28 , for 8 = 4, . . . , 7, gridpoints on the global fine
mesh (Fig.1, top row), choose =B = 2 gridpoints in Ω1 ∩ Ω2, and <1 = <2 = 2
coarse mesh points outside the subdomains (Fig. 1, middle and last rows). In Fig.
2, we show on the left that the method of Bank-Jimack using the original partition
of unity is not converging. On the right, we show that the method with the new
partition of unity converges in two iterations, as expected from the equivalence with
the optimal Schwarz method proved in Corollary 1. In Fig. 3, we show on the left that
the convergence does not depend on the number of coarse mesh points. We finally
show in Fig. 3 on the right a numerical experiment in 2D, where the optimal choice
of the Robin parameter in the OSM would lead to a non-local operator involving
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Fig. 2: Error as a function of iteration count of the method of Bank-Jimack with the original
partition of unity (left) and new partition of unity (right) for various numbers of global fine mesh
points.
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Fig. 3: Left: convergence of the method of Bank-Jimack using # = 128 gridpoints on the global
finemesh and various number of gridpoints on the coarse regions. Right: convergence of themethod
in 2D for various number of gridpoints on the global fine mesh, choosing =B = 2, and<1 = <2 = 2.

a DtN map, and the method of Bank-Jimack is choosing some approximation. The
study of the type of approximation chosen is our current focus of research.
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Adaptive Schwarz Method for DG Multiscale
Problems in 2D

Leszek Marcinkowski∗ and Talal Rahman

1 Introduction

In many real physical phenomena, there is heterogeneity, e.g., in some ground flow
problems in heterogeneousmedia.When somefinite element discretizationmethod is
applied to a physical model, one usually obtains a discrete problemwhich is very hard
to solve by a preconditioned iterative method like, e.g., Preconditioned Conjugate
Gradient (PCG) method. One of the most popular methods of constructing parallel
preconditioners are domain decomposition methods, in particular, non-overlapping
or overlapping additive Schwarz methods (ASM), cf. e.g., [16]. In Schwarz methods,
a crucial role is played by carefully constructed coarse spaces. For multiscale prob-
lems with heterogeneous coefficients standard overlapping Schwarz methods with
classical coarse spaces fail often to be fast and robust solvers. Therefore we need new
coarse spaces which are adaptive to the jumps of the coefficients, i.e. the convergence
of the ASM method is independent of the distribution and the magnitude of the co-
efficients of the original problem. We refer to [6], [15] and the references therein for
similar earlier works on domain decomposition methods which used adaptivity in
the construction of the coarse spaces.

In our paper, we consider the Symmetric Interior Penalty Galerkin (SIPG) finite
element discretization, i.e., a symmetric version of the interior penalty discontinuous
Galerkin (DG) method. DG methods became increasingly popular in recent years,
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since they allow that the finite element functions can be completely discontinuous
across the element edges, cf. e.g. [14] for an introduction to DG methods.

In the case when the coefficients are discontinuous only across the interfaces
between subdomains and are homogeneous inside them, then Schwarz methods with
standard coarse spaces are fast and efficient, cf. e.g., [3, 16]. This is however not
true in the case when the coefficients may be highly varying and discontinuous
almost everywhere, what has in recent years brought many researchers’ interest to
the construction of new coarse spaces, cf. e.g. [11, 5, 7, 8, 9, 12, 13, 15, 10].

2 Discrete Problem

Let us consider the following elliptic second order boundary value problem in 2D:
Find D∗ ∈ �1

0 (Ω)∫
Ω

U(G)∇D∗∇E 3G =
∫
Ω

5 E 3G, ∀E ∈ �1
0 (Ω), (1)

where Ω is a polygonal domain in R2, U(G) ≥ U0 > 0 is the coefficient, and
5 ∈ !2 (Ω).

We introduce Tℎ the quasi-uniform triangulation of Ω consisting of closed tri-
angles such that Ω̄ =

⋃
 ∈Tℎ  . Further ℎ denotes the diameter of  , and let

ℎ = max ∈Tℎ ℎ be the mesh parameter for the triangulation.
We will further assume that U is piecewise constant on Tℎ . Let be given a coarse

non-overlapping partitioning of Ω into the open, connected Lipschitz polytopes Ω8 ,
called substructures or subdomains, such that Ω =

⋃#
8=1Ω8 . We also assume that

those substructures are aligned with the fine triangulation, i.e. any fine triangle of Tℎ
is contained in one substructure. For the simplicity of presentation, we further assume
that these substructures form a coarse triangulation of the domain which is shape
regular in the sense of [1]. Let Γ8 9 denote the open edge common to subdomains Ω8
and Ω 9 not in mΩ and let Γ be the union of all mΩ: \ mΩ .

Further let us define a discrete space (ℎ as the piecewise linear finite element
space defined on the triangulation Tℎ ,

(ℎ = (ℎ (Ω) := {D ∈ !2 (Ω) : D | ∈ %1,  ∈ Tℎ}.

Note that the functions in (ℎ are multivalued on boundaries of all fine triangles
of Tℎ except on mΩ. Therefore we introduce a set of all edges of elements of Tℎ as
Eℎ . Let the Emℎ ⊂ Eℎ be the subset of boundary edges i.e. the edges contained in mΩ,
and E �

ℎ
= Eℎ \ Emℎ be the subset of interior edges, i.e. the edges interior to Ω. We

define the !2-inner products over the elements and the edges respectively as follows,
(D, E)Tℎ =

∑
 ∈Tℎ

∫
 
DE 3G and (D, E)Eℎ =

∑
4∈Eℎ

∫
4
DE 3B for D, E ∈ (ℎ .

The following weights, cf. e.g. [2], are introduced l4+ = U−/(U+ + U−) and
l4− = U+/(U+ +U−), 4 ∈ E �ℎ , where 4 is the common edge between two neighboring
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triangles  + and  −, U+ and U− are the restrictions of U to  + and  −, respectively.
We have l4+ +l4− = 1.We also need the following notations: [D] = D+ =+ +D− =− and
{D} = l4+ D+ + l4− D−, where D+ and D− are the traces of D | + and D | − on 4 ⊂ E �ℎ ,
while =+ and =− are the unit outer normal to m + and m −, respectively. On the
boundary we introduce [D] = D = and {D} = D, where = is the unit outer normal to
the edge 4 ⊂ m ∩ mΩ, and D is the trace of D | onto 4. We consider SIPG method
discrete problems: (cf. [2]). Find D∗

ℎ
∈ (ℎ

0(D∗ℎ , E) = 5 (E) ∀E ∈ (ℎ , (2)

where 0(D, E) = (U∇D,∇E)Tℎ−({U∇D}, [E])Eℎ−({U∇E}, [D])Eℎ +W(Ψℎ [D], [E])Eℎ .
Here Ψℎ is a piecewise constant function over the edges of Eℎ , and W is a constant
positive penalty parameter. The function Ψℎ when restricted to 4 ∈ E �ℎ , is defined as
follows, cf. [2],Ψℎ |4 = ℎ−1

4 (l4+U+ +l4−U−) = ℎ−1
4

2
1
U+ +

1
U−

on 4 = m +∩m −,with
ℎ4 being the length of the edge 4 ∈ Eℎ .

We have, cf. e.g. [2], ℎ−1
4 U<8= ≤ Ψℎ |4 ≤ 2ℎ−1

4 U<8=, U<8= = min(U+, U−). On
a boundary edge 4 ∈ Em

ℎ
we define Ψℎ |4 = ℎ−1

4 U | . Note that ∇D∗
ℎ
is piecewise

constant over the fine elements. The discrete problem has a unique solution provided
the penalty parameter is sufficiently large, cf. [2]. Let us define a patch around an
interface (edge) Γ:; , denoted by ΓX

:;
, as the interior of the union of all closed fine

triangles having at least a vertex on Γ:; . For the simplicity of the presentation let us
assume that the patches cannot share a fine triangle. We divide any patch ΓX

:;
into

two disjoint open domains - subpatches, ΓX,8
:;
= ΓX

:;
∩Ω8 for 8 = :, ;.

The discrete boundary layer of Ω: : ΩX: , is defined as the sum of all subpatches
and parts of their boundaries belonging to a subdomain Ω: , i.e. we have Ω

X

: =⋃
Γ:;⊂mΩ:∩Γ Γ

X,:

:; . Each subdomain inherits a local triangulation Tℎ (Ω8) from Tℎ ,
thus we can define a local subspace extended by zero to the remaining substructures:
(8 := {D ∈ (ℎ : D | = 0  ⊄ Ω8} and its subspace (X

8
formed by the functions

from (8 which are also zero on the patch ΩX
8
.

Since the form 0(D, E) is positive definite over (X
8
we can introduce a local

projection operator P8 : (ℎ → (X
8
: find P8D ∈ (X8 such that for D ∈ (ℎ

0(P8D, E) = 0(D, E), ∀E ∈ (X8 .

Note that P8D can be computed by solving a local problem over Ω8 .
The discrete harmonic part of D ∈ (8 is defined as H8D := D |Ω8 − P8D ∈ (8 .

We say that a function D ∈ (ℎ is discrete harmonic if it is discrete harmonic in
each subdomain, i.e. D |Ω8 = H8D for 8 = 1, . . . , # . Knowing the values of discrete
harmonic D ∈ (8 on the patchΩX8 allows us to compute D over the remaining triangles
contained in Ω8 by solving a local problem. We also introduce spaces related to an
edge patch ΓX

:;
. Let (:; ⊂ (ℎ be the space formed by all discrete harmonic functions

which are zero on the all patches except ΓX
:;
. We see that (:; ⊂ (: ∪ (; .
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3 Additive Schwarz Method

In this section, we present our overlapping additive Schwarz method for solving (2).
Our method is based on the abstract Additive Schwarz Method framework, cf. e.g.,
[16] for details.

The space (ℎ is decomposed into the local sub-spaces and a global coarse space.
For the local spaces we take {(8}#8=1. We have (ℎ =

∑#
8=0 (8 . The global coarse

space (0 is defined in (7), cf. § 3.1, below. Note that the supports of two functions
D8 ∈ (8 , D 9 ∈ ( 9 for 8 ≠ 9 with 8, 9 > 0 are disjoint, but 0(D8 , D 9 ) may be nonzero
due to the edge terms in the bilinear form 0(D, E). Thus we see that (ℎ =

∑#
8=0 (8

is a direct sum, but not an orthogonal one in terms of 0(D, E). We can interpret
this space decomposition as an analog of a classical %1 continuous finite element
decomposition into overlapping subspaces with the minimal overlap.

Next we define the projection like operators )8 : (ℎ → (8 as

0()8D, E) = 0(D, E), ∀E ∈ (8 , 8 = 0, . . . , #. (3)

Note that to compute)8D 8 = 1, . . . , # wehave to solve# independent local problems,
but to get )0D we have to solve a global one, cf. § 3.1. Let ) := )0 +

∑#
8=1 )8 , be

the Additive Schwarz operator. We further replace (2) by the following equivalent
problem: Find D∗

ℎ
∈ (ℎ such that

)D∗ℎ = 6, (4)

where 6 =
∑#
8=0 68 and 68 = )8D

∗
ℎ
. Note that 68 may be computed without knowing the

solution D∗
ℎ
of (2), cf. e.g., [16]. The following theoretical estimated of the condition

number can be derived:

Theorem 1 For all D ∈ (ℎ , the following holds,

2

(
1 +max

Γ:;

1
_
Γ:;
=:;+1

)−1

0(D, D) ≤ 0()D, D) ≤ � 0(D, D),

where�, 2 are positive constants independent of the coefficientU, themesh parameter
ℎ and the subdomain size � and _Γ:;

=:;+1 is defined in (6).

Below, in § 3.2 we give a sketch of the proof.

3.1 Adaptive patch coarse space

We introduce our adaptive patch based coarse space in this section.
First, we introduce a DG analog of the classical multiscale space, see e.g. [7]. Let

(<B ⊂ (ℎ be the space of discrete harmonic functions such that for each patch ΓX
:;
a

function D ∈ (<B satisfies



298 Leszek Marcinkowski and Talal Rahman

0:; (D, E) = 0 ∀E ∈ (E:; , (5)

where 0:; (D, E) =
∑
 ⊂ΓX

:;

∫
 
U∇D · ∇E 3G +∑

4⊂ΓX
:;
∪(mΩ∩mΓX

:;
) Ψℎ

∫
4
[D] [E] 3B, and

(E
:;
⊂ (:; is formed by the functions which are zero at all degrees of freedom which

are at the geometrical ends (crosspoints) of the edge Γ:; . Note that the second sum
in the definition of 0:; (D, E) is over the fine edges that are either interior to the patch
or are on the boundary of Ω.

We introduce the edge generalized eigenvalue problem, which is to find the
eigenvalue and its eigenfunction: (_:;

9
, k:;

9
) ∈ R+ × (E:; such that

0:; (k:;9 , E) = _Γ:;9 1:; (k:;9 , E), ∀E ∈ (E:; , (6)

where 0:; (D, E) is introduced above. The form 1:; (D, E) may be equal to 1 (0)
:;
(D, E) =

0(D, E) or as in [4] it can be equal to 1 (1)
:;
(D, E) = ℎ−2

∫
ΓX
:;

UDE 3G or equals the scaled

discrete !2-version of the 1 (1)
:;

form, namely, 1 (2)
:;
(D, E) = ∑

 ∈ΓX
:;
U | 

∑3
9=1 |D(E 9 ) |2.

Here in the last sum E 9 , for 9 = 1, 2, 3, denote the vertices of the fine triangle  . Thus
we get three different versions of the eigenproblem. Note that the last discrete form
1
(2)
:;

can be represented by a diagonal matrix in a matrix form of the eigenproblem.
Hence we see that this generalized eigenproblem can be rewritten as a standard
eigenproblem, which makes the computations cheaper, cf. also § 4.3 in [9].

We order the eigenvalues in the increasing way as follows 0 < _:;1 ≤ . . . ≤ _:;":;
for ":; = dim((E

:;
). We now can define the local face spectral component of the

coarse space for all Γ:; ⊂ Γ and the whole coarse space +0 as follows

(
486

:;
= Span(k:;9 )=:;9=1, (0 = (<B +

∑
Γ:;⊂Γ

(
486

:;
, (7)

where =:; ≤ ":; is the number of eigenfunctions k:;
9
chosen by us, e.g. in such a

way that the eigenvalue _:;=:; , is below a given threshold.

3.2 The sketch of the proof of Theorem 1

The proof follows the lines of the proof of Theorem 3 in [4] and is based on the
abstract framework of Additive Schwarz Method, cf. e.g. § 2.3 in [16]. Below �

denotes a generic constant independent of the mesh parameters and the problem
coefficients. We have to check three key assumptions. The latter two ones, namely,
the Strengthened Cauchy Inequalities and Local Stability are verified in a standard
way with constants independent of coefficients or mesh parameters. It remains to
verify the Stable Splitting assumption. Let D ∈ (ℎ and we first define D0 ∈ (0 as
D<B +

∑
Γ:;⊂Γ D:; where D<B ∈ (<B takes the values of D at all DOFs at crosspoints.

Next on any patch ΓX
:;
let D:; be the 1:;-orthogonal projection of D − D<B onto (486:; ,

i.e.
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D:; =
∑
9≤=:;

1:; (k:;9 , D − D<B)
1:; (k:;9 , k:;9 )

k:;9 ∈ (486:; .

Finally, we define

D 9 := (D − D0)|Ω 9 ∈ ( 9 9 = 1, . . . , #,

what gives us the splitting: D = D0 +
∑#
9=1 D 9 .

Then we estimate the discrete harmonic part F = H(D − D0) = HD − D0, which
is zero at crosspoints. Namely, we have the following splitting: F =

∑
Γ:;
F:; ,

where F:; ∈ (E:; is a discrete harmonic function, which is equal to D − D0 on the
respective patch. Note that F:; is 1:;-orthogonal to (486:; . Next we can show that
0(F, F) ≤ �∑

Γ:;
1:; (F:; , F:;) for all types of the bilinear form 1:; .

Using the classical theory of the eigenvalue problems, and some technical tools
related to SIPG discretizations we can show the stable splitting

0(D0, D0) +
#∑
:=1

0(D: , D: ) ≤ �
(
1 +max

Γ:;

1
_
Γ:;
=:;+1

)
0(D, D).

The statement in Theorem 1 follows from the abstract ASM theory.

4 Numerical tests

In the tests, our model problem is defined on the unit square with zero Dirichlet
boundary condition and a constant force function. We solve it using the SIPG dis-
cretization, and the PCG iteration with our additive Schwarz preconditioner. The
RHS form in the eigenvalue problem is the scaled !2 one, i.e., 1 (1)

:;
. We decompose

the domain into 8× 8 non-overlapping square sub-domains. We have �/ℎ = 16. The
penalty parameter W is equal to four, and the iterations are stopped when the relative
residual norm became less than 10−6.
Fig. 1: The coefficient is equal to one on the background and U0 on the channels. A domain with
8G8 subdomains. The channels are crossing each other.
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For the adaptive coarse space the threshold for including an eigenfunction is
_ ≤ 0.18.

DG on distribution Fig. 1
#Enrichments= 0 #Enrichments= 2 #Enrichments= 4 Adaptive

U0 Cond. Cond. Cond. Cond.
100 57.31(53) 15.65(31) 9.64(24) 15.65(31)
102 1.41 × 102 (83) 27.03(44) 12.01(31) 26.77(44)
104 2.12 × 102 (97) 46.71(57) 12.12(32) 27.05(45)
106 2.13 × 102 (102) 46.78(59) 11.39(35) 26.98(48)

Table 1: Numerical results showing condition number estimates and iteration counts (in parenthe-
ses). #Enrichments is per patch (edge).
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Domain Decomposition Coupling of FV4 and
DDFV for Numerical Weather Prediction

Oliver Fuhrer, Martin J. Gander, and Sandie Moody

1 Introduction

In the context of Numerical Weather Prediction (NWP) and more precisely in the
context of regionalweather predictionmodels, the spatial domains considered usually
are non-convex, because of the orography representing mountain ranges. Moreover,
the grids used are highly constrained: mesh cells for solving the prognostic equations
numerically are much longer and larger than high, e.g. 1.1:< × 1.1:< × 10< in
COSMO-1. A common practice in NWP is to use terrain-following grids defined
such that the distance between the levels grows with altitude (see Figure 1 left). Most
weather prediction models use a coordinate change in order to solve the modified
prediction equations in a computational domain which uses an equidistant grid (see
Figure 1 middle and right). This has the advantage that simple numerical methods
such as the finite difference method can be used. However, this also leads to metric
terms in the equations due to the mapping, which can cause numerical difficulties.

h(G)

I�

I)

G

z

Ω

F(z,h(G))

G

Z̃

I�

I)

Ω̃

m(Z̃)

b = GZ

I�

I)

Fig. 1: Mapping of an irregular terrain-following grid to a regular equidistant grid.
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In a terrain-following coordinate system, the lowest surface of constant vertical
coordinate is conformal to the orography. Any monotonic function can then be used
to define the vertical coordinate, denoted by Z . The COSMO local model [1] offers
three options for the terrain-following coordinate. The first one is a pressure-based
vertical coordinate, the second one is a height based coordinate, and the third one
is a height based SLEVE (Smooth Level Vertical) coordinate. Both height based
coordinates are similar to theGal-Chen coordinate [3]. Figure 1 illustrates the height
based hybrid coordinate and its mapping to a regular grid.

Definition 1 Let ℎ(G) denote the height of the local topography. The height based
hybrid coordinate is defined by

Z̃ =


I − ℎ(G)
1 − ℎ (G)

I�

if I < I� ,

I if I� ≤ I ≤ I) ,

where I) is the model top.

Numerical weather prediction models are based on a set of seven governing
equations. They comprise the equations of motion, the thermodynamic equation, the
continuity equation, the equation of state and the water vapour equation. These equa-
tions contain diffusion and advection terms which are treated, in the COSMOmodel,
using a time-splitting method. The diffusion is treated implicitly which implies the
solution of a Poisson equation of the form

Δq = 5 , (1)

where q can represent wind components, temperature or pressure.
In order to solve a Poisson equation (1) on the original irregular terrain-following

grid Ω, the coordinate transformation described above mapping Ω to a regular
equidistant grid is used (see Figure 1). The new coordinates are denoted by (b, Z)
and we need to compute the transformed Laplace operator in the new coordinate
system (Δ̃( b ,Z ) ). The derivatives of the new coordinates with respect to the original
ones are expressed using subscripts and are called the metric terms of the coordinate
change.

Proposition 1 Let � be a mapping from Ω(G,I) to Ω̃( b ,Z ) . Let D = D(G, I) be a func-
tion defined on Ω and � (D) = D̃(b, Z) be a function defined on Ω̃. The transformed
Laplace operator on Ω̃ when b (G, I) = G is given by

Δ̃D̃ =
m2D̃

mb2 + 2ZG
m2D̃

mbmZ
+ m

2D̃

mZ2

(
Z2
G + Z2

I

)
+ mD̃
mZ
(ZGG + ZII) . (2)

The normal derivative on mΩ is expressed by

mD

mn = n)
(
bG ZG
bI ZI

) (
mD̃
mb
mD̃
mZ

)
= � (q) = q̃(b, Z). (3)
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Proof Using the chain rule, we find that the second order derivatives on Ω can be
expressed by derivatives taken in Ω̃ by

m2D

mG2 =
m2D̃

mb2 b
2
G + 2

m2D̃

mbmZ
bGZG + m

2D̃

mZ2 Z
2
G +

mD̃

mb
bGG + mD̃

mZ
ZGG ,

m2D

mI2 =
m2D̃

mZ2 b
2
I + 2

m2D̃

mbmZ
bIZI + m

2D̃

mZ2 Z
2
I +

mD̃

mb
bII + mD̃

mZ
ZII .

Since b = G, we have bG = 1, bGG = bI = bII = 0 so the second order derivatives
reduce to

m2D

mG2 =
m2D̃

mb2 + 2
m2D̃

mbmZ
ZG + m

2D̃

mZ2 Z
2
G +

mD̃

mZ
ZGG ,

m2D

mI2 =
m2D̃

mZ2 Z
2
I +

mD̃

mZ
ZII , (4)

which when summed give equation (2). In order to prove (3), we simply need to
write the gradient using the chain rule which leads to

n) ∇(G,I)D = n)
(
mD̃
mb
bG + mD̃

mZ
ZG

mD̃
mb
bI + mD̃

mZ
ZI

)
= n)

(
bG ZG
bI ZI

) (
mD̃
mb
mD̃
mZ

)
= q̃(b, Z). (5)

The first disadvantage of this method is that the metric terms ZG , ZGG , ZI and ZII
have to be approximated which leads to instabilities when the mesh size of the grid is
very small in the vertical direction in comparisonwith the horizontal direction, which
is typically the case in numerical weather prediction, as we have seen. Moreover,
when it is used to solve a time-dependent problem, its CFL condition is quite
restrictive. The second disadvantage is that the topography in weather prediction
models is represented by the grid as a polygon in contrast to the smooth drawing
in Fig. 1 (left). This has as an effect that the first and higher order derivatives of
the solution expressed in the new set of coordinates (2) lack continuity in general
and so the convergence of the scheme is hampered, as we will see in Section 3. We
propose a new method to solve the diffusion equation on such domains and grids;
the Discrete Duality Finite Volume (DDFV) method.

2 Discrete Duality Finite Volume Method

The DDFV method was introduced by K. Domelevo and P. Omnes in 2005 (see
[2]). F. Hermeline introduced a finite volume method in 2000 which turned out to
be equivalent but the construction had less inherent properties (see [6]). DDFV has
the advantage that it is adapted to almost arbitrary meshes and geometries.

We now give the notations which we use to define the DDFV method and which
are exemplified in Figure 2. The primal mesh forms a partition ofΩ and is composed
of I elements)8 .With each element)8 we associate a primal node�8 located inside)8 .
The function \)

8
is the characteristic function of the cell )8 . We denote by � the total
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Fig. 2: Notations for the DDFV method.

number of sides of the primal mesh, and by �Γ the number of these sides which are
located on the boundary. We denote the sides of the primal mesh by � 9 , and assume
that they are ordered so that � 9 ⊂ Γ⇔ 9 ∈ {� − �Γ + 1, �}. We introduce additional
primal nodes to each boundary � 9 , denoted by �8 with 8 ∈ {� + 1, ..., � + �Γ}. The
nodes of the primal mesh, the dual nodes are denoted by (: with : ∈ {1, ..,  }. To
each (: , we associate a dual cell %: obtained by joining the points �8 associated
with the elements of the primal mesh of which (: is a node. The dual mesh also
forms a partition of Ω and its sides are denoted by �′

9
. We assume that (: ∈ Γ if and

only if : ∈ { − �Γ + 1, ...,  }.
To each � 9 we associate a diamond-cell obtained by joining the nodes of � 9

with the primal nodes associated with the primal cells which share the side � 9 (see
Figure 2). The unit vector normal to � 9 is denoted by n 9 and is oriented such that
〈�82 ( 9) −�81 ( 9) , n 9〉 ≥ 0. Similarly, the unit vector normal to �′

9
is denoted by n′

9
and

is oriented so that 〈(:2 ( 9) − (:1 ( 9) , n′9〉 ≥ 0. For all 8 ∈ {1, . . . , �}, 9 ∈ V(8) (resp.
: ∈ {1, . . . ,  }, 9 ∈ E(:)) we define B 98 (resp. B′9: ) to be 1 if n 9 points outward of )8
and -1 otherwise (resp. 1 if n′

9
points outward of %: and -1 otherwise). We thus can

define the outward pointing unit normal vectors n 98 = B 98n 9 and n′
9:
= B′

9:
n′
9
. We

defineV(8) := { 9 ∈ {1, . . . , �} | � 9 ⊂ )8} and E(:) := { 9 ∈ {1, . . . , �} | (: ∈ � 9 }.

Definition 2 Let q be defined on Ω. The discrete gradient is defined on each
diamond-cell by

(∇ℎq) 9 = 1
2|� 9 |

(
(q%:2
− q%:1

) |�′9 |n′9 + (q)82 − q)81 ) |� 9 |n 9
)

where q)
8W
= q(�8W ) and q%:W = q((:W ) for W ∈ {1, 2}.

Definition 3 The discrete divergence ∇ℎ · is defined by its values over the primal and
dual cells
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(∇ℎ · q)8 = 1
|)8 |

∑
9∈V(8)

|� 9 |q 9 · n 98 ,

(∇ℎ · q): = 1
|%: |

©«
∑
9∈E ( 9)

|�′9 |q 9 · n′9: +
∑

9∈E ( 9)∩{�−�Γ+1,...,� }

1
2
|� 9 |q 9 · n 9ª®¬ .

Let us consider the Poisson equation (1) with homogeneous Dirichlet boundary
conditions. We use the discrete DDFV divergence and gradient operators defined
above to approximate the Laplacian which leads to the scheme

−(∇)ℎ · (∇ℎq))8 = 5 )8 ∀8 ∈ {1, . . . , �}
−(∇%ℎ · (∇ℎq)): = 5 %: ∀: ∈ {1, . . . ,  − �Γ}

q)8 = 0 ∀8 ∈ {� + 1, . . . , � + �Γ},
q%: = 0 ∀: ∈ { − �Γ + 1, . . . ,  },

(6)

where
5 )8 =

1
|)8 |

∫
)8

5 (G) 3G, 5 %: =
1
|%: |

∫
%:

5 (G) 3G.

Proposition 2 ([2], Proposition 3.2.) The linear system given by (6) possesses a
unique solution in + where + is defined by

+ :=
{
q = ((q)8 ), (q%: )) ∈ R�+�

Γ × R | q)8 = 0 ∀8 ∈ {� + 1, . . . , � + �Γ}

and q%: = 0 ∀: ∈ { − �Γ + 1, . . . ,  }
}
.

3 Coupling of DDFV and FV4

One of the main concerns of weather prediction services is computational costs. Due
to the fact that the DDFV method introduces additional nodes, the size of the linear
system which has to be solved is roughly twice as large as the one associated with
the classical Finite Volume (FV4) method. A coupling of FV4 and DDFV allows to
reduce the size of this linear system considerably. Such a coupling could be achieved
using optimized Schwarz techniques, see for example [7, 5, 4], but we propose here
a different approach using interpolation. Let us consider a rectangular domain Ω
which has a mountain at its center with slope U, see Figure 3. All cells which are
not directly above the mountain are rectangular, so the standard FV4 scheme can be
applied on those cells. To the cells which are irregular quadrilaterals, we apply the
DDFVmethod (see Figure 3 , left). The points at the interface (“black diamonds”) are
dual points whichwere needed for the DDFV equations associatedwith primal points
(“white squares”) and the dual points (“black squares”) at the interface. However,
they are not associated with a dual cell (see Figure 3, right), so we need to define
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α

Fig. 3: (Left) Hatched area: Finite volume. White area: DDFV. (Right) FV4 point, primal DDFV
points, dual DDFV points and interface points.

a coupling equation. An intuitive way to define the coupling is to set the value of
the interface dual points to be the weighted average of its four primal neighboring
points, which defines our DDFV-FV4 coupled scheme. For testing purposes, let us
consider the problem

ΔD = −5c2 sin(2cG) sin(cH) on Ω,

with Dirichlet boundary conditions on the left and right of the domain and Neu-
mann boundary conditions at the top and the bottom of the domain. The order of
convergence of both the DDFV method and the DDFV-FV4 coupled method for this
problem is 2 (see Figure 4). As for the error, which we define to be the infinity-
norm of the difference between the exact solution and the numerical solution, it has
a stronger dependence on the mountain angle U for the DDFV method. We then
compare the time in seconds needed to solve the linear system associated with the
coupled scheme and the DDFV scheme alone. We consider different domains which
induce different percentages of the domain to be covered by the DDFV method i.e.
different percentages of cells which are not rectangular (column “DDFV-FV4” in
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Fig. 4: Error of the DDFV method on the left and error of the DDFV-FV4 coupled scheme on the
right.
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DDFV-FV4 n time in sec. error COSMO n time in sec. error

14% 128 0.092837 0.0035973 14% 128 0.07799 0.038027
256 0.47006 0.0010113 256 0.42181 0.022181

18% 128 0.10192 0.0036404 18% 128 0.083277 0.037821
256 0.58811 0.0010218 256 0.43485 0.021982

37% 128 0.13081 0.004225 37% 128 0.088778 0.10018
256 0.73254 0.00111 256 0.50752 0.048907

56% 128 0.20006 0.0038666 56% 128 0.10705 0.085701
256 1.0613 0.00096342 256 0.53349 0.051025

79% 128 0.23772 0.0048132 79% 128 0.12153 0.12076
256 1.1817 0.0012051 256 0.60488 0.05706

79% DDFV 128 0.19662 0.0044965
256 0.98724 0.0011279

Table 1: Computational time and error of the DDFV-FV4 coupled scheme.

Table 1). We also compute the time and error obtained when using the scheme based
on the coordinate transformation described in Section 1 (column “COSMO” in Table
1). We see that the coupled scheme leads to excellent accuracy, even when only a
small percentage of DDFV is needed.We note however that even though the coupling
method has less degrees of freedom, it is not always faster than the DDFV method.
This is due to the fact that our linear system associated with the coupled method is
non-symmetric, see Figure 5, whereas the DDFV method gives a symmetric matrix,
which is inverted more efficiently by the Matlab solver we use.
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Fig. 5: Structure of the linear system associated to the DDFVmethod (left) and DDFV-FV4method
(right).
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4 Conclusion

We presented a DDFV scheme which does not need a mapping to a regular grid on
a rectangular domain for a faithful discretization of diffusion operators on the high
aspect ratio grids typical in numerical weather prediction. Moreover, the scheme
presented converges on domains which lead to discontinuities in the derivatives of
the solution when a mapping to a regular grid is used. Since DDFV uses twice as
many unknowns than a standard FV4, we also introduced a coupled DDFV-FV4
scheme which only uses DDFV where it is needed due to the mountain orography.
We observed second order convergence for both DDFV and DDFV-FV4. When
measuring computing times, the coupled scheme is only faster when less than half
the domain is treated by DDFV, even though it always has less unknowns than the
DDFV method. We identified the reason for this to be the non-symmetry introduced
by our coupling through interpolation between DDFV and FV4. It is currently an
open question if a symmetric coupling of these two schemes is possible.
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A Discrete Domain Decomposition Method for
Acoustics with Uniform Exponential Rate of
Convergence Using Non-local Impedance
Operators

Xavier Claeys, Francis Collino, Patrick Joly, and Emile Parolin

1 Introduction

We consider the Helmholtz equation in harmonic regime in a domain Ω ⊂ R3 ,
3 = 2 or 3, and a first order absorbing condition on its boundary Γ with unit outward
normal vector n. Let : ∈ R be a constant wave number and 5 ∈ !2 (Ω), we seek
D ∈ �1 (Ω) such that {

−ΔD − :2D = 5 , in Ω,
(mn + 8:) D = 0, on Γ.

(1)

In previous works [2, 3, 5], a domain decomposition method (DDM) using non-local
transmission operator with suitable properties was described. The relaxed Jacobi
algorithm written at the continuous level was proven to converge exponentially.
However, it was only a conjecture, hinted at by numerical experiments in [5, Section
8], that the discretized algorithm using finite elements has a rate of convergence
uniformly bounded with respect to the discretization parameter, hence does not
deterioratewhen themesh is refined. In this workwe prove this conjecture for the case
of Lagrange finite elements. Numerical experiments in [5, Section 8.3] highlighted
that this important property is not shared by DDM based on local operators [4] or
rational fractions of local operators [1].
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2 DDM algorithm: the continuous case

Impedance based transmissionproblem.Wesuppose that the domain is partitioned
into two non-overlapping subdomains Ω = Ω− ∪ Ω+. The transmission interface
between the subdomains is noted Σ, with a unit normal vector n oriented from Ω+
to Ω−, and we suppose1 that Σ does not intersect Γ. We then consider the following
transmission problem{

−ΔD± − :2D± = 5 |Ω± , in Ω±,
(±mn + 8:T) D± = (±mn + 8:T) D∓, on Σ,

(2)

with (mn + 8:) D± = 0 on Γ∩mΩ±. T is a suitable impedance operator supposed to be
injective, positive and self-adjoint so that the coupled problems (2) are well posed
and equivalent to the model problem (1), see [2, Th. 3] and [5, Lem. 1].

Reformulation at the interface. Let +± = �1 (Ω±), + = ++ × +− and +Σ =
�−1/2 (Σ). We define the lifting operator R

R : +2
Σ 3 (G+, G−) ↦→ (R+G+,R−G−) ∈ +. (3)

where D± = R±G± are solutions of the following decoupled boundary value problems

−ΔD± − :2D± = 0, in Ω±, (±mn + 8:T) D± = G±, on Σ, (4)

and (mn + 8:) D± = 0 on Γ ∩ mΩ±. We define the scattering operator S

S : +2
Σ 3 (G+, G−) ↦→ (S+G+, S−G−) ∈ +2

Σ , (5)

with S±G = −G + 28:T(R±G) |Σ for G ∈ +Σ. We finally define the operator A = ΠS
on +2

Σ
, where Π is an exchange operator: Π (G+, G−) = (G−, G+) for a couple of traces

(G+, G−) ∈ +2
Σ
. The following result provides equivalence between the decomposed

problem (2) and a problem at the interface (6), see [2, Th. 5] and [5, Prop. 3].

Theorem 1 If D = (D+, D−) ∈ + is solution of (2) then the trace G = (G+, G−) ∈ +2
Σ

defined as G± := (±mn + 8:T) D∓ |Σ is solution of the interface problem

G = �G + 1, on Σ, (6)

where 1 = 28: (T�− |Σ,T�+ |Σ) ∈ +2
Σ
and � = (�+, �−) ∈ + is such that −Δ�± −

:2�± = 5 |Ω± in Ω±, (±mn + 8:T) �± = 0 on Σ and (mn + 8:) �± = 0 on Γ ∩ mΩ±.
Reciprocally, if G ∈ +2

Σ
is solution of (6), then D = (D+, D−) ∈ + defined as

D = 'G + � is solution of (2).

Continuous DDM algorithm. The solution of (2) is computed iteratively using a
relaxed Jacobi algorithm on the interface problem (6). From an initial trace G0 ∈ +2

Σ

and a relaxation parameter A ∈ (0, 1), iteration = writes,
1 In the presence of such intersections, the proof fails and as a matter of fact the exponential
convergence is not observed numerically.
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G= = (1 − A)G=−1 + AAG=−1 + 1. (7)

Note that the application of � involves solving the decoupled local problems (4)
which can be done in parallel. The previous theorem guarantees that the solution
of (7) satisfies (2) at convergence. In the following we assume in addition that

T : �1/2 (Σ) → �−1/2 (Σ) is a self-adjoint isomorphism. (8)

Only non-local operators, constructed in practice using integral operators with appro-
priate singular kernels, can fit in this framework. Under those additional assumptions
the algorithm (7) converges exponentially, see [2, Th. 7] and [5, Th. 1].

3 DDM algorithm: the discrete setting

We consider two series (+±,ℎ)ℎ of finite dimensional subspaces+±,ℎ ⊂ +± conformal
at the interface i.e.+Σ,ℎ = {D±,ℎ |Σ | D±,ℎ ∈ +±,ℎ} ⊂ +Σ. Let+ℎ = ++,ℎ×+−,ℎ ⊂ + .We
define the sesquilinear form 0

Ω̃
for a domain Ω̃ ∈ {Ω,Ω+,Ω−}: for all D, D′ ∈ �1 (Ω̃),

0
Ω̃
(D, D′) = (∇D,∇D′)

!2 (Ω̃) − :2 (D, D′)
!2 (Ω̃) + 8: (D, D′)!2 (Γ∩mΩ̃) . (9)

By Assumption (8), the transmission operator T induces a continuous and coercive
sesquilinear form C on �1/2 (Σ) × �1/2 (Σ) such that

C (I, I′) = 〈TI, I′〉Σ, ∀I, I′ ∈ �1/2 (Σ). (10)

Reformulation at the interface.We follow the approach of the continuous setting
and define the discrete version Rℎ of the lifting operator R given in (3) by

Rℎ : +2
Σ,ℎ 3

(
G+,ℎ , G−,ℎ

) ↦→ (
R+,ℎG+,ℎ ,R−,ℎG−,ℎ

) ∈ +ℎ . (11)

withR±,ℎ , the discrete versions ofR± given in (4), such that D±,ℎ = R±,ℎG±,ℎ satisfies

0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ) = 〈G±,ℎ , D′±,ℎ〉Σ, ∀D′±,ℎ ∈ +±,ℎ . (12)

Similarly, the discrete version Sℎ of the scattering operator S defined in (5) is

Sℎ : +2
Σ,ℎ 3

(
G+,ℎ , G−,ℎ

) ↦→ (
S+,ℎG+,ℎ , S−,ℎG−,ℎ

) ∈ +2
Σ,ℎ , (13)

with the discrete versions S±,ℎ of S± are such that: for all F′±,ℎ ∈ +Σ,ℎ ,

〈S±,ℎG±,ℎ , F′±,ℎ〉Σ = −〈G±,ℎ , F′±,ℎ〉Σ + 28: C
(
R±,ℎG±,ℎ , F′±,ℎ

)
. (14)

We finally define the discrete operator Aℎ = ΠSℎ on+2
Σ,ℎ

. It can then be proven, in a
similar fashion as for the continuous case, that the discretization of the problem (2)
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is equivalent to a discrete counterpart of the interface problem (6): find Gℎ ∈ +2
Σ,ℎ

such that Gℎ = AℎGℎ + 1ℎ , where 1ℎ is the discrete counterpart of 1.
Discrete DDM algorithm. In the following we analyse the convergence of the

discretization of the DDM algorithm (7): from an initial trace G0
ℎ
∈ +2

Σ,ℎ
and for a

relaxation parameter A ∈ (0, 1), iteration = writes

G=ℎ = (1 − A)G=−1
ℎ + AAℎG=−1

ℎ + 1ℎ . (15)

4 An abstract uniform exponential convergence result

We now state an abstract result specifying the conditions under which uniform
exponential convergence is achieved.
Theorem 2 If Aℎ is contractant in +2

Σ,ℎ
and I − Aℎ is an isomorphism in +2

Σ,ℎ
with

uniformly bounded inverse, then the relaxed Jacobi algorithm (15) with A ∈ (0, 1)
converges exponentially uniformly (� and g are independent of ℎ below):

∃ g ∈ (0, 1), � > 0, ℎ0 > 0, ∀ℎ < ℎ0, = ∈ N, ‖D=ℎ − Dℎ ‖+ ≤ �g=. (16)

Proof At each iteration =, the surface error Y=
ℎ
= G=

ℎ
− Gℎ satisfies

Y=+1ℎ = (1 − A)Y=ℎ + AAℎY=ℎ . (17)

By hypothesis we have (for some X ∈ (0, 2] independent of ℎ)

‖AℎY=ℎ ‖+ 2
Σ
≤ ‖Y=ℎ ‖+ 2

Σ
, and ‖(I − Aℎ)Y=ℎ ‖+ 2

Σ
≥ X‖Y=ℎ ‖+ 2

Σ
. (18)

We have the identity for A ∈ (0, 1) and 0, 1 ∈ +2
Σ

‖(1 − A)0 + A1‖2
+ 2
Σ

= (1 − A)‖0‖2
+ 2
Σ

+ A ‖1‖2
+ 2
Σ

− A (1 − A)‖0 − 1‖2
+ 2
Σ

. (19)

Using this identity (take 0 = Y=
ℎ
and 1 = AℎY=ℎ) together with (17) and (18) we get

‖Y=+1ℎ ‖+ 2
Σ
≤ g ‖Y=ℎ ‖+ 2

Σ
, with g =

√
1 − A (1 − A)X2, (20)

and where g is well defined in R since X ∈ (0, 2]. Since we have D=
ℎ
− Dℎ = RℎY=ℎ ,

the well-posedness of the local problems yields the existence of a constant 2 > 0
independent of ℎ such that, for ℎ sufficiently small, ‖D=

ℎ
− Dℎ ‖+ ≤ 2‖Y=ℎ ‖+ 2

Σ
. �

Since T is assumed to be a self-adjoint isomorphism from �1/2 (Σ) to �−1/2 (Σ),
the contractive nature of Aℎ and the fact that I−Aℎ is an isomorphism can be proven,
see [2, Th. 3 and Lem. 6] and [5, Lem. 2 and 3]. However, the uniform boundedness
of the inverse of I − Aℎ was recognized as an open question in [5, Rem. 3]. The
previous proof highlights that this property is essential to prevent the convergence
rate from potentially degenerating (tending to 1 as ℎ goes to 0).
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5 An abstract sufficient condition for exponential convergence

The next theorem states that a sufficient condition for the operator I − Aℎ to be
an isomorphism with uniformly continuous inverse relies on the existence of two
liftings with suitable properties.

Theorem 3 Assume that there exists two liftings !±,ℎ from +Σ,ℎ to +±,ℎ uniformly
continuous and preserving Dirichlet boundary conditions: namely there exists 2 > 0,
independent of ℎ, such that for all G±,ℎ ∈ +Σ,ℎ ,(

!±,ℎG±,ℎ
) |Σ = G±,ℎ , and ‖!±,ℎG±,ℎ ‖+± ≤ 2‖G±,ℎ ‖+Σ . (21)

Then I − Aℎ is an isomorphism in +2
Σ,ℎ

with uniformly bounded inverse (� is
independent of ℎ below):

∃� > 0, ℎ0 > 0, ∀ℎ < ℎ0, Gℎ ∈ +2
Σ,ℎ , ‖Gℎ ‖+ 2

Σ
≤ � ‖(I − Aℎ)Gℎ ‖+ 2

Σ
, (22)

To prove this result, we closely follow the lines of the proof in the continuous case,
which we recall below. Let H = (H+, H−) ∈ +2

Σ
we aim at finding G = (G+, G−) ∈ +2

Σ

such that (I−A)G = H. From the definitions of Section 2, this is equivalent to finding
D± ∈ +± and G± ∈ +Σ such that (omitting the boundary condition on Γ ∩ mΩ± here
and in the following for brevity){

−ΔD± − :2D± = 0, in Ω±, (±mn + 8: )) D± = G±, on Σ,
G± − (−G∓ + 28: )D∓) = H±, on Σ.

(23)

Step 1: Definition of two jumps.A key point is to recognize that the property (8)
of T allows to define the Dirichlet and Neumann jumps D� and D# such that

D� = (8: ))−1 H+ − H−
2

∈ �1/2 (Σ), D# =
H− + H+

2
∈ �−1/2 (Σ). (24)

Step 2: Transmission problem. It is then straightforward to check that the
system of equations (23) is equivalent to compute directly G± = (±mn + 8: )) D±
where (D+, D−) ∈ + is solution of the transmission problem

−ΔD± − :2D± = 0, in Ω±, D+ − D− = D� , mnD+ − mnD− = D# , on Σ. (25)

Step 3: Construction of the solution. The solution D± of (25) is sought in the
form D± = D2 |Ω± + D3± with (D3+ , D3−) ∈ + (discontinuous across Σ) and D2 ∈ �1 (Ω)
(continuous across Σ), constructed as follows. We first construct D3± as the result
of two liftings !± from +Σ to +± such that D3± = ± 1

2 L±D� . The liftings !± can be
obtained for instance by solving amodified (coercive)Helmholtz equation in the local
domains. Having found such a D3± which satisfies by construction D3+ − D3− = D� , it is
clear that D± = D2 |Ω± + D3± solves (25) if D2 ∈ �1 (Ω) satisfies (writing D2± = D2 |Ω± )
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−ΔD2± − :2D2± = ΔD3± + :2D3±, in Ω±,
mnD

2+ − mnD
2− = D# − mnD

3+ + mnD
3−, on Σ.

(26)

The problem (26) is well-posed in �1 (Ω) by application of Fredholm’s alternative.
The solution G = (G+, G−) ∈ +2

Σ
of (23) can finally be computed directly as G± =

(±mn + 8: )) D±.
The proof at the discrete level mimics this procedure but we need to systematically

verify at each step that uniform bounds hold. In the following, � denotes a constant
possibly taking different values from one inequality to another.

Proof (of Theorem 3) Let Hℎ ∈ +2
Σ,ℎ

, using the definitions of Section 3 the problem
of finding Gℎ ∈ +2

Σ,ℎ
such that (I − Aℎ)Gℎ = Hℎ writes: find D±,ℎ ∈ +±,ℎ and

G±,ℎ ∈ +Σ,ℎ such that, for all D′±,ℎ ∈ +±,ℎ and I′±,ℎ ∈ +Σ,ℎ ,{
0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ) = 〈G±,ℎ , D′±,ℎ〉Σ,
〈G±,ℎ , I′±,ℎ〉Σ −

(
−〈G∓,ℎ , I′±,ℎ〉Σ + 28: C (D∓,ℎ , I′±,ℎ)

)
= 〈H±,ℎ , I′±,ℎ〉Σ.

(27)

Step 1: Definition of two jumps. Let E�,ℎ and D# ,ℎ be such that

E�,ℎ := (8:)−1 H+,ℎ − H−,ℎ
2

, D# ,ℎ :=
H−,ℎ + H+,ℎ

2
. (28)

Both quantities belong to +Σ,ℎ and we have, with � independent of ℎ,

‖E�,ℎ ‖+Σ ≤ � ‖Hℎ ‖+ 2
Σ
, ‖D# ,ℎ ‖+Σ ≤ � ‖Hℎ ‖+ 2

Σ
. (29)

Note that E�,ℎ is not the discrete counterpart of D� . A good candidate would be
D�,ℎ = )

−1
ℎ
E�,ℎ where )ℎ is a discrete version of ) . This leads us to the definition

D�,ℎ = )
−1
ℎ E�,ℎ ⇔ C (D�,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ, ∀I′ℎ ∈ +Σ,ℎ . (30)

Since C is supposed to be strictly coercive, such a D�,ℎ exists and it holds, with �
independent of ℎ,

‖D�,ℎ ‖� 1/2 (Σ) ≤ � ‖E�,ℎ ‖+Σ . (31)

Step 2: Transmission problem. The solutions G±,ℎ ∈ +Σ,ℎ of (27) must satisfy

〈G±,ℎ , D′±,ℎ〉Σ = 0Ω± (D±,ℎ , D′±,ℎ) + 8: C (D±,ℎ , D′±,ℎ), ∀D′±,ℎ ∈ +±,ℎ , (32)

where D±,ℎ ∈ +±,ℎ must satisfy a discrete version of the transmission problem (25){
C (D+,ℎ − D−,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ, ∀I′

ℎ
∈ +Σ,ℎ ,

0Ω+ (D+,ℎ , D′+,ℎ) + 0Ω− (D−,ℎ , D′−,ℎ) = 〈D# ,ℎ , D′ℎ〉Σ, ∀(D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω).
(33)
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where the equation on the first line is obtained by taking the difference of the two
equations in the second line of (27) and the equation on the second line is obtained
by summing all equations in (27) with a test function in +ℎ ∩ �1 (Ω).

Reciprocally, let D±,ℎ ∈ +±,ℎ and G±,ℎ ∈ +Σ,ℎ be solutions of (33) and (32). For
any I′

ℎ
∈ +Σ,ℎ , there exists by assumption D′

ℎ
= (D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω) such

that D′±,ℎ |Σ = I′ℎ . By taking linear combinations of equations of (33) with these test
functions I′

ℎ
and D′

ℎ
one obtains the two equations on the second line of (27).

Step 3: Construction of the solution. The solution D±,ℎ of (33) is sought in the
form D±,ℎ = D2ℎ |Ω± + D3±,ℎ with (D3+,ℎ , D3−,ℎ) ∈ +ℎ and D2ℎ ∈ +ℎ ∩ �1 (Ω) constructed
as follows. We first construct D3±,ℎ = ± 1

2 L±,ℎD�,ℎ , by hypothesis on the liftings we
have

‖D3±,ℎ ‖+± ≤ � ‖D�,ℎ ‖� 1/2 (Σ) , (34)

with � independent of ℎ. By construction C (D3+,ℎ − D3−,ℎ , I′ℎ) = 〈E�,ℎ , I′ℎ〉Σ for all
I′
ℎ
∈ +Σ,ℎ . Hence, using the last equation in (33), D±,ℎ = D2ℎ |Ω± +D3±,ℎ will be solution

of (33) if D2
ℎ
∈ +ℎ ∩ �1 (Ω) is such that, for all (D′+,ℎ , D′−,ℎ) ∈ +ℎ ∩ �1 (Ω),

0Ω (D2ℎ , D′ℎ) = 〈D# ,ℎ , D′ℎ〉Σ − 0Ω− (D3−,ℎ , D′−,ℎ) − 0Ω+ (D3+,ℎ , D′+,ℎ). (35)

Since 0Ω is �1 (Ω)-coercive, it is well known from the theory of Galerkin approxi-
mation of Fredholm type problem that for ℎ sufficiently small, such a D2

ℎ
exists and

it holds, with � independent of ℎ,

‖D2ℎ ‖+ ≤ �
(
‖D# ,ℎ ‖+Σ + ‖D3−,ℎ ‖+− + ‖D3+,ℎ ‖++

)
. (36)

From D±,ℎ = D3±,ℎ + D2ℎ |Ω± in +±,ℎ we have, with � independent of ℎ,

‖D±,ℎ ‖+± ≤ �
(
‖D3±,ℎ ‖+± + ‖D2ℎ |Ω± ‖+±

)
. (37)

The solution G±,ℎ ∈ +Σ,ℎ of (32) hence (27) are computed using (33) hence satisfy,
with � independent of ℎ,

‖G±,ℎ ‖+Σ ≤ � ‖D±,ℎ ‖+± . (38)

Since all the quantities computed at each step are bounded uniformly by the data
used for their construction, see (29), (31) , (34), (36) and (37), the uniform bound of
Theorem 3 with respect to ℎ is established. �

6 Application to finite element approximations

In this sectionwe assume thatΩ± are bounded open polyhedral Lipchitz domains dis-
cretized using conforming simplicial mesh elements and consider classical Lagrange
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finite element spaces. The previous proof relies on the existence of two uniformly
stable liftings !±,ℎ from +Σ,ℎ to +±,ℎ which must preserve the Dirichlet trace on Σ.
A theoretical construction of such liftings !±,ℎ can be obtained as !±,ℎ = %ℎ ◦ !±
where %ℎ : +± → +±,ℎ is an interpolator and !± : +Σ → +± are two continuous
liftings. The construction of !±,ℎ is hence reduced to the construction of %ℎ . The
classical Lagrange interpolator fails to provide a practical answer because it lacks
the continuity property for non-smooth functions (point-wise function evaluations).
The Clément interpolator is continuous but fails to preserve the prescribed trace on
the boundary. An interpolator featuring the suitable properties have been proposed
by Scott and Zhang [6] for general conforming Lagrange finite elements of any order
in R3 , 3 = 2, 3. For the sake of illustration, we briefly recall below the construction
of this operator for P1 Lagrange finite elements on triangles.

For each vertex "8 of the mesh, choose arbitrarily f8 an edge connected to
"8 . The application E ∈ P1 (f8) ↦→ E("8) ∈ R is a continuous linear form on
P1 (f8) ⊂ !2 (f8). From Riesz theorem, there exists a unique k8 ∈ P1 (f8) such that,
for all E ∈ P1 (f8), we have E("8) = (k8 , E)!2 (f8) . Let F8 be the P1 Lagrange basis
function associated to the vertex "8 . There is a natural definition of an interpolation
operator %ℎ on �1 (Ω) such that: for all E ∈ �1 (Ω),

%ℎE :=
∑
8

(k8 , E)!2 (f8)F8 . (39)

From the trace theorem, %ℎ is a continuous linear mapping from �1 (Ω) to+ℎ and is
invariant on+ℎ . To preserve the trace on the boundary, we require in addition that for
all vertices"8 on the boundary ofΩ, the edgef8 is chosen to belong to the boundary.
This operator %ℎ is the Scott-Zhang operator and satisfies Hypothesis (21), see [6,
Th. 2.1 and Cor. 4.1].
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Optimized Schwarz Methods for Linear
Elasticity and Overlumping

Kévin Santugini-Repiquet

1 Introduction

Linear Elasticity models how elastic solids deform in the presence of surface and
volume forces. The model of Linear Elasticity is valid for small deformations. For
large deformations, the nonlinear theory of elasticity should be used instead. For
an introduction to Linear Elasticity, we refer the reader to [3]. Linear Elasticity is
commonly discretized using Finite Element Methods, see [1, Chap. 11].

Domain DecompositionMethods (DDMs) have previously been applied to Linear
Elasticity [2, 6, 5, 7, 10, 11, 14, 15, 13, 19, 18, 16]. However, we found no reference
on applying OSMs to the equations of Linear Elasticity.

Optimized Schwarz methods(OSMs) are a family of Domain Decompositions
Methods. In iterative OSMs, at each iteration, the interior equation is solved inside
each subdomain with artificial conditions on each subdomain boundary. Then, data is
exchanged between neighboring subdomains to update those boundary conditions.
The process is reiterated until convergence. See [8] for a full analysis of OSMs.
The most common transmission conditions are Robin transmission conditions and
Ventcell transmission conditions. In [9], the authors showed that we should lump (and
even overlump)Robin transmission conditionswhen applyingOSMs to a FEM(Finite
Element Method) discretization of Poisson Equations.

In this paper, our main goal is to apply one-level Optimized Schwarz Methods
(OSM) to the Finite Element Discretization of the Linear Elasticity problems. We
first present some basic definitions on Linear Elasticity in §2. To this end, we derive
transmission conditions applicable to Linear Elasticity, obtain an OSM for Linear
Elasticity, and establish convergence in §3 using energy estimates. Finally, in §4, we
present numerical results, and observe that numerically, overlumping transmission
conditions at the discrete level yields a better convergence rate.

Kévin Santugini
Bordeaux INP, IMB, UMR 5251, F-33400,Talence, France, e-mail: Kevin.
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2 Basic Linear Elasticity Definitions

LetΩ be a domain ofR3. Let u : Ω→ R3 be a vector field called small displacements.
The strain tensor Y is defined as Y8 9 (u) = 1

2

(
mD8
mG 9
+ mD 9
mG8

)
, and the stress tensor f is

defined as f8 9 (u) =
∑
:ℓ C8 9:ℓY:ℓ (u). The tensor C8 9:ℓ is called the stiffness tensor,

depends on the material, and satisfy C8 9:ℓ = C:ℓ8 9 and C8 9:ℓ = C 98:ℓ . In addition,
the stiffness tensor is positive definite, i.e., there exists U > 0 such that∑

8, 9 ,:,ℓ

C8 9:ℓ (x)Y8 9Y:ℓ ≥ U
∑
8 9

|Y8 9 |2.

In this paper, we only consider homogenous isotropic materials. For isotropic mate-
rial,

C8 9:ℓ =
�

1 + a X
:
8 X
ℓ
9 +

�a

(1 + a) (1 − 2a) X
9

8
Xℓ: ,

where � is the Young modulus, and a is the Poisson coefficient.
Let 5E : Ω → R3 be the vector field of volume forces applied to the solid body.

Let Γ3 ⊂ mΩ. Let 5B : Γ3 → R3 be the vector field of surface forces applied
to Γ 5 ⊂ mΩ. And let d be the known displacements on Γ3 = mΩ \ Γ 5 . In the
variational formulation of Linear Elasticity, a weak solution is defined as a u in +
such that for all v in +ℓ∫

Ω

f(u) : Y(v)dx =
∫
Ω

5Evdx +
∫
Γ 5

5Bvd((x. (1)

where

+ = {u ∈ �1 (Ω;R3) : u = d on Γ3}, +ℓ = {v ∈ �1 (Ω) : v = 0 on Γ3}.

3 Optimized Schwarz Methods for Linear Elasticity

3.1 At the continuous level

In iterative OSMs, at each iteration, the interior equation is solved inside each sub-
domain with artificial transmission conditions at the interface between subdomains.
Then, in order to update these conditions, data is exchanged between neighboring
subdomains.

In order to apply OSMs to Linear Elasticity, adequate transmission conditions
are needed. For Poisson equations, the simplest transmission conditions are Robin
transmission conditions. Robin conditions are a linear combination of Dirichlet
and Neumann boundary conditions. The Neumann conditions originates from the
following integral equality:
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Ω

∇q · ∇kdx −
∫
Ω

(−Δq)kdx =
∫
mΩ

mq

mn
kd((x).

for all q : Ω→ R, and k : Ω→ R regular enough and where n is the outer-pointing
normal toΩ. Likewise, from the variational formulations of Linear Elasticity (1), we
get ∫

Ω

f(u) : Y(v)dx −
∫
Ω

(−div(f(u)))vdx =
∫
mΩ

(f(u)n) · vd((x).

Hence, the equivalent to the Neumann boundary condition for Linear Elasticity is
f(u)n.

To define OSMs on the equations of linear elasticity, we consider a domain Ω
divided in # subdomains Ω8 Γ8 9 B mΩ8 ∩ mΩ 9 . Let n8 9 be the normal to Γ8 9
pointing from Ω8 to Ω 9 . Let S8 9 be operators on some functional space defined over
Γ8 9 B mΩ8 ∩ mΩ 9 . Transmission conditions for Linear Elasticity are:

f(u=+18 )n8 9 + (8 9u=+18 = f(u=9 )n8 9 + (8 9u=9
In particular, Robin transmission conditions for Linear Elasticity are obtained when
(8 9 (u) = ?u with ? ∈ R+ being the Robin parameter. In this paper, we always
suppose (8 9 = ( 98 . The Optimized Schwarz Algorithm for the equations of Linear
Elasticity at the continuous level is given in Algorithm 1.

Algorithm 1: (Optimized Schwarz for Linear Elasticity)
Initialize 60

8 9
: Γ8 9 → R3, to some initial guess in !2 (Γ8 9 ).

for = ≥ 0 and until convergence do
In each subdomain Ω8 , compute the iterates u=

8
in parallel as the solutions in

Ω8 to the variational formulation of:
div(f(u=8 )) + f E = 0 in Ω8 ,

f(u=8 )n8 9 + (8 9u=8 = 6=8 9 on Γ8 9 ,
u=8 = d on mΩ8 ∩ Γ3 ,

f(u=8 )n = f B on mΩ8 ∩ Γ 5 .

For all neighboring subdomains Ω8 and Ω 9 , set 6=+18 9
B −6=

98
+ ((8 9 + ( 98)D=+19

.
end for

Using Energy Estimates introduced in [17, 4] for the Poisson equation, we can
prove the convergence of OSMs applied to Linear Elasticity at the continuous level.

Theorem 1 If (ℎ
8 9
= (ℎ

98
, if each (8 9 is symmetric positive definite, and if there is

one subdomain where Γ3 ∩ mΩ8 is of nonzero surface measure, then the Optimized
Schwarz Method (1) at the continuous level is convergent.

Proof Due to the linearity of the equations, we canwithout loss of generality suppose
that the volume forces f B , surface forces f E and known displacements d are null.
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For each subdomain Ω8 , we multiply the interior equation satisfied by u=
8
by u=

8
then

integrate over Ω8 . After applying Green’s formulas, we get:∫
Ω8

f(u=8 ) : Y(u=8 )dx =
∑
9

∫
Γ8 9

(f(u=8 )n8 9 ) · u=8 d((x). (2)

By [12, Theorem 3.35], (8 9 has a symmetric definite positive square root which we
denote by "8 9 B (

1/2
8 9

. And we have:∫
Γ8 9

(f(u=8 )n8 9 ) · u=8 d((x) =
∫
Γ8 9

("−1
8 9 f(u=8 )n8 9 ) · "8 9u=8 d((x)

=
1
4

( ∫
Γ8 9

|"−1
8 9 (f(u=8 )n8 9 + (8 9u=8 ) |2d((x) −

∫
Γ8 9

|"−1
8 9 (f(u=8 )n8 9 − (8 9u=8 ) |2d((x)

)
,

=
1
4

(∫
Γ8 9

|"−16=8 9 |2d((x) −
∫
Γ8 9

|"−16=+18 9 |2d((x)
)

Combining this equality with (2), and summing over the subdomain index 8, and over
the iteration index =, we get

+∞∑
==0

#∑
8=1

∫
Ω8

f(u=8 ) : Y(u=8 )dx ≤
1
4

∑
8 9

∫
Γ8 9

|"−160
8 9 |2d((x) < +∞.

Since the stiffness tensor C8 9:ℓ is positive definite, this implies Y(u=+1
8
) converges to

0 as = goes to infinity. This proves that inside each subdomain, the iterates converges
to an equiprojective vector field. This implies the limit is zero on the subdomain
where Γ3 ∩ mΩ8 is of nonzero measure. Since a domain is always connected by
definition, and using the transmission condition, one gets the limit is also zero on
the other subdomains. �

3.2 FEM Discretization of OSMs for Linear Elasticity

In this section, we describe how to discretize OSMs for Linear Elasticity with Finite
Element Methods. Let’s consider a tetrahedral mesh T ℎ of Ω compatible with the
domain decomposition of Ω in # subdomains (Ω8)1≤8≤# . Let T8 be the restriction
of mesh T to subdomain Ω8 . We use P1 elements for each component of the small
displacements. So at most three degrees (one per component) of freedom per node.

Let " be the number of degree of freedoms. Let the 5: be the elementary basis
functions of the finite element space. For any : in È1, "É, 5: is null on every node
of the mesh except one. And on this node, 5: belongs to the canonical basis of
R3. Let I8 be the subset of È1, "É of indices corresponding to degrees of freedoms
located on a node of T8 . The I8 are not disjoint. For all :, ℓ in I8 , we set:
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(�ℎ8 ):,ℓ B
∫
Ω8

f(5: ) : Y(5ℓ), ( f ℎ8 ): =
∫
Ω8

5 · 5: .

There are multiple ways to discretize the transmission condition. For a consistent
discretization, we set:

((ℎ,cons
8, 9

):,ℓ B
∫
Γ8 9

(f(5: )n) · 5ℓ ,

for all :, ℓ inI8∩I9 . Alternatively,we can use a lumpdiscretization, and define (ℎ,lump
8, 9

as the diagonal matrix obtained by lumping (ℎ,cons
8, 9

. We also set the overlumped
matrix (ℎ,l

8 9
≔ (1 − l)(ℎ,cons

8
+ l(ℎ,lump

8 9
. For Poisson equation, overlumping has

been shown to be beneficial in [9].
The main issue is deciding how transmission conditions should be updated, espe-

cially near cross-points (or cross-edges). This is especially true when cross-points (or
cross-edges in 3d) are present. When using a FEM discretization of Linear Elasticity,
the discrete value of f(u8)n is only known as a variational quantity, as an integral
over the boundary of mΩ8 . Near cross-point, this variational quantity represents an
integral over multiple surfaces each shared by mΩ8 with another subdomain. Ide-
ally, this quantity must be split before being sent to the neighboring subdomains.
Unfortunately, near cross-points, there is no canonical way to do so. See [9], for
an explanation on how to discretize OSMs near cross-points for Poisson Equation,
including the “Auxiliary Variable Method”. When there are cross-points, at the dis-
crete level, the 6=+1

8 9
cannot be derived from the discrete D=

8
. However, using (3b),

they can be derived from both the 6=
8 9
and the D=

8
. Hence, in the Auxiliary Variable

Method, the unknowns are not the discrete D=
8
, but the discrete 6=+1

8 9
.

The OSM iteration can be written at the discrete level as:

�ℎ8 u
=
8 = f ℎ8 +

∑
9

(ℎ8 96
=
8 9 , (3a)

6=+18 9 B −6=98 + ((ℎ8 9 + (ℎ98)D=9 . (3b)

Theorem 2 If (8 9 = ( 98 , if each (8 9 is symmetric positive definite, and if there is
one subdomain where Γ3 ∩ mΩ8 is of nonzero surface measure, then the Auxiliary
Variable Method OSM, Eq. (3), applied to a FEM-discretization of Linear Elasticity
is convergent. I.E., if (D8)1≤8≤# represents the discrete mono-domain solution, D8−D=8
converges to 0.

Proof There exists a finite sequence of (68 9 )8 9 that is a fixed point of the (3b) iterate.
Hence, we can suppose f ℎ null. Using D=

8
as the test function, we get∫

Ω8

f(u=8 ) : Y(u=8 )dx =
∑
9

∫
Γ8 9

(6=8 9 − (8 9D=8 9 ) · D=8 9dx
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Then, we can reuse the end of the proof of Theorem1 almost verbatim. �

4 Numerical Results

We consider a cylindrical domain with a diameter of 1 and a heigh of 3.2. We
subdivide this domain in two identical cylindrical subdomains. The domain ismeshed
using 4144 tetrahedrons.We set theYoungModulus� = 1 and the Poisson coefficient
to either a = 0.1 or a = 0.49. We tested various values of the Robin parameter
? and of the lump parameter l. We found the best convergence for ? = 0.4.
As for Poisson equations, we found that overlumping the transmission condition
substantially improves convergence, see convergence curves in Figures 1 and 2.
Convergence is slower when the Poisson coefficient is near 1/2.

We also did a similar test by subdividing the same cylindrical domain into ten
identical cylindrical subdomains. We set the Young Modulus � = 1 and the Poisson
coefficient a = 0.1. See convergence curves in Figure 3. As expected in the absence
of coarse spaces, the convergence of the Optimized Schwarz Method is considerably
slower with ten subdomains.
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Fig. 1: Numerical Results for two subdomains with a = 0.1

5 Conclusion

In this paper, we showed how to to derive the equivalent of Robin boundary trans-
mission for the equations of linear elasticity. Using overlumping, we improved these
boundary transmission condition without the need to discretize higher order trans-
mission conditions. We proved the theoretical convergence of Non Overlapping
Optimized Schwarz Methods for linear elasticity.
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Fig. 2: Numerical Results for two cylindrical subdomains with � = 1.0 and a = 0.49
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Fig. 3: Numerical Results for ten cylindrical subdomains with � = 1.0 and a = 0.1

As future works, we currently see three ways to expand upon this work. First,
we will further study how to discretize the OSMs method for linear elasticity when
cross-points are present. Then, we will generalize the Robin boundary condition for
linear elasticity by replacing the scalar Robin parameter ? with a 3 by 3 matrix.
Finally, we are planning to add a coarse space to OSMs for linear elasticity.
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Coupling of Navier-Stokes Equations and Their
Hydrostatic Versions for Ocean Flows: A
Discussion on Algorithm and Implementation

Hansong Tang and Yingjie Liu

1 Introduction

Now it is necessary to advance our capabilities to direct simulation of many emerg-
ing problems of coastal ocean flows. Two examples of such flow problems are the
2010 Gulf of Mexico oil spill and the 2011 Japan tsunami. The two examples come
from different backgrounds, however, they present a same challenge to our modeling
capacity; the both examples involve distinct types of physical phenomena at vastly
different scales, and they are multiscale and multiphysics flows in nature. In particu-
lar, at the bottom of ocean, the spill appeared as high-speed, three dimensional (3D)
jets at scales of O(10) m, whereas on the ocean surface, it became two dimensional
(2D) patches of oil film at horizontal sizes of O(100) km [1]. The tsunami started as
surface waves with tiny amplitude in a deep ocean, then evolved into walls of water
as high as 39 m near seashore, and finally impacted coastal structures such as bridges
at scales of O(10) m [5]. These phenomena take place at different scales, and they
are better and more efficiently simulated using different governing equations and nu-
merical methods. Currently there is lack of appropriate computational methods and
corresponding computer software packages that can directly and integrally simulate
those multiple physics phenomena.

A natural andmost feasible approach to simulation of multiscale andmultiphysics
coastal ocean flows is coupling of the Navier-Stokes (NS) equations and hydrostatic
versions of the Navier-Stokes (HNS) equations. In the past few decades, various
computational fluid dynamics (CFD) models (i.e., computer software packages)
have been built on the NS equations for fully 3D fluid dynamics at complicated,
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small scales (O(1) cm – O(10) km), such as jet flows similar to those of above oil
spill [7]. At the same time, a number of CFD models have also been designed on
the basis of HNS equations for geophysical fluid dynamics at large scales (O(10)-
O(10, 000) km), such as the ocean currents carrying above oil patches [3]. Since
the NS equations and the HNS equations are better bases for simulation of ocean
flows at small and large scales, respectively, and coupling of them will enable us to
conduct simulation of phenomena at larger or even full ranges of scales.

2 Governing Equations

The NS equations describe motion of flows, and they consist of the continuity
equation and the momentum equation:

5 · u = 0
uC + 5 · uu = 5 · (a 5 u) − 5?/d − 6k (1)

Here, u is the velocity vector, with D and E as the components in G and H direction,
respectively, on the horizontal plane, and F as the component in I direction, or, the
vertical direction, k. a is the viscosity, d the density, ? the pressure, and 6 the gravity.

HNS equations are widely used for coastal ocean flows, and they are simplified
from above NS equations; with the hydrostatic assumption, only the gravity and
pressure terms are kept and all others are ignored in the vertical component of the
momentum equation. As a result, the governing equations of the HNS equations
consist of the continuity equation and the simplified momentum equation, which
read as

5 · u = 0
vC + 5 · uv = 5 · (a 5 v) − 5� ?/d
? = d6([ − I)

(2)

where v = (D, E), [ is the elevation of water surface, and 5� is the gradient in the
horizontal plane.

In view of the third equation for pressure in (2), its momentum equation in the
horizontal plane can be rewritten as

vC + 5 · uv = 5 · (a 5 u) − 6 5� [ (3)

Additionally, by pressure splitting ? = ?3 + d6([ − I), where ?3 is the dynamic
pressure, the momentum equation in (1) becomes

uC + 5 · uu = 5 · (a 5 u) − 5?3/d − 6 5� [ (4)



328 Hansong Tang and Yingjie Liu

3 Computational Methods

3.1 Transmision Condition

Fig. 1: Division of a flow region into a NS
region abd a HNS region.

Let a flow field l be divided into subdomains
of NS and HNS by their interface W, as shown
in Fig. 1. Consider the weak solution of the
continuity equation in (1) and (2) that satisfies∫

l

u · 5q3l = 0 (5)

for any q ∈ �∞0 . Let l be an arbitrarily
selected a region across the interface, and
l = l1 ∪ l2, with l1 and l2 falling in the
regions of NS and HNS, respectively (Fig. 1).
In view that

∫
l
u · 5q3l =

∫
W
q(u= |W− − u= |W+ )3l
−

∫
l1∪l2

q 5 ·u3l(6)

it is readily seen that, under the divergence-free condition (i.e., the first equation in
(1) or (2)), continuity of normal velocity across the interface

u= |W− = u= |W+ (7)

is a sufficient and necessary condition for u to be a weak solution. Here = means the
normal direction of W pointing from l1 to l2, u= = u · n, and W− and W+ indicate
the l1- and l2-side of interface W, respectively. Therefore, condition (7) can be a
transmission condition.

Similar analysis may bemade for the momentum equations in the horizontal plane
in (1) and (2), and it leads to the following transmission condition:

(u=v + ?=′/d − amv/m=)W− = (u=v + ?=′/d − amv/m=)W+ (8)

here =′ refers to the normal direction, pointing from l1 to l2, of the interface’s
projection onto the horizontal plane. It is noted that since ? is a scalar, ?=′ may be
replaced by ? in (8). Also, a condition similar to (8) has been proposed in [2]. In
correspondence to Eqs. (3) and (4) and also in view that surface elevation can be
determined by HNS equations (see discussion in Sect. 4), its values on W− and W+
cancel each other as long as the elevation is continuous across the interface. As a
result, interface condition (8) becomes
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u=v + ?3=′/d − amv/m=

)
W− = (u=v − amv/m=)W+ (9)

where, for a similar reason, ?3=′ may be replaced by ?3 , and its value is zero in the
hydrostatic region.

It is noted that, instead of those described as above, different interface conditions
may be used:

u|W− = u|W+ , m?3/m=|W− = 0. (10)

Here, the continuity of whole velocity is required across the interface. Interface
condition (10) is commonly used to solve NS equations, and it has been used in
coupling of NS and HNS equations, see Sect. 4.

3.2 Schwarz Iteration

Let discretization of NS equations and HNS equations be written as

F(f) = 0, H(h) = 0, (11)

in which f = (u, ?3), and h = (u, [), with the former and the latter being the solution
for NS and HNS, respectively. Since the discretization is nonlinear, an iteration
within each of the two equations in (11), named as the internal iteration, is needed
for their solutions. Also, because the two equations in (11) are coupled with each
other, another iteration between them, referred to as the external iteration, is also
necessary.

From time level = to = + 1, a Schwartz waveform relaxation approach is used to
compute the discretization and exchange solution at the interfaces:

f
0, 1

= f=, h
0, 2

= h=
�> 1 < = 1, "

F(f<,:1 ) = 0,
:1 = 1, 2, . . . ,  1, x ∈ l1

f
<,:1

= f̂<, x ∈ W1


H(h<,:2 ) = 0,
:2 = 1, 2, . . . ,  2, x ∈ l2

h
<,:2

= ĥ<, x ∈ W2

(12)

1 �=3 �>

f=+1 = f
", 1

, h
=+1

= h
", 2

in which f̂< = ^1 (h<−1, 2 ), ĥ< = ^2 (f<−1, 1 ), being operators for solution exchange
between NS and HNS equations on their interfaces W1 and W2, respectively (W1 and
W2 overlap when the subdomains of NS and HNS patch with each other). " is a
prescribed external iteration number, and  1 and  2 are prescribed internal iteration
numbers.
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An issue is how to compute (12) efficiently. A possible approach to speed up its
convergence is to introduce relaxation to solution exchange at the interfaces, or, to
the external iteration:

f
<,:1

= f̂<−1 + U(f̂< − f̂<−1), x ∈ W1

h
<,:2

= ĥ<−1 + U(ĥ< − ĥ<−1), x ∈ W2
(13)

As U < 1 and > 1, the iteration “under-relaxation" and “over-relaxation", respec-
tively. An optimal value for U may be determined as the one that leads to a quick
reduction of the residual of Eq. (11). For instance, let

&(f, h) = 〈F,F〉 + 〈H,H〉 ≥ 0 (14)

By Taylor expansion and Eq. (13), one has

&(f<, 1
, h
<, 2 )

= &(f<−1, 1
, h
<−1, 2 )

+ 〈m&/mf|< (f<, 1 − f<−1, 1 )〉l1\W1 + 〈m&/mh|< (h
<, 2 − h<−1, 2 )〉l2\W2

+ U
(
〈m&/mf|< (f̂< − f̂<−1)〉W1 + 〈m&/mh|< (ĥ

< − ĥ<−1)〉W2

)
+ U2 (· · · ) + · · ·

(15)

An expression for an optimal U can be derived from above equation by, say, letting
&(f<, 1

, h
<, 2 ) = 0 or m&/mU = 0, hoping that f

<, 1 and h
<, 2 are the fixed point

of the iteration. It is noted that in pursuing above iteration with relaxation, it may be
important to enforce the divergence-free condition.

Another approach to speed up the convergence in computation of (12) is via an
optimal combination of the internal and external iterations. A natural arrangement of
them is that the external iteration marches forwards only after the internal iterations
converge, i.e., at sufficiently large  1 and  2. However, it is expected that an optimal
combination of  1 and  2 is possible in terms of fast convergence to solutions at
time level = + 1. With such an optimal combination, a new external iteration may
start before the full convergence of the two internal iterations, and this could be an
interesting topic.

4 Implementation of Model Coupling

The Solver of Incompressible Flow on Overset Meshes (SIFOM) is developed to
compute NS equations (e.g., [6]), and its governing equations are

5 · u = 0
uC + 5 · uu = 5 · ((a + aC ) 5 u) − 5?′3/d − 6 5� [

(16)

in which aC is the turbulence viscosity. SIFOM discretizes above equations in curvi-
linear coordinates using a finite difference method [6].
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An HNS solver is the Finite Volume Method Coastal Ocean Model (FVCOM),
and its hydrostatic version consists of an external and an internal mode [4]. The
governing equations for the external mode are the vertically averaged continuity and
momentum equations:

[C + 5� · (V�) = 0
(V�)C + 5� · (VV�) = −6� 5� [ + (gB − g1)/d + E. (17)

The governing equations of the internal mode are the 3D continuity and momentum
equations associated with the hydrostatic assumption:

[C + 5� · (v�) + lf = 0,
(v�)C + 5� · (vv�) + (vl)f = −6� 5� [ + 5� · (^e)

+(_vf)f/� + I,
(18)

In the external mode, V is the depth-averaged velocity vector, � is the water depth,
and gB and g1 are the shear stress on water surface and seabed, respectively. E
includes the other terms such as the Coriolis force. In the internal mode, f is the
vertical coordinate, l the vertical velocity in the f-coordinate, e the strain rate,
subscript f the derivative over f, and I the other terms. ^, and _ are coefficients.
FVCOM solves Eqs. (17) and (18) on a triangular grid in the horizontal plane and a
f-grid in the vertical direction using a finite volume method.

An approach to integrate SIFOM and FVCOM is to couple Eqs. (16) and (18).
The integration follows the algorithm (12). Interface transmission condition (10)
is used for both SIFOM and FVCOM at their interfaces. It is noted that water
surface elevation in SIFOM, or Eq. (16), is computed by FVCOM, or Eq. (17). Also,
SIFOM and FVCOM are models for complicated, realistic flow problems, and their
governing equations are not exactly but approximately same to the NS and HNS
equations, respectively. For instance, Eq. (18) is a form transformed from Eq. (2).
More details on the interface treatments and numerical algorithms can be found in
[8].

As an example on performance of the SIFOM-FVCOM system, simulation has
been made for a flow over a sill in a channel, see Fig. 2. In the simulation, SIFOM
occupies the contraction section of the channel, and FVCOM covers all the chan-
nel, except a blanked region within the zone of SIFOM. Here, two regions for the
SIFOM’s are used; one is bigger and the other is smaller, and they lead to different
interface locations. In the figure, it is seen that the simulated flow passes the inter-
faces of SIFOM smoothly, and no obvious artifact is generated there. However, the
simulations with the two SIFOM regions present certain difference; as illustrated by
streamlines, the simulation with the larger region presents more vibrating vertical
motion after the contraction section, which is anticipated because SIFOM permits
strong vertical motion. More simulated results for the flow are available in [8, 9],
and they show that solution presents patterns similar to that by SIFOM alone, e.g.,
the vortical structures after the contraction section, and this is an intention of the
coupling approach.

Simulation of actual ocean flows is challenging. For instance, as seen in Fig. 2, the
simulated solution with a bigger SIFOM region is somewhat different from that with
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Fig. 2: Simulated instantaneous solutions of the sill flow. The solid white lines are SIFOM’s
interfaces, The top two panels have a bigger SIFOM region, and the bottom two panels have a
smaller SIFOM region. In each set of the two panels, the first one is a side view, and the second one
is a top view. In this simulation, to make it simple, " is set as 1, or, no iteration is made between
SIFOM and FVCOM.

a smaller SIFOM region, indicating the influence of the size of the SIFOM’s region
and locations of the interfaces. Moreover, since it involves multiple times of runs of
both SIFOM and FVCOM in marching from time level = to = + 1, Schwarz iteration
(12) is expensive, and it is significant to speed up the iteration. For this purpose, a
preliminary effort has been made by running the SIFOM-FVCOM system with a few
prescribed values for U in Eq. (13). However, no obvious speedup in convergence
has been achieved, and this indicates that a deliberate design for the value of U is
necessary.

Finally, it is noted that, in a recent study, another solver for the NS equations
and implemented with a volume of fraction method has been coupled to FVCOM
using techniques similar to those of the SIFOM-FVCOM system, and the results are
encouraging [10].
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5 Concluding Remarks

An successful coupling of NS andHNS equationswill lead to an avenue to simulation
of multiscale and multiphysics in many emerging coastal ocean flow problems. This
paper presents a preliminary study on such coupling with regard to transmission
conditions, Schwartz iterations, and coupling of actual models. In view that it is
a relatively new topic and its realization is complicated, the coupling deserves
systematic theoretical analysis and numerical experimentation, and we shall keep
what discussed in this paper, in particular, the transmission conditions and the
Schwarz iterations, for future study, and explore their effectiveness.

Acknowledgements This work is supported by the NSF (DMS-1622453, DMS-1622459). The
example simulation in Fig. 2 is made by Mr. Wenbin Dong.
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BDDC for a Saddle Point Problem with an HDG
Discretization

Xuemin Tu and Bin Wang

1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) algorithms, intro-
duced in [4], are nonoverlapping domain decomposition methods. The coarse prob-
lems in the BDDC algorithms are given in terms of a set of primal constraints.
An important advantage with such a coarse problem is that the Schur complements
that arise in the computation will all be invertible. The BDDC algorithms have
been extended to many different applications with different discretizations such as
[9, 10, 13, 14, 2] and [11, 12].

In this paper, the BDDC algorithm is developed for the incompressible Stokes
equation with an Hybridizable Discontinuous Galerkin (HDG) discretization. The
HDG discretization for incompressible Stokes flow was introduced in [7] and ana-
lyzed in [3]. The main features of the HDG is that it reduces the globally coupled
unknowns to the numerical trace of the velocity on the element boundaries and the
mean of the pressure on the element. The size of the reduced saddle point problem is
significantly smaller compared to the original one. In [7], the reduced saddle point
problem is solved by an augmented Lagrange approach. An additional time depen-
dent problem is introduced and solved by a backward-Euler method. Here, we solve
the reduced saddle point problem directly using the BDDC methods. Similar to the
earlier domain decomposition works on saddle point problems such as [8, 5, 6], and
[9], we reduce the saddle point problem to a positive definite problem in a benign
subspace and therefore the conjugate gradient (CG) method can be used to solve
the resulting system. Due to the discontinuous pressure basis functions in this HDG
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Bin Wang
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discretization, the complicated no-net-flux condition, which is needed to make sure
all CG iterates are in the benign subspace, can be ensured by edge and face average
constraints for each velocity component in two and three dimensions, respectively.
These required constraints are the same as those for the elliptic problems with the
HDG discretizations, cf. [11].

The rest of the paper is organized as follows. The HDG discretization for the
Stokes problem are described in Section 2. In Section 3, the original system is
reduced to an interface problem and a BDDC preconditioner is then introduced. The
condition number estimate for the system with the BDDC preconditioner is provided
in Section 4. Finally, we give some computational results in Section 5.

2 A Stokes problem and an HDG Discretization

The following Stokes problem is defined on a bounded polygonal domain Ω, in two
or three dimensions, with a Dirichlet boundary condition:

−4u + ∇? = f, in Ω,

∇ · u = 0, in Ω,

u = 6, on mΩ,
(1)

where f ∈ !2 (Ω) and 6 ∈ �1/2 (mΩ). Without loss of generality, we assume that
6 = 0. The solution of (1) is unique with the pressure ? determined up to a constant.
Here we will look for the solution with the pressure ? having a zero average over the
domain Ω.

We follow the approach in [7] and rewrite (1) as follows:
L − ∇u = 0, in Ω,

−∇ · L + ∇? = f, in Ω,

∇ · u = 0, in Ω,

u = 0, in mΩ.

(2)

Let %: (�) be the space of polynomials of order at most : on �. We set P: (�) =
[%: (�)]= (= = 2 and 3 for two and three dimensions, respectively) and P: (�) =
[%: (�)]=×=. L, u, and ? will be approximated by these discontinuous finite element
spaces defined on a shape-regular and quasi-uniform triangulation of Ω, denoted by
Tℎ . Let ℎ be the characteristic element size ℎ of Tℎ and ^ be an element in Tℎ . The
union of edges of elements ^ is denoted by E. E8 and Em are two subsets of E, for
the edges in the interior of the domain and on its boundary, respectively. Define the
following finite element spaces: G: = {Gℎ ∈

[
!2 (Ω)]=×= : Gℎ |^ ∈ P: (^), ∀^ ∈

Ω}, V: = {vℎ ∈
[
!2 (Ω)]= : vℎ |^ ∈ P: (^), ∀^ ∈ Ω},,: = {?ℎ ∈ !2 (Ω) : ?ℎ |^ ∈

%: (^),
∫
Ω
?ℎ = 0, ∀^ ∈ Ω}, M: = {`ℎ ∈

[
!2 (e)]= : `ℎ |4 ∈ P: (4), ∀4 ∈ E},

and �: = {`ℎ ∈ M: : `ℎ |4 = 0, ∀4 ∈ mΩ}. To make our notation simple, we
drop the subscript : from now on. The discrete problem resulting from the HDG
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discretization can be written as: to find (Lℎ , uℎ , ?ℎ , _ℎ) ∈ (G,V,,,�) such that
for all (Gℎ , vℎ , @ℎ , `ℎ) ∈ (G,V,,,�)
(Lℎ ,Gℎ)Tℎ + (uℎ ,∇ ·Gℎ)Tℎ − 〈_ℎ ,Gℎn〉mTℎ = 0,
(Lℎ ,∇vℎ)Tℎ − (?ℎ ,∇ · vℎ)Tℎ − 〈Lℎn − ?ℎn − g^ (uℎ − _ℎ), vℎ〉mTℎ = (f, vℎ)Tℎ ,
− 〈Lℎn − ?ℎn − g^ (uℎ − _ℎ), `ℎ〉mTℎ = 0,
−(uℎ ,∇@ℎ)Tℎ + 〈_ℎ · n, @ℎ〉mTℎ = 0.

(3)
where g^ is a local stabilization parameter, see [7] for details.

The matrix form of (3) can be written as
�LL �)uL �)

_L 0
�uL �uu �)

_u �
)
?u

�_L �_u �__ �
)
?_

0 �?u �?_ 0




L
u
_

?

 =


0
Fℎ
0
0

 , (4)

where Fℎ = −(f, vℎ)Tℎ and we use L, u, _, and ? to denote the unknowns associated
with Lℎ , uℎ , _ℎ , and ?ℎ , respectively. In each ^, we decompose the pressure degrees
of freedom ? into the element average pressure ?04 and the rest called the element
interior pressure ?8 and let, = ,8 ⊕,04, correspondingly. We can easily eliminate
L, u and ?8 element-wise from (4) and obtain the system for _ and ?04 only[

� �)

� 0

] [
_

?04

]
=

[
1

0

]
. (5)

The global problem (4) can also be written as the following saddle point problem[
�0 �

)
0

�0 0

] [
D0
?

]
=

[
F0
0

]
, (6)

where

�0 =


�LL �)uL �)

_L
�uL �uu �)

_u
�_L �_u �__

 , �)0 =


0
�)?u
�)
?_

 , D0 =


L
u
_

 , and F0 =


0
Fℎ
0

 . (7)

We note that �0 is the same as the matrix obtained using HDG discretization for
elliptic problem as discussed in [11].

3 The BDDC algorithm

We decompose Ω into N nonoverlapping subdomain Ω8 with diameters �8 , 8 =
1,. . . , # , and set � = max8 �8 . We assume that each subdomain is a union of shape-
regular coarse triangles and that the number of such elements forming an individual
subdomain is uniformly bounded. We define edges/faces as open sets shared by two
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subdomains. Two nodes belong to the same edge/face when they are associated with
the same pair of subdomains. Let Γ be the interface between the subdomains. The
set of the interface nodes Γℎ is defined as Γℎ :=

(∪8≠ 9mΩ8,ℎ ∩ mΩ 9 ,ℎ ) \ mΩℎ , where
mΩ8,ℎ is the set of nodes on mΩ8 and mΩℎ is that of mΩ. We assume the triangulation
of each subdomain is quasi-uniform.

We decompose the velocity numerical trace� = �� ⊕ �̂Γ and the element average
pressure ,04 = ,� ⊕ ,0, where �̂Γ denotes the degrees of freedom associated
with Γ. �� =

∏#
8=1 �

(8)
�

and ,� =
∏#
8=1,

(8)
�

are products of subdomain interior
velocity numerical trace spaces + (8)

�
and subdomain interior pressure spaces , (8)

�
,

respectively. The elements of �(8)
�

are supported in the subdomain Ω8 and vanishes
on its interface Γ8 , while the elements of , (8)

�
are the restrictions of the pressure

variables to Ω8 which satisfy
∫
Ω8
?
(8)
�
= 0. �̂Γ is the subspace of edge/face functions

on Γ in �, and,0 is the subspace of, with constant values ? (8)0 in the subdomain
Ω8 that satisfy

∑#
8=1 ?

(8)
0 < (Ω8) = 0, where < (Ω8) is the measure of the subdomain

Ω8 .
We denote the space of interface velocity numerical trace variables of the sub-

domain Ω8 by �(8)
Γ
, and the associated product space by �Γ =

∏#
8=1 �

(8)
Γ
; generally

edge/face functions in �Γ are discontinuous across the interface. We define the re-
striction operators ' (8)

Γ
: �̂Γ → �(8)

Γ
to be an operator which maps functions in

the continuous global interface velocity numerical trace variable space �̂Γ to the
subdomain component space �(8)

Γ
. Also, 'Γ : �̂Γ → �Γ is the direct sum of ' (8)

Γ
.

The global interface problem is assembled from the subdomain interface prob-
lems, and can be written as: find (_Γ, ?0) ∈

(
�̂Γ,,0

)
such that

(̂

[
_Γ
?0

]
=

[
6Γ
0

]
, where (̂ =

[
(̂Γ �̂)0Γ
�̂0Γ 0

]
. (8)

Here (̂Γ, �̂0Γ, and 6Γ are assembled from the subdomain matrices.
In order to introduce the BDDC preconditioner, we first introduce a partially

assembled interface space �̃Γ = �̂Π ⊕ �Δ = �̂Π ⊕
#∏
8=1

�(8)
Δ
. Here, �̂Π is the coarse

level, primal interface velocity space and the space �4 is the direct sum of the �(8)4 ,
which are spanned by the remaining interface degrees of freedom. In the space �̃Γ,
we relax most continuity constraints across the interface but retain the continuity at
the primal unknowns, which makes all the linear systems nonsingular.

We need to introduce several restriction, extension, and scaling operators between
different spaces. ' (8)Γ : �̃Γ → �(8)

Γ
restricts functions in the space �̃Γ to the

components �(8)
Γ

of the subdomain Ω8 . 'Γ : �̃Γ → �Γ is the direct sum of
'
(8)
Γ . ' (8)

Δ
: �̂Γ → �(8)

Δ
maps the functions from �̂Γ to �(8)

Δ
, its dual subdomain

components. 'ΓΠ : �̂Γ → �̂Π is a restriction operator from �̂Γ to its subspace �̂Π.
'̃Γ : �̂Γ → �̃Γ is the direct sum of 'ΓΠ and ' (8)

Δ
. We define the positive scaling
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factor X†
8
(G) as follows:

X
†
8
(G) = 1

20A3 (IG) , G ∈ mΩ8,ℎ ∩ Γℎ ,

where IG is the set of indices of the subdomains that have G on their boundaries, and
20A3 (IG) counts the number of the subdomain boundaries to which G belongs. We
note that X†

8
(G) is constant on each edge/face. Multiplying each row of ' (8)

Δ
with the

scaling factor gives us ' (8)
�,Δ

. The scaled operators '̃�,Γ is the direct sum of 'ΓΠ and
'
(8)
�,Δ

.
We denote the direct sum of the local interface velocity Schur complement by

(Γ and the partially assembled interface velocity Schur complement is defined by
(̃Γ = '

)

Γ (Γ'Γ. Correspondingly, we define an operator �̃0Γ, whichmaps the partially
assembled interface velocity space �̃Γ into the space of right-hand sides correspond-
ing to ,0. �̃0Γ is obtained from the subdomain operators by assembling them with
respect to the primal interface velocity part. Using the following notation

'̃� =

[
'̃�,Γ

�

]
, (̃ =

[
(̃Γ �̃)0Γ
�̃0Γ 0

]
, (9)

and the preconditioned BDDC algorithm is then of the form: find (_Γ, ?0) ∈(
�̂Γ,,0

)
, such that

'̃)� (̃
−1 '̃� (̂

[
_Γ
?0

]
= '̃)� (̃

−1 '̃�

[
6Γ
0

]
. (10)

Note that '̃�,Γ is of full rank and that the preconditioner is nonsingular.
Definition 1 (Benign Subspaces) We will call

�̂Γ,� = {_Γ ∈ �̂Γ | �̂0Γ_Γ = 0}, �̃Γ,� = {_Γ ∈ �̃Γ | �̃0Γ_Γ = 0}

the benign subspaces of �̂Γ and �̃Γ, respectively.
It is easy to see that the operators (̂ and (̃, defined in (8) and (10), are symmetric

positive definite on
(
�̂Γ,�,,0

)
and

(
�̃Γ,�,,0

)
, respectively. A preconditioned con-

jugate gradient method can then be used to solve the global BDDC preconditioned
interface problem (10).

4 Condition number estimate for the BDDC preconditioner

In this section, we only consider the case that the stabilization parameter g^ = $ ( 1
ℎ^
),

where ℎ^ the diameter of the element ^. Other choices of g^ will be considered
elsewhere.
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Similar to the inf-sup condition of the weak Galerkin finite element methods [15,
Lemma 4.3], we have the following lemma:

Lemma 1 There exists a positive constant V independent of ℎ and �, such that

sup
D0 ∈(G,V,�)

D)0 �
)
0 ?(

D)0 �0D0
)1/2 ≥ V‖?‖!2 (Ω) , (11)

for all ? ∈ , . Here �0, �0 are defined in (7). The theorem is also hold when Ω is
replaced by a subdomain Ω8 .

Using Lemma 1 for each subdomain, we can prove a well-known relation between
the harmonic extension and Stokes extension when the subdomain boundary velocity
is given. Similar results for the standard finite element discretization can be found in
[1]. Then we can prove a bound of the averaging operator �� for the Stokes problem.

Lemma 2 There exists a positive constant C, which is independent of H and h, such
that

|��F |2
(̃
≤ � (1 + V)

2

V2

(
1 + log

�

ℎ

)2
|F |2

(̃
, ∀ F = (_Γ, ?0) ∈

(
�̃Γ, �,,0

)
,

where V is the inf-sup stability constant.

With the help of Lemma 2, we can obtain our main result

Theorem 1 The preconditioned operator "−1(̂ is symmetric, positive definite with
respect to the bilinear form 〈·, ·〉

(̂
on the space

(
�̂Γ,�,,0

)
.The condition number

of "−1(̂ is bounded by � (1+V)
2

V2

(
1 + log

(
�
ℎ

) )2, where C is a constant, which is
independent of � and ℎ, and V is the inf-sup stability constant, defined in Lemma 1.

5 Numerical Experiments

We have applied our BDDC algorithms to the model problem (1), whereΩ = [0, 1]2.
ZeroDirichlet boundary conditions are used. The right-hand side function f is chosen
such that the exact solution is

u =

[
sin3 (cG) sin2 (cH) cos(cH)
− sin2 (cG) sin3 (cH) cos(cG)

]
and ? = G − H.

We decompose the unit square into # ×# subdomains with the sidelength � = 1/# .
Equation (1) is discretized, in each subdomain, by the :Cℎ-order HDG method with
an element diameter ℎ. The preconditioned conjugate gradient iteration is stopped
when the relative ;2-norm of the residual has been reduced by a factor of 106.
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Table 1: Performance of solving (10) with HDG discretization (g^ = 1/ℎ^ )
: = 0 : = 1 : = 2

�/ℎ #sub Cond. Iter. Cond. Iter. Cond. Iter.

8 4 × 4 4.21 10 4.72 12 12.72 14
8 × 8 5.12 12 8.81 17 11.52 20

16 × 16 5.00 13 10.43 21 13.44 24
24 × 24 5.14 13 10.83 20 13.96 25
32 × 32 5.14 13 10.84 20 14.09 25

#sub �/ℎ Cond. Iter. Cond. Iter. Cond. Iter.

8 × 8 4 2.56 9 6.23 14 8.52 17
8 5.12 12 8.81 17 11.52 20
16 7.59 15 11.86 20 17.86 24
24 9.22 17 13.86 22 20.32 25
32 10.48 19 15.37 23 22.21 26

We consider the choice of the stabilization constant g^ = 1
ℎ^
. We have carried out

two sets of experiments to obtain iteration counts and condition number estimates.
In the first set of the experiments, we fixed �

ℎ
= 8, the subdomain local problem

size, and change the number of subdomains to test the scalability of the algorithms
(the condition number is independent of the number of subdomains). In the second
set of experiments, we fixed the number of subdomains to 64 and change �

ℎ
, the

subdomain local problem size. The performance of the algorithms for the Stokes
problem is similar to those for the elliptic problems. The experimental results are
fully consistent with our theory.

Acknowledgements This work was supported in part by National Science Foundation Contracts
No. DMS-1419069 and DMS-1723066.
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A Balancing Domain Decomposition by
Constraints Preconditioner for a I0 Interior
Penalty Method

Susanne C. Brenner, Eun-Hee Park, Li-Yeng Sung, and Kening Wang

1 Introduction

Consider the following weak formulation of a fourth order problem on a bounded
polygonal domain Ω in R2:
Find D ∈ �2

0 (Ω) such that∫
Ω

∇2D : ∇2E 3G =

∫
Ω

5 E 3G ∀ E ∈ �2
0 (Ω), (1)

where 5 ∈ !2 (Ω), and ∇2E : ∇2F =
∑2
8, 9=1 (m2E/mG8mG 9 ) (m2F/mG8mG 9 ) is the inner

product of the Hessian matrices of E and F.
For simplicity, letTℎ be a quasi-uniform triangulation ofΩ consisting of rectangles

and take +ℎ ⊂ �1
0 (Ω) to be the &2 Lagrange finite element space associated with

Tℎ . (Results also hold for quadrilateral meshes.) Then the model problem (1) can be
discretized by the following �0 interior penalty Galerkin method [7, 3]:
Find Dℎ ∈ +ℎ such that

0ℎ (Dℎ , E) =
∫
Ω

5 E 3G E ∈ +ℎ ,

where
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0ℎ (E, F) =
∑
�∈Tℎ

∫
)

∇2E : ∇2F 3G +
∑
4∈Eℎ

[

|4 |
∫
4

[[
mE

mn

]] [[
mF

mn

]]
3B

+
∑
4∈Eℎ

∫
4

({{
m2E

mn2

}} [[
mF

mn

]]
+

{{
m2F

mn2

}} [[
mE

mn

]] )
3B.

Here [ is a positive penalty parameter, Eℎ is the set of edges of Tℎ , and |4 | is the
length of the edge 4. The jump [[·]] and the average {{·}} are defined as follows.

Fig. 1: (a) A triangulation ofΩ. (b) A reference direction of normal vectors on the edges of) ∈ Tℎ .

Let n4 be the unit normal chosen according to a reference direction shown in Fig. 1.
If 4 is an interior edge of Tℎ shared by two elements �− and �+, we define on 4,[[

mE

mn

]]
=
mE+
mn4
− mE−
mn4

and
{{
m2E

mn2

}}
=

1
2

(
m2E+
mn2

4

+ m
2E−
mn2

4

)
,

where E± = E |�± . On an edge of Tℎ along mΩ, we define[[
mE

mn

]]
= ± mE

mn4
and

{{
m2E

mn2

}}
=
m2E

mn2
4

,

in which the negative sign is chosen if n4 points towards the outside of Ω, and the
positive sign otherwise.

It is noted that for [ > 0 sufficiently large (Lemma 6 in [3]), there exist positive
constants �1 and �2 independent of ℎ such that

�10ℎ (E, E) ≤ |E |2� 2 (Ω,Tℎ) ≤ �20ℎ (E, E) ∀E ∈ +ℎ ,

where

|E |2
� 2 (Ω,Tℎ) =

∑
�∈Tℎ

|E |2
� 2 (�) +

∑
4∈Eℎ

1
|4 |

[[ mEmn

]]2

!2 (4)
.

Compared with classical finite element methods for fourth order problems, �0

interior penalty methods have many advantages [3, 5, 7]. However, due to the nature
of fourth order problems, the condition number of the discrete problem resulting from
�0 interior penalty methods grows at the rate of ℎ−4 [8]. Thus a good preconditioner
is essential for solving the discrete problem efficiently and accurately. In this paper,
we develop a nonoverlapping domain decomposition preconditioner for �0 interior
penalty methods that is based on the balancing domain decomposition by constraints
(BDDC) approach [6, 4, 1].
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The rest of the paper is organized as follows. In Section 2 we introduce the
subspace decomposition. We then design a BDDC preconditioner for the reduced
problem in Section 3, followed by condition number estimates in Section 4. Fi-
nally, we report numerical results in Section 5 that illustrate the performance of the
proposed preconditioner and corroborate the theoretical estimates.

2 A Subspace Decomposition

We begin with a nonoverlapping domain decomposition ofΩ consisting of rectangu-
lar (open) subdomains Ω1,Ω2, · · · ,Ω� aligned with Tℎ such that mΩ 9

⋂
mΩℓ = ∅, a

vertex, or an edge, if 9 ≠ ℓ.
We assume the subdomains are shape regular and denote the typical diameter of

the subdomains by �. Let Γ =
(⋃�

9=1 mΩ 9

)
\mΩ be the interface of the subdomains,

and Eℎ,Γ be the subset of Eℎ containing the edges on Γ.
Since the condition that the normal derivative of E vanishes on Γ is implicit in

terms of the standard degrees of freedom (dofs) of the &2 finite element, it is more
convenient to use the modified &2 finite element space (Fig. 2) as +ℎ . Details of the
modified &2 finite element space can be found in [5].

Fig. 2: (a) A nonoverlapping decomposition of Ω into Ω1, · · · ,Ω� and a triangulation of the
subdomainΩ 9 . (b) Dofs of+ℎ |Ω 9 . (c) Reference directions for the first order and mixed derivatives.

First of all, we decompose +ℎ into two subspaces

+ℎ = +ℎ,� ⊕ +ℎ,� ,

where

+ℎ,� =

{
E ∈ +ℎ :

[[
mE

mn

]]
= 0 on the edges in Eℎ that are subsets of

�⋃
9=1
mΩ 9

}
and

+ℎ,� =

{
E ∈ +ℎ :

{{
mE

mn

}}
= 0 on edges in Eℎ,Γ, and

E vanishes at all interior nodes of each subdomain
}
.
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Let �ℎ : +ℎ → + ′
ℎ
be the symmetric positive definite (SPD) operator defined by

〈�ℎE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ ,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual.
Similarly, we define �ℎ,� : +ℎ,� → + ′

ℎ,�
and �ℎ,� : +ℎ,� → + ′

ℎ,�
by

〈�ℎ,�E, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� and 〈�ℎ,�E, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� .

Then we have the following lemma.

Lemma 1 For any E ∈ +ℎ , there is a unique decomposition E = E� + E�, where
E� ∈ +ℎ,� and E� ∈ +ℎ,� . In addition, it holds that

〈�ℎE, E〉 ≈ 〈�ℎ,�E� , E�〉 + 〈�ℎ,�E� , E�〉 ∀ E ∈ +ℎ .

Remark 1 Since the subspace +ℎ,� only contains dofs on the boundary of subdo-
mains, the size of the matrix �ℎ,� is of order �/ℎ. We can implement the solve �−1

ℎ,�

directly. Therefore, it is crucial to have an efficient preconditioner for �ℎ,� .

Because functions in +ℎ,� have continuous normal derivatives on the edges in
Eℎ,Γ and vanishing normal derivatives on mΩ, it is easy to observe that

0ℎ (E, F) =
�∑
9=1
0ℎ, 9 (E 9 , F 9 ) ∀ E, F ∈ +ℎ,� ,

where E 9 = E
��
Ω 9
, F 9 = F

��
Ω 9
, and 0ℎ, 9 (·, ·) is the analog of 0ℎ (·, ·) defined on

elements and interior edges of Ω 9 . Note that 0ℎ, 9 (·, ·) is a localized bilinear form.
Next we define

+ℎ,� (Ω\Γ) =
{
E ∈ +ℎ,� : E has vanishing derivatives up to order 1 on Γ

}
+ℎ,� (Γ) =

{
E ∈ +ℎ,� : 0ℎ (E, F) = 0, ∀F ∈ +ℎ,� (Ω\Γ)

}
.

Functions in +ℎ,� (Γ) are referred to as discrete biharmonic functions. They are
uniquely determined by the dofs associated with Γ.

For any E� ∈ +ℎ,� , there is a unique decomposition E� = E�,Ω\Γ + E�,Γ,
where E�,Ω\Γ ∈ +ℎ,� (Ω\Γ) and E�,Γ ∈ +ℎ,� (Γ). Furthermore, let �ℎ,�,Ω\Γ :
+ℎ,� (Ω\Γ) → +ℎ,� (Ω\Γ) ′ and (ℎ : +ℎ,� (Γ) → +ℎ,� (Γ) ′ be SPD operators defined
by

〈�ℎ,�,Ω\ΓE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� (Ω\Γ),
〈(ℎE, F〉 = 0ℎ (E, F) ∀ E, F ∈ +ℎ,� (Γ),

then it holds that for all E� ∈ +ℎ,� with E� = E�,Ω\Γ + E�,Γ,

〈�ℎ,�E� , E�〉 = 〈�ℎ,�,Ω\ΓE�,Ω\Γ, E�,Ω\Γ〉 + 〈(ℎE�,Γ, E�,Γ〉.
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Remark 2 It is noted that �−1
ℎ,�,Ω\Γ can be implemented by solving the localized

biharmonic problems on each subdomain in parallel. Hence, a preconditioner for
(−1
ℎ

needs to be constructed.

3 A BDDC Preconditioner

In this section a preconditioner for the Schur complement (ℎ is constructed by the
BDDC methodology.

Let +ℎ,�, 9 , 1 ≤ 9 ≤ � be the restriction of +ℎ,� on the subdomain Ω 9 . We define
H 9 , the space of local discrete biharmonic functions, by

H 9 =
{
E ∈ +ℎ,�, 9 : 0ℎ, 9 (E, F) = 0 ∀F ∈ +ℎ,� (Ω 9 )

}
,

where +ℎ,� (Ω 9 ) is the subspace of +ℎ,�, 9 whose members vanish up to order 1 on
mΩ 9 . The space HC is then defined by gluing the spaces H 9 together at the cross
points such that

HC =
{
E ∈ !2 (Ω) : E

��
Ω 9
∈ H 9 and E has continuous dofs at subdomain corners

}
.

We equipHC with the bilinear form:

0�ℎ (E, F) =
∑

1≤ 9≤�
0ℎ, 9 (E 9 , F 9 ) ∀ E, F ∈ HC ,

where E 9 = E
��
Ω 9

and F 9 = F
��
Ω 9
.

Next we introduce a decomposition ofHC ,

HC = H̊ ⊕ H0

where

H̊ = {E ∈ HC : the dofs of E vanish at the corners of the subdomains Ω1, . . . ,Ω� } ,
H0 =

{
E ∈ HC : 0�ℎ (E, F) = 0 ∀F ∈ H̊

}
.

Let H̊ 9 be the restriction of H̊ onΩ 9 . We then define SPD operators (0 : H0 −→
H ′0 and ( 9 : H̊ 9 −→ H̊ ′9 by

〈(0E, F〉 = 0�ℎ (E, F) ∀ E, F ∈ H0 and 〈( 9E, F〉 = 0ℎ, 9 (E, F) ∀ E, F ∈ H̊ 9 .

Now the BDDC preconditioner ����� for (ℎ is given by
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����� = (%Γ�0) (−1
0 (%Γ�0)C +

�∑
9=1

(
%ΓE 9

)
(−1
9

(
%ΓE 9

) C
,

where �0 : H0 → HC is the natural injection, E 9 : H̊ 9 → HC is the trivial
extension, and %Γ : HC −→ +ℎ,� is a projection defined by averaging such that for
all E ∈ HC , %ΓE is continuous on Γ up to order 1.

Remark 3 A preconditioner � : +ℎ ′ −→ +ℎ for �ℎ can then be constructed as
follows:

� = ���
−1
ℎ,� �

C
� + �ℎ,�,Ω\Γ�−1

ℎ,�,Ω\Γ�
C
ℎ,�,Ω\Γ + �Γ����� � CΓ,

where �� : +ℎ,� → +ℎ , �ℎ,�,Ω\Γ : +ℎ,� (Ω\Γ) → +ℎ , and �Γ : +ℎ,� (Γ) → +ℎ are
natural injections.

4 Condition Number Estimates

In this section we present the condition number estimates of �����(ℎ . Let us begin
by noting that

+ℎ,� (Γ) = %Γ�0H0 +
�∑
9=1

%ΓE 9H̊ 9 .

Then it follows from the theory of additive Schwarz preconditioners (see for exam-
ple [10, 11, 9, 2]) that the eigenvalues of �����(ℎ are positive, and the extreme
eigenvalues of �����(ℎ are characteristic by the following formulas

_min (�����(ℎ) = min
E∈+ℎ,� (Γ)

E≠0

〈(ℎE, E〉

min
E=%Γ�0E0+

∑�
9=1 %ΓE 9 E̊9

E0∈H0 , E̊9 ∈H̊ 9

(
〈(0E0, E0〉 +

�∑
9=1
〈( 9 E̊ 9 , E̊ 9〉

) ,

_max (�����(ℎ) = max
E∈+ℎ,� (Γ)

E≠0

〈(ℎE, E〉

min
E=%Γ�0E0+

∑�
9=1 %ΓE 9 E̊9

E0∈H0 , E̊9 ∈H̊ 9

(
〈(0E0, E0〉 +

�∑
9=1
〈( 9 E̊ 9 , E̊ 9〉

) ,

fromwhich we can establish a lower bound for the minimum eigenvalue of �����(ℎ ,
an upper bound for the maximum eigenvalue of �����(ℎ , and then an estimate on
the condition number of �����(ℎ .

Theorem 1 It holds that _min (�����(ℎ) ≥ 1 and _max (�����(ℎ) ≤ (1 +
ln(�/ℎ))2/�, which imply
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^(�����(ℎ) = _max (�����(ℎ)
_min (�����(ℎ) ≤ � (1 + ln(�/ℎ))2,

where the positive constant � is independent of ℎ, �, and �.

5 Numerical Results

In this section we present some numerical results to illustrate the performance of the
preconditioners ����� and �. We consider our model problem (1) on the unit square
(0, 1) × (0, 1). By taking the penalty parameter [ in 0ℎ (·, ·) and 0ℎ, 9 (·, ·) to be 5,
we compute the maximum eigenvalue, the minimum eigenvalue, and the condition
number of the systems �����(ℎ and ��ℎ for different values of � and ℎ.

The eigenvalues and condition numbers of �����(ℎ and ��ℎ for 16 subdomains
are presented in Tables 1 and 2, respectively. They confirm our theoretical estimates.
In addition, the corresponding condition numbers of �ℎ are provided in Table 2.

Moreover, to illustrate the practical performance of the preconditioner, we present
in Table 3 the number of iterations required to reduce the relative residual error by
a factor of 10−6 for the preconditioned system and the un-preconditioned system,
from which we can observe the dramatic improvement in efficiency due to the
preconditioner, especially as ℎ gets smaller.
Table 1: Eigenvalues and condition numbers of �����(ℎ for � = 1/4 ( J = 16 subdomains )

_max (�����(ℎ) _min (�����(ℎ) ^(�����(ℎ)
ℎ=1/8 3.6073 1.0000 3.6073
ℎ=1/12 2.9197 1.0000 2.9197
ℎ=1/16 3.0908 1.0000 3.0908
ℎ=1/20 3.2756 1.0000 3.2756
ℎ=1/24 3.4535 1.0000 3.4535

Table 2: Eigenvalues and condition numbers of ��ℎ , and condition numbers of �ℎ for � = 1/4
( J = 16 subdomains )

_max (��ℎ) _min (��ℎ) ^(��ℎ) ^(�ℎ)
ℎ=1/8 4.0705 0.2148 18.9490 1.1064e+03
ℎ=1/12 3.4107 0.2507 13.6054 1.3426e+04
ℎ=1/16 3.4866 0.2578 13.5244 6.1689e+04
ℎ=1/20 3.5947 0.2590 13.8787 1.8215e+05
ℎ=1/24 3.7123 0.2593 14.3181 4.2288e+05

Acknowledgements The work of the first and third authors was supported in part by the National
Science Foundation under Grant No. DMS-16-20273.
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Table 3:Number of iterations for reducing the relative residual error by a factor of 10−6 for� = 1/4
( J = 16 subdomains )

#8C4A (�ℎG = 1) #8C4A (��ℎG = �1)
ℎ=1/8 95 27
ℎ=1/12 235 23
ℎ=1/16 434 23
ℎ=1/20 704 23
ℎ=1/24 1026 23
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Preconditioners for Isogeometric Analysis and
Almost Incompressible Elasticity

Olof B. Widlund, Luca F. Pavarino, Simone Scacchi, and Stefano Zampini

1 Introduction

The aim of this work is to develop a block FETI–DP preconditioner for mixed
formulations of almost incompressible elasticity discretizedwithmixed isogeometric
analysis (IGA) methods with continuous pressure. IGA is a recent technology for the
numerical approximation of Partial Differential Equations (PDEs), using the highly
regular function spaces generated by B-splines and NURBS not only to describe
the geometry of the computational domain but also to represent the approximate
solution, see e.g. [4]. For a few previous studies, focused on effective solvers for IGA
of saddle point problems, see [7, 6].

Inspired by previous work by Tu and Li [10] for finite element discretizations
of the Stokes system, the proposed preconditioner is applied to a reduced positive
definite system involving only the pressure interface variable and the Lagrange
multipliers of the FETI–DP algorithm. A novelty of our contribution consists of
using BDDC with deluxe scaling for the interface pressure block and FETI–DP with
deluxe scaling for the multiplier block. The numerical results reported in this paper
show the robustness of this solver with respect to jumps in the elastic coefficients
and the degree of incompressibility of the material.
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2 Two variational formulations of elasticity systems

LetΩ be a domain in R3, which can be represented exactly by the isogeometric anal-
ysis system. It is decomposed into # non-overlapping subdomains Ω8 , of diameter
�8 , which are images under a geometric map F of a coarse element partition g� of
a reference domain. The interface of the decomposition is given by

Γ =

(
#⋃
8=1

mΩ8

)
\ mΩ.

The boundary mΩ is the union of two disjoint sets mΩ� and mΩ# where mΩ� is
of non-zero surface measure. We work with two load functions g ∈ [!2 (Ω)]3 and
g# ∈ [!2 (mΩ# )]3, and the spaces

\ := {v ∈ �1 (Ω)3 : v|mΩ� = 0}, & := !2 (Ω).

The load functions define a linear functional

< f , v >:=
∫
Ω

g · v3G +
∫
mΩ#

g# · v3�.

If the material is compressible, we can use the variational formulation of the
linear elasticity (LE) equations:

2
∫
Ω

`9(u) : 9(v) 3G +
∫
Ω

_divu divv 3G = < f, v > ∀v ∈ \ . (1)

Here 9 is the symmetric gradient operator and `(G) and _(G) the Lamé parameters
of the material that for simplicity, when developing the theory, are assumed to be
constant in each subdomain Ω8 , i.e. ` = `8 and _ = _8 in Ω8 . These parameters can
be expressed in terms of the local Poisson ratio a8 and Young’s modulus �8 as

`8 :=
�8

2(1 + a8) , _8 :=
�8a8

(1 + a8) (1 − 2a8) . (2)

The elastic material approaches the incompressible limit when a8 → 1/2. Our
main focus will be on a mixed formulation of linear elasticity for almost incompress-
ible (AIE) materials as, e.g., in [2, Ch. 1]: find the material displacement u ∈ \ and
pressure ? ∈ & such that

2
∫
Ω

` 9(u) : 9(v) 3G −
∫
Ω

div v ? 3G = < f , v > ∀v ∈ \,

−
∫
Ω

div u @ 3G −
∫
Ω

1
_
?@ 3G = 0 ∀@ ∈ &.

(3)

Factoring out the constants `8 and 1
_8
, we can define local bilinear forms in terms of

integrals over the subdomains Ω8 and we obtain for the almost incompressible case



352 O.B. Widlund, L.F. Pavarino, S. Scacchi, and S. Zampini

`0(u, v) :=
#∑
8=1

`808 (u, v) :=
#∑
8=1

2`8
∫
Ω8

9(u) : 9(v) 3G

1(v, @) :=
#∑
8=1

18 (v, @) := −
#∑
8=1

∫
Ω8

divv @ 3G, (4)

1
_
2(?, @) :=

#∑
8=1

1
_8
28 (?, @) :=

#∑
8=1

1
_8

∫
Ω8

? @ 3G.

The isogeometric approximation of the mixed elasticity problem is obtained
by selecting spaces for the displacements u and pressure ?, respectively. Following
Bressan and Sangalli, [3], we select mapped NURBS functions of polynomial degree
? ≥ 2 with ? − 2 continuous derivatives for the displacement and of polynomial
degree ? − 1 with ? − 2 continuous derivatives for the pressure; see, e.g., [8] for
details on these Taylor–Hood spaces. The resulting pair of spaces is known to be
inf-sup stable, see [3]. A major difference from finite element approximations stems
from the fact that except for the lowest order case, there is no nodal basis which leads
to fat interfaces, see [11, Sec. 4.2] and [12, Sec. 3]. This fact makes the construction
of small primal spaces more urgent and complicated.

The knots of the isogeometric analysis problems are partitioned into interior
knots with basis functions, with support in the subdomain interiors which do not
intersect the boundaries of any subdomain, and interface knots. The latter set is
partitioned into equivalence classes. These equivalence classes are associated with
the subdomain vertices, edges, and faces. Thus, such a vertex class is given by the
knots with basis functions with a subdomain vertex in the interior of their supports.
A detailed definition of the edge and face classes are given in [8, Section 3]. These
equivalence classes are important in the design, analysis, and programming of BDDC
and FETI–DP as well as many other domain decomposition algorithms.

3 Dual–Primal decomposition and a FETI–DP reduced system

The interface displacement variable u is partitioned into a dual part u� and a primal
part u�. To be competitive, the space of primal variables, with functions which
are continuous across the interface, should be of much smaller dimension than that
of the space of dual variables, for which we allow jumps across the interface. The
displacement variables u is split into interior uI, dual u�, and primal u� components,
and the pressure ? into interior ?� and interface ?Γ components, and we denote by
_Δ the vector of Lagrange multipliers used to enforce the continuity of the dual
displacements across the interface.

Following Tu and Li, [10], we reorder the variables as uI, ?� , u�, u�, ?Γ, and
_Δ and splitting the matrices `�, �, and 1

_
�, defined by the the bilinear forms of

(4) and the mixed method, into appropriate blocks associated with this splitting. The
original saddle point system resulting from (4) is equivalent to
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`�� � �)
� �

`��Δ `��Π �)
Γ�

0
�� � − 1

_
�� � ��Δ ��Π − 1

_
�)
Γ�

0
`�Δ� �)

�Δ
`�ΔΔ `�ΔΠ �)

ΓΔ
�)
Δ

`�Π� �)
�Π

`�ΠΔ `�ΠΠ �)
ΓΠ

0
�Γ� − 1

_
�Γ� �ΓΔ �ΓΠ − 1

_
�ΓΓ 0

0 0 �Δ 0 0 0





uI
?�
u�

u�

?Γ
_Δ


=



fI
0
f�
f�
0
0


, (5)

where �Δ =
[
�
(1)
Δ

�
(2)
Δ

. . . �
(# )
Δ

]
is a Boolean matrix which enforces continuity,

�Δu� = 0, of the dual displacement variables u� shared by neighboring subdomains.
If we confine ourselves to the case where _Δ belongs to the range of �Δ, this matrix,
although indefinite, is nonsingular under the condition that the primal space is large
enough.

If the primal space is relatively small, we can, at an acceptable cost, reduce the
indefinite system (5) to a symmetric, positive definite system by eliminating the uI,
?� , u�, and u� variables and changing the sign. We obtain a Schur complement and
a reduced linear system

�

[
?Γ
_Δ

]
= 6, (6)

which is then solved by a preconditioned conjugate gradient algorithm with a block
preconditioner. Here,

� := �̃� �̃−1�̃)� +
1
_
�̃, 6 := −�̃� �̃−1


fI
0
f�
f�

 , (7)

and where �̃ is the leading 4-by-4 principal minor of the matrix of (5) and

�̃� :=
[
�Γ� − 1

_
�Γ� �ΓΔ �ΓΠ

0 0 �Δ 0

]
and �̃ :=

[
�ΓΓ 0

0 0

]
. (8)

4 Deluxe scaling

For the Lagrange multiplier _Δ, we use, following Tu and Li [10], a FETI-DP
preconditioner borrowed from our work on the compressible case reported in [8]. In
BDDC, the average ū := ��u of an element in the partially discontinuous space of
displacements is computed separately for the sets of interface degrees of freedom of
the vertex, edge, and face equivalence classes; the operator �� is central for both the
algorithm and the analysis, see, e.g., [11]. For FETI-DP methods the complementary
projection %� := �−�� is similarly relevant. We start by defining the deluxe scaling
in the simplest case of a class with only two elements, 8, 9 , for a face F ; for more
details on the fat interface and the definition of the fat equivalence classes, we refer
to [11, Sec. 4.2] and [12, Sec. 3].
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Let ( (8) be the Schur interface complement of the subdomain Ω8 , and define two
principal minors, ( (8)F and ( ( 9)F , obtained from ( (8) and ( ( 9) by removing all rows
and columns which do not belong to variables associated with F .

With u(8)F the restriction of an element in the dual space to the face F , the deluxe
average across F is then defined as

ūF =
(
(
(8)
F + (

( 9)
F

)−1 (
(
(8)
F u(8)F + (

( 9)
F u( 9)F

)
. (9)

We also need to define deluxe averaging operators for subdomain edges and sub-
domain vertices. Given the simple hexahedral subdomain geometry of the parameter
space that we are considering, we find that such an equivalence class will have four
and eight elements for any fat subdomain edge and vertex, respectively, in the interior
of Ω. Thus, for such a fat subdomain edge E shared by subdomains Ω8 ,Ω 9 ,Ω: , and
Ωℓ , we use the formula

ūE :=
(
(
(8)
E + (

( 9)
E + (

(:)
E + (

(ℓ)
E

)−1 (
(
(8)
E u(8)E + (

( 9)
E u( 9)E + (

(:)
E u(:)E + (

(ℓ)
E u(ℓ)E

)
.

An analogous formula holds for the fat vertices and involves eight operators. Edges
and vertices located on the Neumann boundary of the domain will have fewer
elements, depending on the number of subdomains that share them.

For each subdomain Ω8 , we then define a scaling matrix by its restriction � (8)
Δ

to
subdomain Ω8 as the direct sum of diagonal blocks given by the deluxe scaling of
the face, edge, and vertex terms belonging to the interface of Ω8:

- for subdomain faces: �
(8)
F := ( (8)F

(
(
(8)
F + (

( 9)
F

)−1
,

- for subdomain edges: �
(8)
E := ( (8)E

(
(
(8)
E + (

( 9)
E + (

(:)
E + (

(ℓ)
E

)−1
,

- for subdomain vertices: an analogous formula with eight operators.
These scaling matrices and their transposes provide factors of FETI-DP precondi-
tioning operator. In terms of the complementary projection operator %� = � − �� ,
we have for a fat face of Ω8 :

%�uF =
(
(
(8)
F + (

( 9)
F

)−1
(
( 9)
F (u

(8)
F − u( 9)F ).

Similar formulas are easily developed for the other types of equivalence classes.
For the preconditioner block associated with the _Δ variable, we can borrow

directly a successful preconditioner developed in [8] for compressible elasticity. We
note that the bilinear form of (1) has a term additional to `0(·, ·) but that this does
not have any real consequences.

In the present work, the pressure sub-solver "−1
?Γ

is chosen as the inverse of 1
`
(�
ΓΓ

obtained from the subdomain mass matrices associated with the interface pressure
variables ?Γ. This matrix is obtained by subassembling the local Schur complements
(�

(8)
ΓΓ

of the subdomain mass matrices � (8) weighted by 1
`8

and defined by
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1
`8
(�

(8)
ΓΓ :=

1
`8
�
(8)
ΓΓ
− 1
`8
�
(8)
Γ�
�
(8)−1

� �
�
(8)
�Γ
.

To develop a competitive algorithm, we then replace the inverse of this Schur com-
plement, defining "−1

?Γ
, by a BDDC deluxe preconditioner built from the subdomain

matrices 1
`8
(�

(8)
ΓΓ

. In our experience, this has proven very successful even without a
primal subspace. We note that such a preconditioner is quite helpful given that the
mass matrices of the isogeometric Taylor–Hood elements are quite ill-conditioned.

5 Numerical results

We report results of some numerical experiments for the LE (1) and AIE (3) systems
in two and three dimensions, discretized with isogeometric NURBS spaces with
a uniform mesh size ℎ, polynomial degree ?, and regularity : . Results for much
larger problems are reported in [13]. The boundary of a reference unit cube has a
zero Dirichlet condition on one face, an inhomogeneous Neumann condition on the
opposite face, and zero Neumann conditions on all the other faces. The domain Ω is
decomposed into # non-overlapping subdomains of characteristic size �.

The tests have been performed using PetIGA-MF [5, 9] as a discretization package;
the solvers used are available in the latest release, 3.10, of the PETSc library [1],
and have been contributed by Stefano Zampini (see also [14]). In all experiments,
the norm of the residual vector has been decreased by a factor 10−8.

5.1 Checkerboard jumping coefficient test

This test is devoted to investigating the robustness of the proposed block FETI-DP
preconditioners for the 2D and 3D AIE system with elastic coefficients configured
in a checkerboard pattern. We consider jumps in both the Young modulus � and
the Poisson ration a. In Tables 1 and 2, the conjugate gradient (CG) iteration count
(=8C ) and the maximal (_" ) and minimal (_<) eigenvalues of the preconditioned
operator are reported. In the 2D test, we have fixed the number of subdomains to
# = 49 = 7 × 7 and the mesh size to 1/ℎ = 128. In the 3D test, the number of
subdomains is # = 27 = 3 × 3 × 3 and the mesh size 1/ℎ = 16. The displacement
field spline parameters of the Taylor-Hood pair are ? = 3, : = 1; therefore the
pressure spline parameters are ? = 2, : = 1. The results show that the proposed
solver is very robust with respect to all the jumps considered, since both the number
of CG iterations and the extreme eigenvalues approach constant values when �
becomes large or the material becomes incompressible (a → 0.5).
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2D jump test for � 2D jump test for a
� =8C _" _< a =8C _" _<

1e+00 23 2.91e+00 2.91e-01 0.3 10 3.16e+00 6.27e-01
1e+01 25 1.91e+00 1.83e-01 0.4 11 3.12e+00 5.04e-01
1e+02 39 2.09e+00 8.30e-02 0.45 12 3.07e+00 4.17e-01
1e+03 51 2.15e+00 3.72e-02 0.49 14 3.02e+00 3.35e-01
1e+04 52 2.16e+00 3.31e-02 0.499 14 3.01e+00 3.21e-01
1e+05 49 2.16e+00 4.23e-02 0.4999 14 3.01e+00 3.20e-01

Table 1: FETI-DP for AIE on 2D checkerboard jumping coefficient tests. Conjugate gradient
iteration counts (=8C ) and extreme eigenvalues (_" , _<) of the preconditioned operator. Jump test
for �: � = 1 in black subdomains, � shown in the table in red subdomains; fixed a = 0.49. Jump
test for a: a = 0.3 in black subdomains, a shown in the table in red subdomains; fixed � = 14+06.
In both tests: # = 49 = 7× 7 subdomains; 1/ℎ = 128, displacement field spline parameters ? = 3,
: = 1.

3D jump test for � 3D jump test for a
� =8C _" _< a =8C _" _<

1e+00 28 2.72e+00 2.46e-01 0.3 12 3.04e+00 5.52e-01
1e+01 39 2.83e+00 1.27e-01 0.4 13 2.82e+00 4.34e-01
1e+02 62 2.92e+00 4.35e-02 0.45 14 2.76e+00 3.69e-01
1e+03 80 2.99e+00 2.39e-02 0.49 15 2.73e+00 3.19e-01
1e+04 83 3.00e+00 2.18e-02 0.499 16 2.72e+00 3.05e-01
1e+05 83 3.00e+00 2.20e-02 0.4999 16 2.72e+00 3.04e-01

Table 2: FETI-DP for AIE on 3D checkerboard jumping coefficient tests. Conjugate gradient
iteration counts (=8C ) and extreme eigenvalues (_" , _<) of the preconditioned operator. Jump
test for �: � = 1 in black subdomains, � shown in the table in red subdomains; fixed a = 0.49.
Jump test for a: a = 0.3 in black subdomains, a shown in the table in red subdomains; fixed
� = 14 + 06. In both tests: # = 27 = 3 × 3 × 3 subdomains; 1/ℎ = 16, displacement field spline
parameters ? = 3, : = 1.

5.2 A comparison between FETI-DP for LE and for AIE

The aim of this test is to compare the FETI-DP preconditioner for 3D LE developed
previously in [8] with the block FETI-DP solver for 3D AIE proposed in the current
project, in terms of the robustness with respect to incompressibility of the material,
i.e., when a → 0.5.

In Table 3, the CG iteration count (=8C ) and the maximal (_" ) and minimal (_<)
eigenvalues of the preconditioned operator are reported. The Young modulus is kept
fixed to � = 1 in the whole domain, while a varies as detailed in the tables. We fix
the number of subdomains to # = 27 = 3×3×3 and the mesh size to 1/ℎ = 16. The
displacement field spline parameters are ? = 3, : = 1. Using a Taylor-Hood pair for
the case of AIE, this results in pressure spline parameters of ? = 2, : = 1.

The results show, as expected, that the FETI-DP solver for LE degenerates when
the material approaches the incompressible limit, while the FETI-DP solver for
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AIE is very robust in terms of both CG iterations and extreme eigenvalues of the
preconditioned operator.

3D comparison
a FETI-DP for LE FETI-DP for AIE

=8C _" _< =8C _" _<

0.3 16 8.73e+00 1.03e+00 20 3.04e+00 5.07e-01
0.4 19 1.30e+01 1.03e+00 23 2.73e+00 3.59e-01
0.45 25 2.02e+01 1.02e+00 25 2.73e+00 2.94e-01
0.49 43 5.49e+01 1.03e+00 28 2.72e+00 2.46e-01
0.499 100 2.48e+02 1.02e+00 28 2.72e+00 2.36e-01
0.4999 283 1.85e+03 1.02e+00 28 2.72e+00 2.35e-01

Table 3: 3D comparison between FETI-DP for LE and for AIE. Conjugate gradient iteration
counts (=8C ) and extreme eigenvalues (_" , _<) of the preconditioned operator. � = 1, # = 27 =
3 × 3 × 3 subdomains; 1/ℎ = 16, displacement field spline parameters ? = 3, : = 1.
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Dispersion Correction for Helmholtz in 1D with
Piecewise Constant Wavenumber

Pierre-Henri Cocquet, Martin J. Gander, and Xueshuang Xiang

1 Introduction

The Helmholtz equation is the simplest model for time harmonic wave propagation,
and it contains already all the fundamental difficulties such problems pose when
trying to compute their solution numerically. Since time harmonic wave propagation
has important applications in many fields of science and engineering, the numerical
solution of such problems has been the focus of intensive research efforts, see
[15, 16, 20, 10, 5, 23, 28], and the review [17] and references therein for domain
decomposition approaches, and [3, 11, 13, 25, 14, 7] and references therein for
multigrid techniques. The main problem is that all grid based numerical methods
like finite differences or finite elements are losing accuracy because of what is called
the pollution effect [2, 1]. It is not sufficient to just choose a number of grid points
large enough to resolve the wave length determined by the wave number to obtain
an accurate solution; the larger the wave number, the more grid points per wave
length are needed. This leads to extremely large linear systems that need to be
solved when the wave number becomes large, which is hard using classical iterative
methods, see [12] and references therein. The pollution effect is due to the numerical
dispersion, a property which unfortunately all grid based methods have, see also
[22, 26] and references therein. In the case of a constant wave number, to reduce the
numerical dispersion of the standard 5-point finite difference scheme, a rotated 9-
point FDMwas proposed in [19] which minimizes the numerical dispersion, see also
[4, 24, 27, 6] for more recent such approaches. In particular, in [8] a new approach
was introduced which does not only modify the finite difference stencil, but also
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the wave number itself in the discrete scheme to minimize dispersion. This led to a
new finite difference scheme in two spatial dimensions with much smaller dispersion
error than all previous approaches, see also [18]. Minimizing numerical dispersion is
also important for effective coarse grid corrections in domain decomposition and for
constructing efficient multigrid solvers [25]: for a constant wave number in 1D it is
even possible to obtain perfect multigrid efficiency using standard components and
dispersion correction, it suffices to use a suitably modified numerical wave number
on each level [13], see also [21]. Note that this is very different from [9] where a
large complex shift is used in the spirit of [11].

In all previous work on dispersion correction, a main assumption is that the
wave number is constant throughout the domain. We propose and study here a
new dispersion correction for the Helmholtz equation in 1D in the case where the
wave number is only piecewise constant, and allowed to jump in between. Using
the exact solution of a transmission problem, we determine for a finite difference
discretization a dispersion correction at the interface where the wave number is
jumping by introducing a modified numerical wave number there. We show by
numerical experiments that this dispersion correction leads to much more accurate
solutions than the scheme without dispersion correction, and this at already few
points per wavelength resolution. We then also show that this dispersion correction
has a very good effect on a two-grid method, by studying numerically the contraction
factor of a two grid scheme in the important regime where the coarse and fine mesh
are far from resolving the problem. We then conclude by discussing further research
directions.

2 Problem Setting

We consider the 1D Helmholtz equation1 with source term 5 ∈ !2 (−1, 1),

−m2
G2D(G) − : (G)2D(G) = 5 (G), G ∈ (−1, 1), D(−1) = 0, D(1) = 0, (1)

where : (G) is the wave number, which we assume to be piecewise constant, : (G) :=
:1 if G ≤ 0, and : (G) := :2 if G > 0. We discretize Problem (1) with a standard
3-point centered finite difference scheme on a uniform mesh2 with = interior mesh
points and meshsize ℎ = 1/(= + 1). Assuming that G = 0 is always a grid point,
and denoting by =1 the number of interior mesh points in (−1, 0) and =2 the number
of interior mesh points in (0, 1), the continuous problem is thus approximated by a
linear system �u = f with

� =
1
ℎ2 tridiag (−1, 2,−1) − diag(:2

1 �=1 , :
2
0, :

2
2 �=2 ), f =

(
5 (G 9 )

)=
9=1 , (2)

1 We only choose wave number configurations such that this problem is well posed
2 We use for simplicity the same mesh size in both regions
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where :0 = : (0) = :1, but we could also have chosen :2 here.

3 Dispersion Correction for Piecewise Constant Wave Number

We use a modified wave number like in [13, p. 26 Eq. (3.15)] in the regions where
the wave number is constant,

:̂ℎ (G) :=


√

2ℎ−2 (1 − cos(:1ℎ)) if G < 0,
:̂0 at G = 0,√

2ℎ−2 (1 − cos(:2ℎ)) if G > 0.

This modified wave number was obtained in [13] by making the exact solution of
the homogeneous Helmholtz equation on R satisfy the finite difference scheme.
Similarly we determine :̂0 such that it satisfies the equation

ℎ−2 (2D4 (0) − D4 (−ℎ) − D4 (ℎ)) − :̂2
0D4 (0) = 0, (3)

where D4 is the exact solution of the Helmholtz equation with discontinuous : on R
for the transmission problem of an incoming wave, given by

D4 (G) :=
{
�ei:1G + �e−i:1G if G < 0

�ei:2G if G ≥ 0 , with � =
:1 + :2

2:1
, � =

:1 − :2
2:1

, � = 1.

(4)
The matrix associated to the new FD scheme with dispersion correction is then given
by (2) with : replaced by :̂ℎ .

We show in Figure 1 the great influence this dispersion correction has on the
numerical quality of the solution. We used :1 = 3.2c and :2 = :1/2 (top) and
:2 = :1/4 (bottom) and solved (2) with and without dispersion correction using a
mesh size ℎ = 1

16 which implies 10 points per wavelength for G < 0 (left) and ℎ = 1
8

(right), which implies 5 points per wavelength for G < 0. As a source term, we used
a linear combination of the first sine functions sin(l c (G+1)

2 ), l = 1, 2, . . . , 16 with
random coefficients, and we denote by exact a numerical solution without dispersion
correction using a four times finer grid. We clearly see that dispersion correction
is also possible in the case of a non-constant wave number, and we next study the
influence of such a correction on a two-grid method.

4 Influence of Dispersion Correction on Multigrid

A two-grid algorithm for a general linear system �u = f is given by performing for
= = 0, 1, . . .
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Fig. 1:Four numerical examples showing the impact of dispersion correction in the case of piecewise
constant wave speed: contrast 2 (top row) and 4 (bottom row) and 10 points per wavelength (left
column) and 5 points per wavelength (right column)

ũ= := (a1 (u=, f); % pre − smoothing
r=2 := '(f − �ũ=);
e=+12 = �−1

2 r=2 ;
ũ=+1 = ũ= + %e=+1;
u=+1 = (a2 (ũ=+1, f); % post − smoothing

(5)

where ' denotes a restriction operator, % a prolongation operator, (a represents a
iterations of a smoother, and �2 is a coarse matrix. We define the fine grid Ωℎ with
meshsize ℎ = 1/(= + 1) by

Ωℎ :=
{
G 9 = 9 ℎ : 9 = 0, · · · , = + 1

}
.

The coarse grid is defined from Ωℎ with mesh width � = 2ℎ by coarsening,

Ω� :=
{
G 9 = 9� : 9 = 0, · · · , # + 1

}
,

where = = 2# + 1. The prolongation operator maps grid functions u� defined on
a coarse grid Ω� to a function �ℎ

�
u� defined on the fine grid Ωℎ using linear

interpolation. Its matrix representation % can be found in [13, p.18, Eq.(3.1)]. For
the restriction operator, we use the full weighting restriction operator whose matrix
representation is ' = %) /2 (see [13, p.20, Eq. (3.4)]).

For the smoother, we use a damped Kacmarz smoother whose iteration matrix is
given by

( := �# − l�∗ℎ�ℎ .
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Fig. 2: Left: number of grid points per wavelength. Right: modified wavenumbers

Necessary conditions for the two-grid algorithm to converge can be found in [7, p.12
Theorem 4.1], and having ‖(a ‖2 ≤ �( , where �( > 0 does not depend on a, is
needed. Since (∗ = (, one has ‖(‖2 = max_∈f (() |_ | and one can thus chose l to
ensure that f(() ⊂ [0, 1]. This can be achieved with l = d(�ℎ)−2 and it is worth
noting that this gives ‖(a ‖2 ≤ 1.

The two-grid operator with a1 pre- and a2 post-smoothing steps then reads

) (a1, a2) = (a1
(
�# − %�−1

� '�ℎ

)
(a2 , (6)

where now both the fine matrix �ℎ and the coarse matrix �� are defined by (2)
when no dispersion correction is used and with : replaced by :̂ℎ (respectively :̂� )
when we use dispersion correction.

Note that d() (a1, a2)) = d() (a1 + a2, 0)) and thus we are going to present our
numerical results using a = a1 + a2 smoothing steps. We use a fine grid with = = 255
grid points which gives ℎ = 1/256, and # = 127 coarse grid points. We compute
the spectral radius of the two-grid operator (6) for the sequence of wave numbers

:1, 9 =

√√√
2
ℎ2

(
sin

( ( 9 − 1)cℎ
2

)2
+ sin

(
9cℎ

2

)2
)
, 9 = 1, · · · , #̃,

placing :2
1, 9 exactly between two eigenvalues of the discrete Laplace operator3. The

integer #̃ is chosen so that we have a number of grid points per wavelength �
satisfying � = 2c/(:1, 9ℎ) ≥ 2c since, otherwise, the discrete dispersion relation
at the coarse level is empty. The value of � satisfies � ≥ 20 for : ≤ 80. Figure
2 gives � for : ≥ 80 and the modified wavenumbers as functions of : when
:2 = :1/2 (similar results can be obtained for :2 = :1/4). We present in Figure 3
the spectral radius of the two grid operator without dispersion correction (left), and
with dispersion correction (right), for a contrast of two in the wave number (top), and
four (bottom), as a function of an increasing wave number, using various numbers of
smoothing steps. These results show that without dispersion correction, d() (a, 0))

3 This choice allows us to systematically test sequences of wavenumbers for similarly conditioned
Helmholtz problems as long as the contrast is not too large.
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Fig. 3: Spectral radius of the two-grid operator. Left column: no dispersion correction. Right
column: with dispersion correction. Top row: :2 = :1/2. Bottom row: :2 = :1/4.

is decreasing as the number of smoothing steps a increases but the minimal a to
get d() (a, 0)) < 1 is becoming too large for this method to be used in practice.
In contrast, the two-grid scheme with dispersion correction is a convergent iterative
method for a relatively small number of smoothing steps already.

In our approach, we computed a modified wave number :̂ℎ (0) at the interface
using (3), which requires the computation of an exact solution of a transmission
problem for the Helmholtz equation with piecewise constant wave number. Since
it might be difficult to compute an exact solution of such a transmission problem
in higher dimensions, we now test how important this dispersion correction at the
interface is. The idea of this test is that since without dispersion correction we had
: (0) = :1, one could choose in the dispersion correction for the modified wave
number :̂ℎ such that :̂ℎ (0) = :̂1 =

√
2ℎ−2 (1 − cos(:1ℎ)), i.e. just use the same

dispersion correction at the interface as in the left region. We show in Figure 4 the
spectral radius of the two-grid operator as a function of the number of smoothing steps
for these two possible choices of :̂ℎ (0) for two different wave number contrasts and
:1 = max 9 (:1, 9 ) = 253.73. These results show that the modified wave number with
:̂ℎ (0) = :̂1 also yields a convergent two-grid method for a large enough number of
smoothing steps, but the specific dispersion correction from the transmission problem
in (3) needs a smaller number of smoothing steps to ensure that d() (a, 0)) < 1 and
also has a much smaller contraction factor.
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Fig. 4: Comparison of d() ) for : = max 9 (:1, 9 ) using a shifted wave number :̂ℎ (G) such that
:̂ℎ (0) = :̂1 and :̂ℎ (0) = :̂0 satisfying (3). Left: :2 = :1/2. Right: :2 = :1/4.

5 Conclusions and Outlook

We have introduced a new technique for dispersion correction for discretized
Helmholtz problems in 1D for the case of piecewise constant wave numbers at
the interface between regions where the wave number has a jump. The idea is to
use a discrete wave number stemming from a transmission problem. We showed
numerically that this dispersion correction leads to much more accurate numerical
solutions, and also leads to much more efficient multigrid techniques when applied
on each level of the grid hierarchy. Dispersion correction is more difficult in higher
dimensions, but modifying the wave number in addition to specialized stencils has
led to very good results in [8]. We are currently working on a 2D variant of the ideas
presented here.
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BDDC Preconditioners for a Space-time Finite
Element Discretization of Parabolic Problems

Ulrich Langer and Huidong Yang

1 Introduction

Continuous space-time finite element methods for parabolic problems have been
recently studied, e.g., in [1, 9, 10, 13]. The main common features of these methods
are very different from those of time-stepping methods. Time is considered to be just
another spatial coordinate. The variational formulations are studied in the full space-
time cylinder that is then decomposed into arbitrary admissible simplex elements. In
this work, we follow the space-time finite element discretization scheme proposed
in [10] for a model initial-boundary value problem, using continuous and piecewise
linear finite elements in space and time simultaneously.

It is a challenging task to efficiently solve the large-scale linear system of alge-
braic equations arising from the space-time finite element discretization of parabolic
problems. In this work, as a preliminary study, we use the balancing domain de-
composition by constraints (BDDC [2, 11, 12]) preconditioned GMRES method to
solve this system efficiently. We mention that robust preconditioning for space-time
isogeometric analysis schemes for parabolic evolution problems has been reported
in [3, 4].

The remainder of the paper is organized as follows: Sect. 2 deals with the space-
time finite element discretization for a parabolic model problem. In Sect. 3, we
discuss BDDC preconditioners that are used to solve the linear system of algebraic
equations. Numerical results are shown and discussed in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.
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2 The space-time finite element discretization

The following parabolic initial-boundary value problem is considered as our model
problem: Find D : & → R such that

mCD − ΔGD = 5 in &, D = 0 on Σ, D = D0 on Σ0, (1)

where & := Ω × (0, )), Ω ⊂ R2 is a sufficiently smooth and bounded spatial
computational domain, Σ := mΩ × (0, )), Σ0 := Ω × {0}, Σ) := Ω × {)}.

Let us now introduce the following Sobolev spaces:

�
1,0
0 (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, D = 0 on Σ},

�
1,1
0,0̄ (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, mCD ∈ !2 (&) and D |Σ∪Σ) = 0},

�
1,1
0,0 (&) = {D ∈ !2 (&) : ∇GD ∈ [!2 (&)]2, mCD ∈ !2 (&) and D |Σ∪Σ0 = 0}.

Using the classical approach [7, 8], the variational formulation for the parabolic
model problem (1) reads as follows: Find D ∈ �1,0

0 (&) such that

0(D, E) = ; (E), ∀E ∈ �1,1
0,0̄ (&), (2)

where

0(D, E) = −
∫
&

D(G, C)mCE(G, C)3 (G, C) +
∫
&

∇GD(G, C) · ∇GD(G, C)3 (G, C),

; (E) =
∫
&

5 (G, C)E(G, C)3 (G, C) +
∫
Ω

D0 (G)E(G, 0)3G.

Remark 1 (Parabolic solvability and regularity [7, 8]) If 5 ∈ !2,1 (&) := {E :∫ )
0 ‖E(·, C)‖!2 (Ω)3C < ∞} and D0 ∈ !2 (Ω), then there exists a unique general-
ized solution D ∈ �1,0

0 (&) ∩ +1,0
2 (&) of (2), where +1,0

2 (&) := {D ∈ �1,0 (&) :
|D |& < ∞ and lim

ΔC→0
‖D(·, C + ΔC) − D(·, C)‖!2 (Ω) = 0, uniformly on [0, )]}, and

|D |& := max
0≤g≤)

‖D(·, g)‖!2 (Ω)+‖∇GD‖!2 (Ω×(0,) )) . If 5 ∈ !2 (&) and D0 ∈ �1
0 (Ω), then

the generalized solution D belongs to �Δ,10 (&) := {E ∈ �1,1
0 (&) : ΔGD ∈ !2 (&)}

and continuously depends on C in the norm of the space �1
0 (Ω).

To derive the space-time finite element scheme, we mainly follow the approach
proposed in [10]. Let +ℎ = span{i8} be the span of continuous and piecewise linear
basis functions i8 on shape regular finite elements of an admissible triangulation Tℎ .
Then we define +0ℎ = +ℎ ∩ �1,1

0,0 (&) = {Eℎ ∈ +ℎ : Eℎ |Σ∪Σ0 = 0}. For convenience,
we consider homogeneous initial conditions, i.e., D0 = 0 on Ω. Multiplying the
PDE mCD − ΔGD = 5 on  ∈ Tℎ by an element-wise time-upwind test function
Eℎ + \ ℎ mCEℎ , Eℎ ∈ +0ℎ , we get
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(mCDEℎ + \ ℎ mCDmCEℎ − ΔGD(Eℎ + \ ℎ mCEℎ))3 (G, C) =∫
 

5 (Eℎ + \ ℎ mEℎ)3 (G, C),

where ℎ refers to the diameter of an element  in the space-time triangulation Tℎ
of&. Further, \ denotes a stabilization parameter [10]; see Remark 3. In the space-
time finite element scheme [10], the time is considered as another spatial coordinate,
and the partial derivative w.r.t. time is viewed as a convection term in the time
direction. Therefore, as in the classical SUPG (streamline upwind Petrov-Galerkin)
scheme, we use time-upwind test functions elementwise.

Integration by parts (the first part) with respect to the space and summation yields∑
 ∈Tℎ

∫
 

(mCDEℎ + \ ℎ mCDmCEℎ + ∇GD · ∇GEℎ − \ ℎ ΔGDmCEℎ)3 (G, C)

−
∑
 ∈Tℎ

∫
m 

=G · ∇GDEℎ3B =
∑
 ∈Tℎ

∫
 

5 (Eℎ + \ ℎ mCEℎ)3 (G, C).

Since =G · ∇GD is continuous across the inner boundary m of  , =G = 0 on Σ0 ∪Σ) ,
and Eℎ = 0 on Σ, the term −∑

 ∈Tℎ
∫
m 
=G · ∇GDEℎ3B vanishes.

If the solution D of (2) belongs to �
Δ,1
0,0 (Tℎ) := {E ∈ �

1,1
0,0 (&) : ΔGE | ∈

!2 ( ),∀ ∈ Tℎ}, cf. Remark 1, then the consistency identity

0ℎ (D, Eℎ) = ;ℎ (Eℎ), Eℎ ∈ +0ℎ , (3)

holds, where

0ℎ (D, Eℎ) :=
∑
 ∈Tℎ

∫
 

(mCDEℎ + \ ℎ mCDmCEℎ + ∇GD · ∇GEℎ − \ ℎ ΔGDmCEℎ)3 (G, C),

;ℎ (Eℎ) :=
∑
 ∈Tℎ

∫
 

5 (Eℎ + \ ℎ mCEℎ)3 (G, C).

With the restriction of the solution to the finite-dimensional subspace+0ℎ , the space-
time finite element scheme reads as follows: Find Dℎ ∈ +0ℎ such that

0ℎ (Dℎ , Eℎ) = ;ℎ (Eℎ), Eℎ ∈ +0ℎ . (4)

Thus, we have the Galerkin orthogonality: 0ℎ (D − Dℎ , Eℎ) = 0, ∀Eℎ ∈ +0ℎ .

Remark 2 Since we use continuous and piecewise linear trial functions, the integrand
−\ ℎ ΔGDℎmCEℎ vanishes element-wise, which simplifies the implementation.

Remark 3 On fully unstructured meshes, \: = $ (ℎ: ) [10]; on uniform meshes,
\: = \ = $ (1) [9]. In this work, we have used \ = 0.5 and \ = 2.5 on uniform
meshes for testing robustness of the BDDC preconditioners. The detailed results for
\ = 2.5 are presented in Table 1.
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It was shown in [10] that the bilinear form 0ℎ (·, ·) is +0ℎ-coercive: 0ℎ (Eℎ , Eℎ) ≥
`2 ‖Eℎ ‖2ℎ , ∀Eℎ ∈ +0ℎ with respect to the norm ‖Eℎ ‖2ℎ =

∑
 ∈Tℎ (‖∇GEℎ ‖2!2 ( ) +

\ ℎ ‖mCEℎ ‖2!2 ( ) ) +
1
2 ‖Eℎ ‖2!2 (Σ) ) . Furthermore, the bilinear form is bounded on

+0ℎ,∗ × +0ℎ: |0ℎ (D, Eℎ) | ≤ `1 ‖D‖0ℎ,∗‖Eℎ ‖ℎ , ∀D ∈ +0ℎ,∗, ∀Eℎ ∈ +0ℎ , where +0ℎ,∗ =
�
Δ,1
0,0 (Tℎ) ++0ℎ equipped with the norm ‖E‖20ℎ,∗ = ‖E‖2ℎ +

∑
 ∈Tℎ (\ ℎ )−1‖E‖2

!2 ( )
+∑ ∈Tℎ \:ℎ: ‖ΔGE‖2!2 ( ) . Let ; and : be positive reals such that ; ≥ : > 3/2. We
now define the broken Sobolev space �B (Tℎ) := {E ∈ !2 (&) : E | ∈ �B ( ) ∀ ∈
Tℎ} equipped with the broken Sobolev semi-norm |E |2

� B (Tℎ) :=
∑
 ∈Tℎ |E |2� B ( ) .

Using the Lagrangian interpolation operator Πℎ mapping �1,1
0,0 (&) ∩ �: (&) to +0ℎ ,

we obtain ‖D − Dℎ ‖ℎ ≤ ‖D − ΠℎD‖ℎ + ‖ΠℎD − Dℎ ‖ℎ . The term ‖D − ΠℎD‖ℎ can be
bounded by means of the interpolation error estimate, and the term ‖ΠℎD − Dℎ ‖ℎ
by using ellipticity, Galerkin orthogonality and boundedness of the bilinear form.
The discretization error estimate ‖D − Dℎ ‖ℎ ≤ � (

∑
 ∈Tℎ ℎ

2(;−1)
 

|D |2
� ; ( ) )1/2 holds

for the solution D provided that D belongs to �1,1
0,0 (&) ∩ �: (&) ∩ �; (Tℎ), and the

finite element solution Dℎ ∈ +0ℎ , where � > 0, independent of mesh size; see [10].

3 Two-level BDDC preconditioners

After the space-time finite element discretization of the model problem (1), the linear
system of algebraic equations reads as follows:

 G = 5 , (5)

with  :=
[
 � �  �Γ
 Γ�  ΓΓ

]
, G :=

[
G�
GΓ

]
, 5 :=

[
5�
5Γ

]
,  � � = diag

[
 1
� �
, ...,  #

� �

]
, where #

denotes the number of polyhedral subdomains &8 from a non-overlapping domain
decomposition of &. In system (5), we have decomposed the degrees of freedom
into the ones associated with the internal (�) and interface (Γ) nodes, respectively.
We aim to solve the Schur-complement system living on the interface:

(GΓ = 6Γ, (6)

with ( :=  ΓΓ −  Γ� −1
� �
 �Γ and 6 := 5Γ −  Γ� −1

� �
5� .

The bilinear form 0ℎ (·, ·) is coercive on the space-time finite element space +0ℎ
like in the corresponding elliptic case. There are efficient domain decomposition
preconditioners for such elliptic problems [14]. This motivated us to use such pre-
conditioners for solving positive definite space-time finite element equations too.
Following [12] (see also details in [5]), Dohrmann’s (two-level) BDDC precondi-
tioners %���� for the interface Schur complement equation (6), originally proposed
for symmetric and positive definite systems in [2, 11], can be written in the form

%−1
���� = '

)
�,Γ ()BD1 + )0)'�,Γ, (7)
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where the scaled operator '�,Γ is the direct sum of restriction operators '8
�,Γ

mapping the global interface vector to its component on local interfaceΓ8 := m&8∩Γ,
with a proper scaling factor.

Here the coarse level correction operator )0 is constructed as

)0 = Φ(Φ) (Φ)−1Φ) (8)

with the coarse level basis function matrix Φ =
[(Φ1)) , · · · , (Φ# )) ]) , where the

basis function matrix Φ8 on each subdomain interface is obtained by solving the
following augmented system:[

(8
(
�8

))
�8 0

] [
Φ8

Λ8

]
=

[
0

'8
Π
GΓ

]
. (9)

with the given primal constraints�8 of the subdomain&8 and the vector of Lagrange
multipliers on each column of Λ8 . The number of columns of each Φ8 equals to the
number of global coarse level degrees of freedom, typically living on the subdomain
corners, and/or interface edges, and/or faces. Here the restriction operator '8

Π
maps

the global interface vector in the continuous primal variable space on the coarse level
to its component on Γ8 .

The subdomain correction operator )BD1 is defined as

)BD1 =

#∑
8=1

[('8Γ)) 0
] [

(8
(
�8

))
�8 0

]−1 [
'8
Γ

0

]
, (10)

with vanishing primal variables on all the coarse levels. Here the restriction operator
'8
Γ
maps global interface vectors to their components on Γ8 .

4 Numerical experiments

Weuse D(G, H, C) = sin(cG) sin(cH) sin(cC) as exact solution of (1) in& = (0, 1)3; see
the left plot in Fig. 1. We perform uniform mesh refinements of & using tetrahedral
elements. By usingMetis [6], the domain is decomposed into # = 2: , : = 3, 4, ..., 9,
non-overlapping subdomains &8 with their own tetrahedral elements; see the right
plot in Fig. 1. The total number of degrees of freedom is (2: + 1)3, : = 4, 5, 6, 7.
We run BDDC preconditioned GMRES iterations until the relative residual error
reaches 10−9. The experiments are performed on 64 nodes each with 8-core In-
tel Haswell processors (Xeon E5-2630v3, 2.4Ghz) and 128 GB of memory. Three
variants of BDDC preconditioners are used with corner (�), corner/edge (��), and
corner/edge/face (���) constraints, respectively. The number of BDDC precondi-
tioned GMRES iterations and the computational time measured in seconds [s] with
respect to the number of subdomains (row-wise) and number of degrees of freedom
(column-wise) are given in Table 1 for \ = 2.5. Since the system is unsymmetric but
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Fig. 1 Solution (left), space-
time domain decomposition
(right) with 1293 degrees of
freedom and 512 subdomains.

positive definite, the BDDC preconditioners do not show the same typical robustness
and efficiency behavior when applied to the symmetric and positive definite system
[14]. Nevertheless, we still observe certain scalability with respect to the number
subdomains (up to 128), in particular, with corner/edge and corner/edge/face con-
straints. Increasing \ will improve the preformance of the BDDC preconditioners
with respect to the number of GMRES iterations, computational time, and scala-
bility with respect to the number of subdomains as well as number of degrees of
freedom, whereas decreasing \ leads to a worse performance. For instance, in the
case of \ = 0.5, the last row of Table 1 reads as follows: 1293 OoM/(−) OoM/(−)
173/(126.93B) 171/(109.94B) 185/(45.05B) > 500/(−) 206/(33.13B) . This
behaviour is expected since larger \ makes the problem more elliptic. However, we
note that \ also affects the norm ‖ · ‖ℎ in which we measure the discretization error.

5 Conclusions

In this work, we have applied two-level BDDC preconditioned GMRES methods
to the solution of finite element equations arising from the space-time discretiza-
tion of a parabolic model problem. We have compared the performance of BDDC
preconditioners with different coarse level constraints for such an unsymmetric, but
positive definite system. The preconditioners show certain scalability provided that
\ is sufficiently large. Future work will concentrate on improvement of coarse-level
corrections in order to achieve robustness with respect to different choices of \.
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Non-overlapping Spectral Additive Schwarz
Methods

Yi Yu, Maksymilian Dryja, and Marcus Sarkis

1 Discrete Problem

For a given domain Ω ⊂ R3 , we impose homogeneous Dirichlet data on mΩ. Let us
introduce the Sobolev space �1

0 (Ω) := {E ∈ �1 (Ω) : E = 0 on mΩ}.
The continuous variational formulation is given by: Find D ∈ �1

0 (Ω) such that

0(D, E) = 5 (E) for all E ∈ �1
0 (Ω), (1)

where
0(D, E) :=

∫
Ω

d(G)∇D · ∇E3G 5 (E) :=
∫
Ω

5 E3G,

where we assume d(G) ≥ dmin > 0 almost everywhere in Ω.

2 Discretization

We begin by discretizing Problem (1) in an algebraic framework. Let us consider a
conforming triangulationTℎ ofΩwhereΩ =

⋃
g∈Tℎ ḡ and basis functions {q: }1≤:≤=

for the finite element space +ℎ (Ω). We use the convention that an element g ∈ Tℎ ,
the domain Ω, and the subdomains Ω8 are treated as open sets.

The finite element space +ℎ (Ω) is defined as:
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+ℎ (Ω) := {E ∈ �1
0 (Ω); E |g ∈ %1 (g) ∀g ∈ Tℎ} = Span{q: : 1 ≤ : ≤ =}.

The FEM matrix form associated with (1) can be written as

�D = 1, (2)

where

(�):; := 0(q: , q;) =
∑
g∈Tℎ

0g (q: |g , q; |g) for all 1 ≤ :, ; ≤ =,

and
(1): := 5 (q: ) =

∑
g∈Tℎ

5g (q: |g) for all 1 ≤ : ≤ =.

2.1 Finite Element Spaces

We decompose Ω into N non-overlapping polygonal subdomains Ω8 which satisfy

Ω =

#⋃
8=1
Ω8 and Ω8 ∩Ω 9 = ∅, 8 ≠ 9 .

We require that each subdomain be a union of shape-regular triangular elements with
nodes on the boundaries of neighboring subdomains matching across the interface.
We define the interface of each subdomain Γ8 and the interior of each subdomain �8 ,
global interface Γ ⊂ Ω and global interior � as:

Γ8 := mΩ8\mΩ and Γ :=
#⋃
8=1
Γ8 and � = Ω/Γ =

#⋃
8=1

�8 .

For any finite element subset � ⊂ Ω let the set of degrees of freedom in D be the
hat functions

dof(�) := {1 ≤ : ≤ =; q: |� ≠ 0|�},
where 0|� : � → R is identically zero. The finite element space on D is defined as

+ℎ (�) := {D |�; D ∈ +ℎ (Ω)} = span{q: |�; : ∈ dof(�)}.

2.2 Decomposition of \h (
)

Let us consider a family of local spaces {+8 , 1 ≤ 8 ≤ #}, where

+8 = +ℎ (Ω8) ∩ �1
0 (Ω8),
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and we define the extrapolation operators ')
8

: +8 → +ℎ (Ω) where ')8 is the
extension by zero outside of Ω8 .
The coarse space +0 is defined as the space of piecewise linear and continuous
functions on Γ:

+0 = +ℎ (Γ) := {E |Γ;∀E ∈ +ℎ (Ω)}.
In Section 3, we will present different choices of the extension operator ')0 : +0 →
+ℎ (Ω). The space +ℎ (Ω) admits the following direct sum decomposition:

+ℎ (Ω) = ')0 +0 ⊕ ')1 +1 ⊕ · · · ⊕ ')#+#

2.3 Additive Schwarz Methods

Local solvers: For 1 ≤ 8 ≤ # , let us introduce the exact local bilinear form

08 (D, E) := 0(')8 D, ')8 E) D, E ∈ +8 ,

and let us define )̃8 : +ℎ (Ω) → +8 by

08 ()̃8D, E) = 0(D, ')8 E) E ∈ +8 1 ≤ 8 ≤ #, (3)

and let )8 : +ℎ (Ω) → +ℎ (Ω) be given by )8 := ')
8
)̃8 .

Global solver: For 8 = 0 first we consider the exact global solver

00 (D, E) := 0(')0 D, ')0 E) D, E ∈ +0

and let us define )̃0 : +ℎ (Ω) → +0 by

00 ()̃0D, E) = 0(D, ')0 E) E ∈ +0 (4)

and let)0 : +ℎ (Ω) → +ℎ (Ω) be given by)0 := ')0 )̃0. Note that we also will consider
inexact solvers 0̂0 (·, ·) later in this paper. We replace (2) by the linear system

)�D = 6ℎ where )� := )0 + )1 + · · · + )# , 6ℎ =

#∑
8=0

68

where 68 are obtained from (3) and (4); see [8].

3 Schur complement system

The linear system (2) can be written as



378 Yi Yu, Maksymilian Dryja, and Marcus Sarkis[
�ΓΓ �Γ�
��Γ �� �

] [
DΓ
D�

]
=

#∑
8=1

' (8)
)

[
�
(8)
ΓΓ

�
(8)
Γ�

�
(8)
�Γ
�
(8)
� �

]
' (8)

[
DΓ
D�

]
=

#∑
8=1

' (8)
)

[
1
(8)
Γ

1
(8)
�

]
.

In this equation the extrapolation operators ' (8)) : +ℎ (Ω8) → +ℎ (Ω) is the extension
by zero at nodes outside of Ω̄8 . Thus we have,

� =

#∑
8=1
' (8)

)

�(8)' (8) =
#∑
8=1
' (8)

)

[
�
(8)
ΓΓ
�
(8)
Γ�

�
(8)
�Γ
�
(8)
� �

]
' (8) and 1 =

[
1Γ
1�

]
=

#∑
8=1
' (8)

)

[
1
(8)
Γ

1
(8)
�

]
,

where �(8) is the matrix corresponding to the bilinear form of

0 (8) (D8 , E8) =
∑

g∈Tℎ |Ω8
0g (D8 |g , E8 |g) D8 , E8 ∈ +ℎ (Ω8).

Moreover, if we label the interface nodes first and then label the interior nodes, we
can decompose the Boolean matrices ' (8)) as:

' (8)
)

=

[
')
Γ8Γ

0
0 ')

�8 �

]
and

[
D
(8)
Γ

D
(8)
�

]
= ' (8)

[
DΓ
D�

]
,

where ')
Γ8Γ

: +ℎ (Γ8) → +ℎ (Ω) and ')�8 � : +8 → +ℎ (�) are zero extension operators.
We now rewrite (2) in terms of Schur complement system (see [8])[

( 0
��Γ �� �

] [
DΓ
D�

]
=

#∑
8=1
' (8)

)

[
(
(8)
ΓΓ

0
�
(8)
�Γ
�
(8)
� �

] [
D
(8)
Γ

D
(8)
�

]
=

#∑
8=1
' (8)

)

[
1
(8)
Γ
− �(8)

Γ�
�
(8)−1

� �
1
(8)
�

1
(8)
�

]
=

[
1̃Γ
1�

]
,

where
(
(8)
ΓΓ
= �

(8)
ΓΓ
− �(8)

Γ�
�
(8)−1

� �
�
(8)
�Γ
,

1̃Γ8 =

#∑
8=1

')Γ8Γ (1
(8)
Γ
−�(8)

Γ�
�
(8)−1

� �
1
(8)
�
) and ( =

#∑
8=1

')Γ8Γ(
(8)
ΓΓ
'Γ8Γ and (DΓ = 1̃Γ.

We note that the best extension ')0 is the 0-discrete harmonic extension from Γ to �
due to the orthogonality of the coarse and local problems. In this case

0(')0 EΓ, ')0 DΓ) = E)Γ (DΓ.

The motivation is to replace ( by a good preconditioner (0 of S; see [1],[3],[2],[6].

4 New Method: Spectral Schwarz methods with exact solver

In our spectral method, we define a new ')0 extension operator. To do that, the
first goal is to represent the best :8-dimensional subspace of +8 to approximate the
0-discrete harmonic extension operator inside the subdomains. We fix a threshold
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X < 1, and choose the smallest :8 eigenvalues in each subdomain smaller than X.
First solve the following generalized eigenproblem in each subdomain separately:

( (8)b (8)
9
≡ (�(8)

ΓΓ
− �(8)

Γ�
(�(8)
� �
)−1�

(8)
�Γ
)b (8)
9
= _
(8)
9
�
(8)
ΓΓ
b
(8)
9

(5)

These eigenvalue problems are based on Neumann matrix associated to nonoverlap-
ping subdomains, therefore, differ from those in GenEO [7] and AGDSW [4].

We choose the smallest :8 eigenvalues and corresponding eigenvectors:
For 9 = 1 : :8 , let & (8)9 = b

(8)
9

%
(8)
9
= −(�(8)

� �
)−1�

(8)
�Γ
b
(8)
9

And & (8) = [& (8)1 , &
(8)
2 , · · · , & (8)

:8
] and % (8) = [% (8)1 , %

(8)
2 , · · · , % (8)

:8
].

Thus we have three identities, where the left-hand sides involve operators on Γ8 only:

1. −�(8)
ΓΓ
& (8)� (8) = �(8)

Γ�
% (8)

2. −� (8)& (8)) �(8)
ΓΓ
= % (8)

)

�
(8)
�Γ

3. � (8)& (8)
)

�
(8)
ΓΓ
& (8) = & (8)

)

�
(8)
ΓΓ
& (8)� (8) = % (8)

)

�
(8)
� �
% (8) , where

� (8) = diagonal(1 − _1, 1 − _2, · · · , 1 − _:8 ) = � − Λ(8)

Also the & (8) consist of the generalized eigenvectors from (5), and we can nor-
malize the eigenvectors so that & (8)) �(8)

ΓΓ
& (8) = � (8) and & (8)) ( (8)& (8) = Λ(8)

however in the implementation we do not assume normalized eigenvectors, so we
keep & (8)) �(8)

ΓΓ
& (8) . Define the global extension ')0 : +0 → +ℎ (Ω) as:

')0 DΓ =


DΓ

−
#∑
8=1
')�8 � %

(8) (% (8)) �(8)
� �
% (8) )−1% (8)

)

�
(8)
�Γ
'Γ8ΓDΓ


=


DΓ

#∑
8=1
')�8 � %

(8) (& (8)) �(8)
ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ
'Γ8ΓDΓ

 .
And for D, E ∈ +0, we define the exact coarse solver as:

00 (D, E) = 0 (')0 D, ')0 E) = E)
#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
− �(8)

Γ�
% (8) (% (8)) �(8)

� �
% (8) )−1% (8)

)

�
(8)
�Γ

)
'Γ8ΓD

= E)
#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
− �(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ

)
'Γ8ΓD.

On each subdomain, we have the following lemmas and theorem:

Lemma 1 ([5]) Let Π(8)
(
D be the projection of D ∈ +ℎ (Γ8) onto Span of & (8), that

is, Π(8)
(
D
Δ
= & (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ
D. Define the local bilinear form 0 (8)0 (D,E) =

E)(�(8)
ΓΓ
−�(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8) )−1& (8)

)

�
(8)
ΓΓ

)
D where D, E ∈ +ℎ (Γ8). Then:

0
(8)
0 (D, E) = (Π

(8)
(
E)) ( (8) (Π(8)

(
D) + (E − Π(8)

(
E)) �(8)

ΓΓ
(D − Π(8)

(
D).

Lemma 2 ([5]) Let D ∈ +0 then
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00 (D, D) =
#∑
8=1

0
(8)
0 ('

(8)
Γ
D, '

(8)
Γ
D) ≤

#∑
8=1

1
X
D) '

(8))
Γ
( (8)' (8)

Γ
D =

1
X
D) (D

From Lemma 1 and Lemma 2 and the classical Schwarz Theory [8] we have:

Theorem 1 ([5]) For any D ∈ +ℎ (Ω) the following holds:

(2 + 3
X
)−10(D, D) ≤ 0()�D, D) ≤ 20(D, D) =⇒ : ()�) ≤ 2(2 + 3

X
)

5 Complexity of Spectral Schwarz Method and with inexact
coarse solver

The solution DΓ = )̃0D of 00 (DΓ, E0) = 0(D, ')0 E0) = (')0 E0)) 1 is of the form:

#∑
8=1
')Γ8Γ

(
�
(8)
ΓΓ
−�(8)

ΓΓ
& (8)� (8)(& (8))�(8)

ΓΓ
& (8))−1& (8)

)

�
(8)
ΓΓ

)
'Γ8ΓDΓ

=

#∑
8=1
')Γ8Γ

(
1
(8)
Γ
+�(8)

ΓΓ
& (8)(& (8))�(8)

ΓΓ
& (8) )−1% (8)

)

1
(8)
�

)
.

Denote �ΓΓ=
#∑
8=1
')Γ8Γ�

(8)
ΓΓ
'Γ8Γ,*=

#∑
8=1
')Γ8Γ�

(8)
ΓΓ
& (8)'_8 ,

�=

#∑
8=1
')_8�

(8)'_8 , �=
#∑
8=1
')_8 (& (8)

)

�
(8)
ΓΓ
& (8) )−1'_8 and % =

#∑
8=1
')�8 �%

(8)'_8 .

where '_8 is a restriction chosen [D81,· · ·,D8:8]) from D̄=[D11,· · ·,D1:1,· · ·,D# :1,· · ·,D# :#]).
Here :8 is the number of eigenfunctions chosen from the i-th subdomain, and D̄ has
dimension : equals to the number of all eigenvectors chosen from all N subdomains.
Then we can rewrite the coarse mesh problem as:

(�ΓΓ −*��*) )DΓ = 1Γ +*�%) 1� ,

and we use Woodbury identity for implementation:

(�ΓΓ −*��*) )−1 = �−1
ΓΓ + �−1

ΓΓ* (�−1�−1 −*) �−1
ΓΓ*)−1*) �−1

ΓΓ.

Then the complexity of the method is associated with �−1
ΓΓ
, �−1 and the : × : matrix

(�−1�−1 −*) �−1
ΓΓ
*)−1, where : = the number of all eigenfunctions.

We can make �ΓΓ and � block diagonal or diagonal matrices if we replace the
exact �(8)

ΓΓ
on the right-hand side of the generalized eigenproblems by �̂(8)

ΓΓ
, where

the �̂(8)
ΓΓ

are block diagonal or diagonal versions of the �(8)
ΓΓ
. Note that for the block

diagonal case we eliminate the connections across different faces, edges and corners
of the subdomains. These inexact cases can be analyzed and given in Theorem 2.
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We introduce the local generalized eigenproblems:

( (8) b̂ (8)
8
≡ (�(8)

ΓΓ
− �(8)

Γ�
(�(8)
� �
)−1�

(8)
�Γ
)b̂ (8)
9
= _̂
(8)
9
�̂
(8)
ΓΓ
b̂
(8)
9
.

And for D, E ∈ +0 (Ω), we define the inexact coarse solver as:

0̂0 (D, E) = E)
#∑
8=1

'
(8))
Γ

(
�̂
(8)
ΓΓ
− �̂(8)

ΓΓ
&̂ (8) �̂ (8) (&̂ (8))�̂(8)

ΓΓ
&̂ (8) )−1&̂ (8)

)

�̂
(8)
ΓΓ

)
'
(8)
Γ
D.

Where &̂ (8) are the generalized eigenvectors and �̂ (8) = diagonal(1−_̂1, · · · , 1−_̂:8 ).
Then, a condition number estimate for the inexact case is given by the following
theorem:

Theorem 2 ([5])
For any D ∈ +ℎ (Ω) the following holds:

(2+7 max{1, 1
X
})−10(D, D) ≤ 0()̂�D, D) ≤ 40(D, D) =⇒ : ()̂�) ≤ 4(2+7 max{1, 1

X
})

6 Numerical Experiments

We present results for problem (1) for 5 ≡ 1 of our Adaptive Spectral Schwarz
method with highly heterogeneous coefficients in the format of stripes crossing the
interface of the subdomains (see Figure 1). We divide the square domain into � ×�
congruent square subdomains and in each subdomain we have two horizontal stripes
and two vertical stripes. The coefficient on the stripe (in grey) is d(G) = 10−6

and d(G) = 1 elsewhere. Experiments show (not presented here) that the Additive
Average Schwarz method can lead to a large condition number that depends on
d<0G/d<8=. In contrast, when we use Adaptive Spectral Schwarz method with a
threshold X = 1

4
ℎ
�
, we have a well conditioned problem with a low number of

iterations; in Table 1 we see the robustness of the adaptive spectral Schwarz method
with exact solver and Table 2 with inexact solver using diagonal of �(8)

ΓΓ
.

Length of subdomain Iterations Condition number Number of eigenvectors Complexity of problem
H=1/4 11 6.4719 84 84 × 84
H=1/8 12 6.4719 420 420 × 420
H=1/16 12 6.4719 1860 1860 × 1860

Table 2: Adaptive Spectral Schwarz method with diagonal inexact solver and the number of
eigenvectors. We fix �/ℎ = 8 and the number of iterations required to reduce the residual by 10−6.
The condition number is estimated by the Arnoldi matrix in the CG method.



Fig. 1: In the stripe mesh, coeffi-
cient d(G) = 10−6 in each stripe,
and d(G) = 1 in other area.

Length of
subdomainCG IterationsCondition number Number of

eigenvectors
� = 1/4 10 4.7684 84
� = 1/8 11 4.7684 420
� = 1/16 11 4.7684 1860

Table 1: Adaptive Spectral Schwarz method with exact
solver and the number of eigenvectors. We fix �/ℎ =
8 and the number of iterations required to reduce the
residual by 10−6. The condition number is estimated by
the Arnoldi matrix in the CG method.

7 Conclusion

We introduced new two-dimensional and three-dimensional adaptive Schwarz meth-
ods derived from the additive average Schwarz method which are robust with respect
to the jumps of coefficients with$ (�/ℎ) condition number estimates. A unique fea-
ture of our methods is that our coarse space is based on generalized eigenvectors
obtained in each nonoverlapping subdomain separately. One of the new methods has
good parallelization properties since the global coarse matrix is sparse.
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Auxiliary Space Preconditioners for Linear
Virtual Element Method

Yunrong Zhu

1 Introduction

In this paper, we present the auxiliary space preconditioning techniques for solving
the linear system arising from linear virtual element method (VEM) discretizations
on polytopal meshes of second order elliptic problems in both 2D and 3D domains.
The VEMs are generalizations of the classical finite element methods (FEMs),
which permit the use of general polygonal and polyhedral meshes. Using polytopal
meshes allows for more flexibility in dealing with complex computational domains
or interfaces (cf. [12]). It also provides a unified treatment of different types of
elements on the same mesh. In recent years, a lot of work has been devoted to
the design and analysis of the discretization methods. Less attention has been paid
to developing efficient solvers for the resulting linear systems. Only recently, have
the balancing domain decomposition by constraint (BDDC) and the finite element
tearing and interconnecting dual primal (FETI-DP) methods been studied in [6] for
VEM methods. Some two-level overlapping domain decomposition preconditioners
were developed and analyzed in [8, 9] for VEM in two dimensions. A ?-version
multigrid algorithm was proposed and analyzed in [1].

The auxiliary space preconditioners we consider here can be understood as two-
level methods, with a standard smoother on the fine level and a “coarse space”
correction. The fine level problem is the VEM discretization on polytopal mesh, and
the coarse level problem is a standard conforming P1 finite element space defined on
an auxiliary simplicial mesh. It is natural to choose the standard P1 finite element
space as the coarse space for a couple of reasons: (1) the degrees of freedom of the
coarse space are included in the VEM space – so asymptotically, the “coarse” space
should provide a good approximation for the solution on the “fine” space; (2) there are
a lot of works on developing efficient (and robust) solvers for the standard conforming

Yunrong Zhu
Department of Mathematics & Statistics, Idaho State University, 921 S. 8th Ave., Stop 8085
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P1 finite element discretization, so we can use any existing solvers/preconditioners as
a coarse solver. One of the main benefits of these preconditioners is that they are easy
to implement in practice. The procedure is the same as for the standard multigrid
algorithms with the grid-transfer operators between the virtual element space and
the conforming P1 finite element space. Since the same degrees of freedom are used,
we can simply use the identity operator as the intergrid transfer operator between the
coarse and fine spaces.

Due to page limitation, we only state the main result and provide some numerical
experiments to support it. We refer to [20] for more detailed analysis and further
discussion of the preconditioners. The rest of this paper is organized as follows. In
Section 2, we give basic notation and the virtual element discretization. Then in
Section 3, we present the auxiliary space preconditioners and discuss its convergence.
Finally, in Section 4, we present several numerical experiments in both 2D and 3D
to verify the theoretical result.

2 Virtual Element Methods

Let Ω ⊂ R3 (3 = 2, 3) be a bounded open polygonal domain. Given 5 ∈ !2 (Ω), we
consider the following model problem: Find D ∈ + := �1

0 (Ω) such that

0(D, E) := (^∇D,∇E) = ( 5 , E), ∀E ∈ +, (1)

where (·, ·) denotes the !2 (Ω) inner product, ^ = ^(G) ∈ !∞ (Ω) is assumed to be
piecewise positive constant with respect to the polytopal partition Tℎ of Ω but may
have large jumps across the interface of the partition.

LetTℎ be a partition ofΩ into non-overlapping simple polytopal elements . Here
we use ℎ for the diameter of the element  ∈ Tℎ (the greatest distance between
any two vertices of  ), and define ℎ = max ∈Tℎ ℎ , the maximum of the diameters.
Following [11], we make the following assumption on the polytopal mesh:

(A) Each polytopal element  ∈ Tℎ has a triangulation T of  such that T is
uniformly shape regular and quasi-uniform. Each edge of  is an edge of certain
elements in T .

On each polytopal element  ∈ Tℎ , we define the local virtual finite element space:

+ ℎ := {E ∈ �1 ( ) : E |m ∈ B1 (m ), ΔE = 0},

where B1 (m ) := {E ∈ �0 (m ) : E |4 ∈ P1 (4), ∀4 ⊂ m }. Note that + ℎ ⊃ P1 ( ),
and may contain implicitly some other non-polynomial functions. The global virtual
element space +ℎ is then defined as:

+ℎ := {E ∈ + : E | ∈ + ℎ , ∀ ∈ Tℎ}.
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The VEM discretization of (1) is given by a symmetric bilinear form 0ℎ : +ℎ ×+ℎ →
R such that

0ℎ (Dℎ , Eℎ) =
∑
 ∈Tℎ

0 ℎ (Dℎ , Eℎ), ∀Dℎ , Eℎ ∈ +ℎ ,

where 0 
ℎ
(·, ·) is a computable bilinear form defined on + 

ℎ
× + 

ℎ
. So the VEM

discretization of (1) reads: Find Dℎ ∈ +ℎ such that

0ℎ (Dℎ , Eℎ) = ( 5 , Eℎ), ∀Eℎ ∈ +ℎ . (2)

Further details on how to construct the computable bilinear form 0ℎ , as well as a
study of the convergence and stability properties of the VEM can be found in [2, 4, 5].
We refer to [3, 15] for detailed discussion on the implementation of the methods,
and refer to [7, 11] for the error estimates of the methods.

Let � be the operator induced by the bilinear form 0ℎ (·, ·), that is,

(�E, F) = (E, F)� := 0ℎ (E, F), ∀E, F ∈ +ℎ .

Then solving (2) is equivalent to solving the linear system

�Dℎ = 5 . (3)

It is clear that the operator � is symmetric and positive definite, and we can
show that the condition number satisfies K(�) . J (^)ℎ−2, where J (^) =
maxG ^(G)/minG ^(G) is the variation of the discontinuous coefficient (see for exam-
ple [20, Lemma 2.2]). Thus the resulting linear system of the VEM discretization
(2) can be very ill-conditioned with the condition number depending on both the
mesh size and the variation in the discontinuous coefficient. It is difficult to solve us-
ing the classic iterative methods such as Jacobi, Gauss-Seidel or conjugate gradient
method, without effective preconditioners. In the next section, we describe efficient
auxiliary space preconditioners for (3) that are robust with respect to the variation
in the discontinuous coefficient and the mesh size.

3 Auxiliary Space Preconditioners

To solve the discrete system (3) efficiently, we use the auxiliary space precondition-
ing technique (cf. [17]). For this purpose, we need an “auxiliary space”. For each
polytopal element  ∈ Tℎ , we introduce an auxiliary triangulation T of it such that
each edge of  is an edge of some element in this triangulation. By Assumption (A),
this is possible and can be done using a Delaunay triangulation. With this triangu-
lation, we obtain a conforming quasi-uniform triangulation T 2

ℎ
:=

⋃
 ∈Tℎ T of the

whole domain Ω. Let +2
ℎ
⊂ + be the standard conforming P1 finite element space

defined on this auxiliary triangulation T 2
ℎ
. We introduce the auxiliary problem: find

D2
ℎ
∈ +2

ℎ
such that

0(D2ℎ , Eℎ) = ( 5 , Eℎ), ∀Eℎ ∈ +2ℎ . (4)
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Similarly, let �2 be the operator induced by the bilinear form 0(·, ·), that is,

(�2E, F) = (E, F)�2 := 0(E, F), ∀E, F ∈ +2ℎ .

The auxiliary space preconditioners can be understood as a two-level algorithm
involving a “fine level” and a “coarse level”. In this setting, the fine level problem is
the VEM discretization (2) on polytopal mesh Tℎ , and the coarse level problem is the
standard conforming P1 finite element space defined on the auxiliary simplicial mesh
(4). Since �2 is the standard conforming piecewise linear finite element discretization
of (1) on the auxiliary quasi-uniform triangulation T 2

ℎ
, the “coarse” problem in +2

ℎ

can be solved by many existing efficient solvers such as the standard multigrid
methods or domain decomposition methods (see, for example [18, 19] and the
references cited therein). It can be either an exact solver or an approximate solver.
We denote �2 : +2

ℎ
→ +2

ℎ
to be such a “coarse” solver, that is �2 ≈ �−1

2 . Next, on the
fine space +ℎ , we define a “smoother” ' : +ℎ → +ℎ , which is symmetric positive
definite. For example, ' could be a Jacobi or symmetric Gauss-Seidel smoother.
Finally, to connect the “coarse” space +2

ℎ
with the “fine” space +ℎ , we need a

“prolongation” operator Π : +2
ℎ
→ +ℎ . The restriction operator ΠC : +ℎ → +2

ℎ
is

then defined as

(ΠCE, F) = (E,ΠF), for E ∈ +ℎ and F ∈ +2ℎ .

Note that the auxiliary space defined in this way has a natural intergrid transfer
operator because the degrees of freedom for the space +2

ℎ
are included among

the degrees of freedom for the space +ℎ . Thus for each E ∈ +ℎ , we can define
ΠCE = E2 ∈ +2

ℎ
such that E2 (I8) = E(I8) for each vertex I8 in the element  ∈ Tℎ .

We can view this as a linear interpolation of E onto +2
ℎ
. Then, the auxiliary space

preconditioner � : +ℎ → +ℎ can be chosen as

Additive �add = ' + Π�2ΠC , (5)
Multiplicative � − �mul� = (� − '�) (� − Π�2ΠC ) (� − '�). (6)

For these preconditioners, we have the following theorem.

Theorem 1 The auxiliary space preconditioner � = �add defined by (5) or � = �mul
defined by (6) satisfies:

K(��) ≤ �,
where the constant � > 0 depends only on the shape-regularity of the auxiliary
triangulation, and is independent of the mesh size ℎ and the coefficients ^.

The analysis is based on the auxiliary space framework [17], with some technical
error estimates from [11]. Due to the page limitation, we refer to [20] for more
detailed analysis and discussion.

Remark 1 In the auxiliary space preconditioners defined in (5) and (6), if we ignore
the smoother ', the resulting preconditioner is usually called the fictitious space
preconditioner ((cf. [14]). In this case, we denote �fict := Π�2Π

C . In fact, the
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auxiliary space preconditioners can be viewed as a generalization of the fictitious
space preconditioner by a special choice of the “fictitious space”. In particular, the
fictitious space is defined as the product space+ℎ ×+2ℎ . Including+ℎ as a component
of the fictitious space makes it easier to construct the map from the fictitious space
to the original space, which is required to be surjective. For example, there is no
surjective mapping from the linear FEM space+2

ℎ
to higher order VEM space. In this

case the smoother 'will play an important role in the auxiliary space preconditioners.
On the other hand, note that the operator Π defined above is surjective for linear

VEM discretization. If the mesh satisfies Assumption (A), one can show that the
fictitious space preconditioner is also robust with respect to the problem size and the
discontinuous coefficients. We refer to [20] for more detailed discussion. However,
our numerical experiments indicate that �fict is more sensitive to the shape-regularity
of the auxiliary triangulation, while �add and �mul are more stable with respect to
the mesh quality.

4 Numerical Experiments

In this section, we present some numerical experiments in both 2D and 3D to verify
the result in Theorem 1. In all these tests, we use 2-sweeps symmetric Gauss-Seidel
smoother. The stopping criteria is ‖A: ‖/‖A0‖ < 10−12 for the PCG algorithm, where
A: = 5 − �D: is the residual. For the coarse solver, we use the AMG algorithm
implemented in 8FEM [10].

In the first example, we consider the model problem (1) in the unit square Ω =

[0, 1]2 with constant coefficient ^ = 1. Figure 1 is an example of the polytopal mesh
of the unit square domain (with 100 elements) generated using PolyMesher [16], and
Figure 2 is the corresponding Delaunay triangular mesh. The VEM discretization is
defined on the polytopal mesh (cf. Figure 1), while the auxiliary space is the standard
conforming P1 finite element discretization defined on the corresponding triangular
mesh (cf. Figure 2).

Tables 1 shows the estimated condition number and the number of PCG iteration
in parenthesis for the un-preconditioned and preconditioned systems with various
preconditioners. Here and in the sequel, �sgs is the (2-sweep) symmetric Gauss-
Seidel preconditioner; �fict is the fictitious space preconditioner defined in Remark 1;
�add is the additive auxiliary space preconditioner defined in (5); and �mul is the
multiplicative auxiliary space preconditioner defined in (6). As we can observe from
Table 1: Estimated condition number (number of PCG iteration) in 2D with constant coefficients.

# Polytopal Elements 10 102 103 104 105

K(�) 3.45 (9) 3.86e01 (41) 3.80e02 (117) 3.88e03 (351) 4.07e04 (1100)
K(�sgs�) 1.07(6) 3.78 (15) 3.20e01 (37) 3.17e02 (104) 3.17e03 (318)
K(�fict�) 2.92 (8) 5.75 (26) 7.53 (29) 8.73 (32) 9.67(36)
K(�add�) 1.53 (9) 1.71 (14) 1.94 (14) 1.99 (14) 2.00 (13)
K(�mul�) 1.06 (8) 1.21 (10) 1.04 (7) 1.02 (6) 1.02 (6)
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Fig. 1:PolygonalMesh Tℎ of theUnit Square
Domain (100 Elements)

Fig. 2: The Corresponding Delaunay Trian-
gle Mesh T2

ℎ

this table, while the condition numbers K(�) and K(�sgs�) increase as the mesh
refined, the condition numbers K(�fict�), K(�add�) and K(�mul�) are uniformly
bounded.

In the second test, we consider the problem with discontinuous coefficients.
The coefficient ^ is generated randomly on each polygon element (see Figure 3
for an example of the coefficient distribution with 100 elements). Note that the
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Fig. 4: Polyhedral mesh generated by CVT
(93 Elements)

coefficient settings are different in different polytopal mesh. Tables 2 shows the
estimated condition number and the number of PCG iteration in parenthesis. Here
- denotes that the PCG algorithm fail to converge after 1200 iterations. As we can
see from this table, while K(�) and K(�sgs�) increase dramatically, the condition
numbersK(�fict�),K(�add�) andK(�mul�) are nearly uniformly bounded. These
observations verify the conclusions given in Theorem 1 and Remark 1.

Finally, we consider the model problem on a 3D cubic domain Ω = [0, 1]3. We
create a polyhedral mesh using Centroidal Voronoi tessellations (CVT, cf.[13]), see
Fig 4 for an example. The VEM discretization is defined on the polyhedral mesh.



Auxiliary Space Preconditioners for VEM 389

Table 2: Estimated condition number (number of PCG iteration) in 2D with discontinuous coeffi-
cients.

# Polytopal Elements 10 102 103 104 105

K(�) 2.44 (11) 2.73e06 (578) - - -
K(�sgs�) 1.18(5) 3.90e02 (26) 3.93e03 (409) - -
K(�fict�) 3.27 (8) 6.94 (33) 6.42 (36) 11.6 (44) 13.6 (53)
K(�add�) 1.54 (9) 3.51 (20) 3.60 (25) 3.67 (25) 3.80 (26)
K(�mul�) 1.06 (6) 1.74 (15) 1.82 (16) 1.84 (16) 1.88 (17)

Then we subdivide each polyhedron into tetrahedrons using Delaunay triangulation
to define the P1 conforming finite element discretization on this auxiliary mesh.

Table 3: Estimated condition number (number of PCG iteration) in 3D with ^ ≡ 1.

PolyElem 33 93 153 213 273

TetQuality 7.08e-06 4.09e-08 1.11e-09 2.98e-11 1.28e-11
K(�) 7.91 (25) 5.94e+01 (60) 1.35e+02 (77) 3.20e+02 (104) 6.66e+02 (139)
K(�add�) 2.36 (16) 4.29 (21) 3.38 (21) 4.35 (24) 5.36 (27)
K(�mul�) 1.00 (5) 1.10 (8) 1.13 (8) 1.14 (8) 1.18 (9)

Table 3 shows the performance of the �add and �mul. We do not present �fict here
because the PCG algorithm does not converge within 200 iterations. To understand
the reason, we have calculated the mesh quality of the auxiliary triangulation. Here
the TetQuality is the minimum value: min) A8

A2
for all tetrahedral elements ) , where

A8 and A2 are the radii of the inscribed and circumscribed spheres of ) , respectively.
From this table, we notice that both �add and �mul are still robust, even in the case
of poor TetQuality (which violates Assumption (A)). On the other hand, �fict is
sensitive to the shape-regularity of the auxiliary tetrahedral mesh.
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Multi-step Variant of the Parareal Algorithm

Katia Ait-Ameur, Yvon Maday, and Marc Tajchman

1 Introduction

In the field of nuclear energy, computations of complex two-phase flows are required
for the design and safety studies of nuclear reactors. System codes are dedicated
to the thermal-hydraulic analysis of nuclear reactors at system scale by simulating
the whole reactor. We are here interested in the Cathare code developed by CEA,
[5]. Typical cases involve up to a million of numerical time iterations, computing
the approximate solution during long physical simulation times. A space domain
decompositionmethod has already been implemented. To improve the response time,
we will consider a strategy of time domain decomposition, based on the parareal
method [11]. The Cathare time discretization is based on a multi-step time scheme
(see [8]). In this paper, we derive a strategy to adapt the parareal algorithm to multi-
step schemes that is not implemented in the code. The paper is organized as follows.
In Section 2, we recall the classical version of the parareal algorithm, and then detail
the variant that allows us to use multi-step time schemes for the fine solvers. A
couple of remarks on the algorithm will be discussed. The numerical convergence
for a simplified test case is shown in Section 3 on a Dahlquist test equation followed
by numerical results on an advection-diffusion equation and on an industrial test case
with an application on the Cathare code.
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2 Parareal algorithm and the multi-step variant

After the discretization of a PDE in space, we obtain an ODE system of the form:

mD

mC
+ �(C, D) = 0, C ∈ [0, )], D(C = 0) = D0 (1)

mat where � : R × RN → RN , and N denotes the number of degrees of freedom.
We here recall the classical parareal algorithm as initially proposed in [11], [2], [4].
Let � and � be two propagators such that, for any given C ∈ [0, )], B ∈ [0, ) − C]
and any function F in a Banach space, � (C, B, F) (respectively � (C, B, F)) takes F
as an initial value at time C and propagates it at time C + B. The full time interval is
divided into #2 sub-intervals [)=, )=+1] of size Δ) that will each be assigned to a
processor. The algorithm is defined using two propagation operators:

• � ()=,Δ), D=) computes a coarse approximation of D()=+1) with initial condition
D()=) ' D= (low computational cost)

• � ()=,Δ), D=) computes a more accurate approximation of D()=+1) with initial
condition D()=) ' D= (high computational cost)

Starting from a coarse approximation D=0 at times )0, )1, · · · , )# 2 , obtained using
�, the parareal algorithm performs for : = 0, 1, · · · the following iteration:

D=+1:+1 = � ()=,Δ), D=:+1) + � ()=,Δ), D=: ) − � ()=,Δ), D=: )

In the parareal algorithm, the value D()=) is approximated by D=
:
at each iteration :

with an accuracy that tends rapidly to the one achieved by the fine solver, when :
increases. The coarse approximation � can be chosen much less expensive than the
fine solver � by the use of a scheme with a much larger time step (even X) = Δ))
X) � XC (time step of the fine solver) or by using a reduced model. All the fine
propagations are made in parallel over the time windows and the coarse propagations
are computed in a sequential way but have a low computational cost. We refer to [12]
about the parallel efficiency of parareal and a recent work offering a new formulation
of the algorithm to improve the parallel efficiency of the original one. The main
convergence properties were studied in [7] and stability analysis was made in [14],
[3].
In the sequel, we will consider the case that the coarse solver is based on a one-step
time scheme and the fine solver on a two-step time scheme. Hence we will use the
following notation for the fine solver that takes two initial values: � (C, B, G, H), for
C ∈ [0, )], B ∈ [0, ) − C [ and G, H in a Banach space.

Example 1. If one solves (1) with a multi-step time scheme as fine propagator �
like the second-order BDF method:

3
2
D 9+1 − 2D 9 + 1

2
D 9−1 = −XC�(D 9+1, C 9+1), 9 = 1, · · · , # 5 , C 9+1 − C 9 = XC
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Here the fine solver reads as: D 9+1 = � (C 9 , XC, D 9−1, D 9 ). Now, we apply the parareal
algorithm with a coarse grid: )0, · · · , )# 2 where:
)=+1 − )= = Δ) = # 5 XC.
Then we can write: D()= + 9XC) ' D=, 9 , 9 = 1, · · · , # 5 , = = 1, · · · , #2 .
In order to perform the fine propagation, in a given time window [)=, )=+1], we only
need the local initial condition D=

:
and a consistent approximation of D()= − XC).

In [1], the authors propose a consistent approximation in the context of the sim-
ulation of molecular dynamics. The proposed method was linked to the nature of
the model and the symplectic character of their algorithm is shown, which is an
important property to verify for molecular dynamics.
In the context of our application to the thermalhydraulic code Cathare, we want
to derive a multi-step variant of parareal that will not be intrusive in the software.
We seek a consistent approximation of D()= − XC). The only fine trajectory at our
disposal is � ()=−1,Δ), D=−2,# 5 −1

:
, D=−1
:
). Its final value at )= is:

� ()=−1,Δ), D=−2,# 5 −1
:

, D=−1
:
) ()=) from which we compute D=

:+1 by the parareal
correction. Hence, we translate the solution:
� ()=−1,Δ) − XC, D=−2,# 5 −1

:
, D=−1
:
) ()= − XC) by the same correction:

D=
:+1 − � ()=−1,Δ), D=−2,# 5 −1

:
, D=−1
:
) and obtain the so called consistent approxima-

tion D=−1,# 5 −1
:+1 to initialize the fine propagation in [)=, )=+1]. We now detail our

algorithm:

D=+10 = � ()=,Δ), D=0 ), 0 ≤ = ≤ # − 1

D=+1
:+1 = � ()=,Δ), D=

:+1) + � ()=,Δ), D=−1,# 5 −1
:

, D=
:
)

−� ()=,Δ), D=
:
), 0 ≤ = ≤ # − 1, : ≥ 0

D
=,# 5 −1
:+1 = � ()=,Δ) − XC, D=−1,# 5 −1

:
, D=
:
) + D=+1

:+1
−� ()=,Δ), D=−1,# 5 −1

:
, D=
:
), 0 ≤ = ≤ # − 1, : ≥ 0

(2)

Another option to treat this issue is to use a one-step time scheme to initialize the
fine computation or to make one iteration with a second-order Runge Kutta method.
We will see from the numerical results that these choices modify the fine scheme
and prevent the parareal algorithm to converge to the fine solution: even after #2
iterations (where #2 is the number of time windows), the parareal algorithm does
not converge to the fine solution with the machine precision but the parareal error
stagnates around 10−6.
This method adds consistencywith the fine scheme. Also, this strategy can be applied
to multi-step time schemes involving several fine time steps preceding the time )=

by applying the same correction to terms taking the form: D=,#
5 −8

:+1 , 8 = 1, · · · , �.
The convergence analysis will be shown in a forthcoming work.
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3 Numerical results

Wenow show some numerical experiments, first for an ordinary differential equation,
the test equation of Dahlquist, then for a partial differential equation, namely the
advection-diffusion equation and finally on an industrial application with the Cathare
code.

3.1 Dahlquist equation

We first use the Dahlquist test equation :

D′(C) = _D(C), C ∈ (0, )), with D(0) = 1,

discretized by a second-order BDF method. With _ = −1, ) = 5, Δ) = )/50, which
correspond to 50 processors, and XC = )/5000, we obtain the convergence curves
shown in Fig. 1. Here, the fine solver is based on a two-step time scheme where
the computation of the solution D=, 9+1 at time )= + ( 9 + 1)XC needs the knowledge
of the solutions D=, 9 and D=, 9−1 at times )= + 9XC and )= + ( 9 − 1)XC, respectively.
We use the multi-step variant of parareal (2) to initialize the fine solver in each time
window, starting from the parareal iteration : ≥ 2. At the parareal iteration : = 1,
we use a Backward Euler method to initialize the fine solver since we don’t have
the fine solution yet. The coarse solver is based on a one-step time scheme, namely
the Backward Euler method. We plot the relative error in !∞ (0, )) between the
fine solution computed in a sequential way and the parareal solution as a function
of iteration number for the classical parareal algorithm where the Backward Euler
method is used at each iteration for the initialization of the fine solver (circles), and
for the multi-step variant of the parareal algorithm that we introduced in the previous
section (squares). We see in the Fig. 1 (without multi-step) that starting from the
fourth parareal iteration the error stagnates around 10−6 without recovering the fine
solution at the machine precision, even after 50 iterations. On the other hand, we
see in Fig. 1 (with multi-step) that the error continues to decrease after the fourth
parareal iteration until reaching the machine precision at the eleventh iteration. In
this case, if we don’t use the multi-step variant of parareal, we loose one of the well
known property of parareal: to recover the fine solution at the machine precision
after #2 iterations.

3.2 Advection-diffusion equation

We now study the behavior of the multi-step parareal (2) applied to the advection-
diffusion equation:
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Fig. 1: Convergence of the multi-step parareal for the Dahlquist test equation


mD
mC
− m2D
mG2 + mDmG = 0, (G, C) ∈ (0, 2c) × (0, ))

D(G, 0) = D0 (G), G ∈ (0, 2c)
D(G, C) = D(G + 2c, C), C ∈ (0, ))

(3)

We have chosen a spectral Fourier approximation in space (truncated series with
# = 16) and a second-order BDF method in time for a propagation over [0, 2]. The
parareal in time algorithm is implemented with Δ) = 0.1 and XC = 10−3. We have
chosen the following initial condition:

D0 (G) =
;=# /2∑

;=−# /2+1
D̂;4

8;G , with D̂; =
B6=(;)
|; |? .

We choose ? = 4, hence the initial condition is sufficiently regular.

The coarse and fine solvers are the same as in the previous numerical ex-
ample and we use the same initialization of the fine solver at the first parareal
iteration. We plot the following error as a function of iteration number: �=

:
=

<0G= | |*B4@ () =)−*=: | |!2 ( (0,2c) )
<0G= | |*B4@ () =) | |!2 ( (0,2c) )

, where *B4@ is the fine solution computed in a sequen-
tial way. In Fig. 2 (circles), we observe a similar behavior as in the previous case,
the error stagnates around 10−6 after the fifth parareal iteration without reaching the
machine precision when the number of iterations is equal to the number of time
windows (20 in this case). In Fig. 2 (squares), using the multi-step variant, the error
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continues to decrease after the fifth iteration until reaching the machine precision
around 10−16 at iteration number 20.
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Fig. 2: Convergence of the multi-step parareal for the advection-diffusion equation

3.3 Application to the Cathare code

The Cathare code simulates two-phase flows at a macroscopic scale and the model
used is the six-equation two-fluidmodel ([6],[10],[13]) that considers a set of balance
laws (mass, momentum and energy) for each phase liquid and vapor. The unknowns
are the volume fraction U: ∈ [0, 1], the enthalpies �: , the velocity D: of each phase
and the pressure ?. The density d: ≥ 0 is computed with equations of state (: = ;, 6).
The Cathare scheme is based on a finite volume method on a staggered grid (MAC
scheme) and on a two-step time scheme. Here, we write the time discretization of
the Cathare scheme:

(U:d: )=+1−(U:d: )=
ΔC

+ mG (U: d:D: )=+1 = 0

(U: d: )=+1 D
=+1
:
−D=
:

ΔC
+ (U: d:D: )=+1mGD=+1:

+ U=+1
:
mG ?

=+1 = (U: d: )=+16
+�=,=+1

:

1
ΔC

[
(U: d: )=+1

(
�: + D

2
:

2

)=,=+1
− (U: d: )=

(
�: + D

2
:

2

)=−1,=]
+mG

[
U: d:D:

(
�: + D

2
:

2

)]=+1
= U=+1

:

?=+1−?=
ΔC

+ (U: d:D: )=+16

(4)
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This choice of time discretization was made for stability purpose.
Here we apply the parareal algorithm to the solution of an oscillating manometer.
This test case is proposed in [9] for system codes to test the ability of each numerical
scheme to preserve system mass and to retain the gas-liquid interface.
We have used coarse and fine solvers such that XC = 10−5 for � and Δ) = 10XC for G.
All calculations have been evaluated with a stopping criterion where the tolerance is
fixed to the precision of the numerical scheme, n = 5 · 10−2.
In order to perform the fine propagation, in a given time window [)=, )=+1], at
the first parareal iteration we need to choose a different consistent approximation
of D()= − XC), since we have not used the fine solver yet. In the context of the
application to the Cathare code, we choose a non intrusive initialization by imposing
D
=−1,# 5 −1
0 = D=0 , 1 ≤ = ≤ # − 1 .

In Fig. 3, we plot the evolution of the relative error in !2 norm between the parareal
solution and the fine one accross the time. This result illustrates that the multi-
step variant (2) of the parareal algorithm effectively converges when applied to the
problem of the oscillating manometer.
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Fig. 3: Multi-step parareal for an industrial application with Cathare code

4 Conclusion

We have built a new variant of parareal algorithm allowing to overcome the issue
of initializing the fine solver when the time scheme involve the numerical solution
at times preceding the local initial condition in a given time window. The results of
this study show that this variant converges numerically on different examples: the
two simple test equations allow to see clearly the advantage of our strategy. The
application on an industrial code shows its efficiency on a more realistic test case
without being intrusive in the software.



The convergence analysis of this algorithm will be the subject of a forthcoming
paper. The extension of this method to the use of a multi-step scheme in the coarse
solver will be also investigated. This point was treated in [1] and a similar strategy
will be studied.
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A Domain Decomposition Method for a
Geological Crack

O. Bodart, A. Chorfi, and J. Koko

1 Introduction

The computational cost is a key issue in crack identification or propagation problems.
One of the solutions is to avoid re-meshing the domain when the crack moves by
using a fictitious domain method [2]. We consider a geological crack in which the
sides do not pull apart. To avoid re-meshing, we propose an approach combining the
finite element method, the fictitious domain method, and a domain decomposition
approach. We first extend artificially the crack to split the domain into two sub-
domains with a nonpenetration condition (negative relative normal displacement)
on the crack, a prescribed homogeneous displacement jump condition (continuous
displacement) on the fictitious crack. We obtain a convex linearly constrained min-
imization problem with a quadratic cost function. We use a (primal-dual) interior
points method, see e.g.[7, sect 16.6],[5], for the numerical realization.

The paper is organized as follows. In Section 2 we present the model problem,
followed by the domain decomposition in Section 3. In Section 4, we describe the
finite element discretization and the algebraic problem. Results are presented in
Section 5.
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2 Model description

Let Ω be an open and bounded domain in R2 with smooth boundary Γ = Γ� ∪ Γ# ,
where Γ� and Γ# are Dirichlet and Neumann parts (Γ� ∩ Γ# = ∅). We denote by
u the displacement fields and by f the density of the external forces. The Cauchy
stress tensor f(u) and the strain tensor Y(u) are given by

f(u) = 2`Y(u) + _(Y(D))IR2 and Y(u) = (∇u + ∇u>)/2,

where _ and ` are the Lamé constants. The top boundary (Γ# ground surface) is
subject to homogeneous Neumann boundary condition and, on Γ� homogeneous
Dirichlet boundary conditions are assumed.

Fig. 1: Domain Ω with the crack (� and fictitious crack (0

We assume that Ω contains a crack (� represented by a curve (cf. Figure 1),
parametrized by an injective map. A nonpenetration condition is prescribed on (� .
Denoting by (+

�
, (−

�
the right and left sides of (� we can set u+ = u |(+

�
and

u− = u |(−
�
, the displacement fields on the right and left sides of (� . Then the

nonpenetration condition is given by the negative relative normal displacement, i.e.,
[u=] := (u+−u−) ·n ≤ 0, assuming no normal gap in the undeformed configuration.

The linear elastostatic model with crack is governed by the following system of
equations

−divf(u) = f inΩ, (1)
u = 0 onΓ� , f(u) · = = 0 onΓ# , (2)

[u=] ≤ 0, on (� . (3)

In the next section we extend the crack to split the domain into two subdomains.

3 Domain Decomposition

We extend artificially the crack to split the domain into two subdmoainsΩ± as shown
in Figure 1. Let (0 be the fictitious crack. On (0 we prescribed the (displacement)
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continuity condition [u] := (u+ − u−) = 0 and the normal derivative continuity
condition [f(u)=] := (f(u+) − f(u−)) · = = 0.

Let us introduce the functions space + = {E ∈ �1 (Ω); E = 0 on Γ�}, and the
forms

0(u, v) =
∫
Ω

f(u) : Y(v) 3G and f (v) =
∫
Ω

f v 3G.

Then the total potential energy is

� (v) = 1
2
0(v, v) − f (v). (4)

The elastostatic problemwith extended crack can now be formulated as the following
constrained minimization problem

min � (u), (5)
[u=] ≤ 0 on (� , (6)
[u] = 0 on (0 (7)

Since the functional (4) is strongly convex on V and constraints (6)-(7) are linear,
the constrained minimization problem (5)-(7) has a unique solution.

Remark 1 The stress continuity condition is no longer taken into acount in the for-
mulation (5)-(7). It will be ensure by the Lagrange multiplier associated with the
displacement continuity condition (7).

With (5)-(7) we associate the Lagrangian functional L defined on V × L2 ((� ) ×
L2 ((0)2 by:

L(v, `� , `0) = � (v) + (`� , [u=])(� + (`0, [u])(0 , (8)

where `� ∈ L2 ((� ), `0 ∈ L2 ((0)2 are the Lagrange multipliers associated with (6)
and (7), respectively . Note that the the multiplier associated with (7) must be non
negative, i.e. `� ≥ 0 on (. Since (5)-(7) is linear a constrained convex minimization
problem, a saddle point of L exists and (5)-(7) is equivalent to the saddle point
problem

Find (u, _� , _0) such that

L(u, `� , `0) ≤ L(u, _� , _0) ≤ L(v, _� , _0), ∀(v, `� , `0) (9)

Since L is Gateaux differentiable on V×L2 ((� ) ×L2 ((0)2, the solution of (9) is
characterized by the saddle-point (Euler-Lagrange) equations of the primal and dual
problems as follows

Find (u, _� , _0) such that
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0(u, v) + (_� , [v=])(� + (_0, [v])(0 = f (v), ∀v ∈ V, (10)
_� [u=] = 0, on (� , (11)

(`0, [u])(0 = 0, ∀`0 ∈ L2 ((0)2, (12)

where (., .)(2 and (., .)(0 are !2-scalar product on (2 and (0, respectively.
The equality (11) ( i.e. the complementarity condition) is true almost everywhere,
and if _� > 0 then [u=] = 0, and if [u=] < 0 (non contact), then _� = 0.

4 Finite element discretization and the algebraic problem

4.1 Finite element discretization

The saddle-point equations are suitable for a fictitious domain approach, i.e. the
crack mesh is defined independently of the domain mesh, see e.g.,[2]. We use a
fictitious domain method inspired by the extended finite element method (XFEM)
in which basis functions are cut across the crack, e.g. [1].

We assume that the domain Ω has a polygonal shape such that it can be entirely
triangulated. Let Tℎ be a triangulation of Ω.We define the finite elements space

+ℎ = {vℎ ∈ C0 (Ω̄); vℎ |) ∈ %: ()) ∀) ∈ Tℎ; vℎ = 0 on Γ} ⊂ +,

Here, %: ()) is the space of the polynomials of degree ≤ : on the mesh ) . We define
on ( = (� ∪ (0 a finite elements space

Λℎ = {_ℎ ∈ C0 ((); _ℎ |� ∈ %: (�) ∀� ∈ Iℎ} ⊂ !2 ((),

This approach is similar to XFEM [6], except that the standard basis functions near
the crack are not enriched by singular functions but only multiplied by Heaviside
functions :

� (G) =
{

1 if G ∈ Ω± (computational domain)
0 otherwise.

For element  containing the crack, the stiffness term
∫
 
f(q8) : Y(q 9 ) is replaced

by
∫
 
f(� (q8)) : Y(� (q 9 )).

4.2 Algebraic problem and algorithm

Assuming that u = [u+ u−]> ∈ R2= is the unknown vector of nodal values of the
displacement fields on Ωℎ . Let us define the following matrices and vectors:
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• A the stiffness matrix (2= × 2= symmetric positive definite), A = 3806(A+,A−).
• f, the external forces (vector of R2=), f = [f+ f−]>
• B� , the relative normal displacement matrix at the contact nodes B�u := (u+ −

u−) · n.
• B0, the displacement jump matrix across (0, B0u := (u+ − u−).
We define the scalar products

(,, -)"� = ,>"�- and (,, -)"0 = ,>"0-,

where "� and "0 are the mass matrices on (� and(0, respectively.
With the above notations, the algebraic Lagrangian of the problem is

L(u, ,� , ,0) = 1
2

v>Av − v>f + (,� ,B�v)"� + (,0,B0v)"0 ,

for which the saddle point (KKT) equation are

Find (u, ,I , ,0) such that:

∇uL(u, ,� , ,0) = 0 (13)
∇,�L(u, ,� , ,0) ≤ 0, ,� ≥ 0, ,� · ∇,�L(u, ,� , ,0) = 0 (14)

∇,0L(u, ,� , -0) = 0, (15)

where (·) stands for element-wise (or Hadamard) multiplication. Note that in (13),
the primal problem, the unknowns u± are uncoupled if the Lagrange multipliers
,� , ,0) are known. Then a primal-dual algorithm is suitable for solving (13)-(15).
To apply an primal-dual interior point method, we set z = −∇,�L(u, ,� , ,0), such
that (13)-(15) becomes

Find (u, z, ,� , ,0), with z ≥ 0 and ,� ≥ 0, such that

∇uL(u, ,� , ,0) = 0 (16)
∇,�L(u, ,� , ,0) + z = 0, (17)
∇,0L(u, ,� , ,0) = 0. (18)

,� · z = 0 (19)

Since A is positive definite, (16)-(19) are necessary and sufficient conditions. Then
we have to solve a nonlinear system of the form

� (u, z, ,� , ,0) = 0, z ≥ 0, ,� ≥ 0. (20)

Let us introduce the vector e = (1, . . . , 1)> and define the complementarity measure
` = ,>�z/<, where < is the dimension of z. We then replace (20) by the following
perturbed KKT conditions

� (u, z, ,� , ,0) = (0>, 0>, 0>, g`e>)>, (21)
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that is

Au = f − �>�,� − �>0 ,0, (22)
B�u + z = 0, (23)

B0u = 0, (24)
,� · z = g`e, (25)

where (g, `) > 0. Solutions of (22)-(25) for all positive values of g and ` define
a curve C(g, `), called the central path, which is the trajectory that leads to the
solution of the quadratic problem as g` tends to zero. The primal-dual interior point
algorithm for solving the saddle point system (13)-(15) consists of applying the
damped Newton method to (22)-(25). The damped parameter, g and ` are adjusted
iteratively to ensure fast convergence (see e.g., [7, sect 16.6],[5]). Solving (21) with
primal-dual interior point method consists of solving a primal-dual linear system
equivalent to the optimality conditions for an equality-constrained convex quadratic
program. Applying a Uzawa conjugate gradient method to the (linearized) optimality
conditions leads to solving primal linear systems of the form (22) which breaks down
naturally into ± sub-systems.

5 Numerical results

We have implemented the method described in the previous section in MATLAB
(R2016b) on a Linux workstation equipped with a quad-core Intel Xeon E5 with
3.00GHz clock frequency and 32GB RAM. We use the mesh generation package
KMG2D [3], and the fast FEM assembling functions package KPDE [4]. The test
problem used is designed to illustrate the numerical behavior of the algorithm more
than to model an actual geological crack.

We consider Ω = (0, 10) × (0, 5) with the boundary partition

Γ� = (0, 10) × {0} ∪ {1} × (0, 5) ∪ {0} × (0, 5) (26)
Γ# = (0, 10) × {1}. (27)

The crack is given by

(� = {(G, 1.25(G − 3) | G ∈ (3, 5.4)}, (0 = {(G, 1.25(G − 3) | G ∈ (5.4, 7)}.

The mesh sample is shown in Figure 2. The material constants are � = 9 × 106

(Young’s modulus) and a = 0.3 (Poisson’s ratio).The applied force to the domain is
the gravity with a value density of 1500.

We use the couple %2/%1 for the discretization: continuous %2 triangular element
for Ωℎ , continuous %1 segment for the crack. The choice of the finite element
pair %2/%1 is made to ensure the inf-sup condition . We first consider a uniform
discretization of Ω consisting of 561 nodes and 256 triangles. The interior point
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Fig. 2:Mesh sample of Ω with real crack and fictitious crack

algorithm stops after 11 iterations. The deformed configuration is shown in Figure 3
and reveals the presence of a crack.

To study the behavior of our algorithm, the initial mesh is uniformly refined to
produce meshes with 2145, 8385, 33153 and 131841 nodes. The performances of
the algorithm is shown in Table 1. One can observe that the number of iterations
required for convergence is virtually independent of the mesh size.

Fig. 3:Mesh sample of Ω with real crack and fictitious crack (magnification=20)

Nodes/Triangles 561/256 2145/1024 8385/4096 33153/16384 131841/65536
Iterations 11 12 15 15 14

CPU Times (Sec.) 0.21 0.47 2.37 17.64 191.92
Table 1: Number of iterations and CPU times (in Sec.) for the interior point algorithm



Conclusion

We have studied a fictitious domain method for a geological crack based on fictitious
domain and XFEM. Numerical experiments show that the number of iterations is
virtually independent of the mesh size. Further work is under way to accelerate the
method using preconditioning techniques inspired by [5]. Stabilization techniques,
as in [1], are also under study.
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Fictitious Domain Method for an Inverse
Problem in Volcanoes

Oliver Bodart, Valérie Cayol, Farshid Dabaghi, and Jonas Koko

1 General framework and problem setting

Problems in volcanology often involve elasticity models in presence of cracks (see
e.g. [5]). Most of the time the force exerted on the crack is unknown, and the position
and shape of the crack are also frequently unknown or partially known (see e.g. [2]).
The model may be approximated via boundary element methods.These methods are
quite convenient to take into account the crack since the problem is then reformulated
into an external problem where the crack is the only object to be meshed. However
these methods do not allow to take the heterogeneity and/or the anisotropy of the
medium into account. Another drawback is that, when it comes to identifying the
shape and/or location of the crack, the variation of the latter implies a remeshing
and assembling of all the matrices of the problem.

Using a domain decomposition technique then appears as the natural solution to
these problems. In [1], a first step was made with the development of a direct solver
implementing a domain decomposition method. The present work represents a step
further with the use of such a solver, which has been improved since the publication
of [1], to solve inverse problems in the field of earth sciences. To our knowledge,
this is the first work using these kind of techniques in this field of application. The
next step of our project will be the shape optimization problem to identify the shape
and location of the crack.
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LetΩ be a bounded open set in R3 , 3 = 2, 3with smooth boundary mΩ := ΓD∪ΓN
where ΓD and ΓN are of nonzero measure and ΓD ∩ ΓN = ∅. We assume that Ω is
occupied by an elastic solid and we denote by u the displacement field of the solid
and the density of external forces by f ∈ L2 (Ω). The Cauchy stress f(u) and strain
Y(u) are given by

f(u) = _ (TrY(u))IR3 + 2`Y(u) and Y(u) = 1
2
(∇u + ∇uT),

where (_, `) are the Lamé coefficients, IR3 denotes the identity tensor, and Tr(·)
represents the matrix trace. Consider a crack ΓC ⊂ Ω represented by a line (3 = 2)
or a surface (3 = 3) parametrized by an injective mapping. Around the crack, Ω is
split into Ω− and Ω+. The deformation field of the solid is supposed to satisfy the
following elastostatic system:

Find u ∈ H1 (Ω \ Γ� ) such that :
−div f(u) = f in Ω \ Γ� ,
u = 0 in ΓD,
f(u) · n = 0 on ΓN,
f(u) · n± = ?n± on ΓC.

(1)

where n is the outward unit normal to its boundaries. Typically in such a situation,
ΓN is the ground surface and free to move. Practically, the displacement field can be
observed on ΓN, whereas the pressure ? exerted on the crack is unknown most of the
time.

Consider the following function defined on L2 (ΓC):

� (?) :=
1
2

∫
ΓN

(u − u3)C−1 (u − u3)T dΓN + U2 ‖?‖
2
L2 (ΓC) , (2)

where D3 ∈ L2 (ΓN) is the measured displacement field and D is the solution of
(1) associated with ?. Moreover, the matrix C is the covariance operator of the
measurements uncertainties, and is assumed to be positive definite (see e.g. [4]),
and finally U > 0 is a regularization parameter. The aim of this work is to study the
following problem, of optimal control type:

min
?∈L2 (ΓC)

� (?). (3)

The paper is organized as follows : the next section will be devoted to the presen-
tation of the domain decomposition method and its discretization. Section 3 gives
the optimality conditions for the problem (3) and establishes their discrete version.
A special focus will be made on the adaptation of the problem to a domain decom-
position formulation. Finally we present a relevant numerical test in section 4 and
discuss the next steps of our project.
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2 Domain decomposition : the direct solver

To solve the direct problem (1), we use a domain decomposition method. More
precisely, following [1], the domain Ω is split into two subdomains such that each
point of the domain lies on one side of the crack or on the crack. Moreover, the global
unknown solution u is decoupled in two sub–solutions for each side of the crack.
For this purpose, we are using an artificial extension of the considered crack ΓC (e.g.
Γ0 in Figure 1). Therefore, instead of the crack problem (1), we have to solve two

Γ+
D

Ω−

Ω+

Γ+
N

Γ−
D

Γ−
D

Γ0

Γ+
D

Γ−
N

Γ0

n+

ΓC
n−

Fig. 1: Splitting the volcanic cracked domain

Neumann–type boundary problems such that for each problem we impose a pressure
on ΓC, which is more convenient from both theoretical and numerical points of view.
More precisely we solve the following system:

Find u ∈ H1 (Ω) such that :
−div f(u±) = f± in Ω±,
u± = 0 on ΓD ∩ mΩ±,
(f(u) · n)± = 0 on ΓN ∩ mΩ±,
(f(u) · n)± = ?n± on ΓC,
[u] = 0 on Γ0,

[f(u)] · n+ = 0 on Γ0,

(4)

where u+ = u |Ω+ and u− = u |Ω− , and [v] denotes the jump of E across Γ0. The
two last conditions in (4) enforce the continuity of displacement and stress across
Γ0. Notice that the boundary conditions on Γ0 ensure the construction of a global
displacement field in H1 (Ω \ Γ� ) solving the original problem (1).

Let us define the following Hilbert spaces

V± = {E ∈ H1 (Ω±) | E = 0 on ΓD ∩ mΩ±}, W = (H 1
2 (Γ0)).

and their dual spaces V′± and W′, endowed with their usual norms. Prescribing the
continuity of displacement across the Γ0 via a Lagrangian formulation, the mixed
weak formulation of Problem (4) reads as follows:
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Find u± ∈ V± and , ∈W′ such that :
0(u±, v±) ± 1(,, v±) = ;± (v±) ∀v± ∈ V±,
1(-, [u]) = 0 ∀- ∈W′,

(5)

with
0(u±, v±) =

∫
Ω±
f(u±) : Y(v±) dΩ±

bilinear, symmetric, coercive and

;± (v±) =
∫
Ω±
5 · v± dΩ± +

∫
ΓC

(?n)± · v± dΓC

linear and continuous. Moreover, 1 is defined as the duality pairing between W′ and
W : 1(,, v±) = 〈,, v±〉W′,W. Therefore, it is straightforward to prove the existence
and uniqueness of a solution to Problem (5) (see e.g. [1] ans references within).

Denoting then f± and p the approximations of 5 and ? in V± and Ŵℎ , setting
?= = pn+ = −pn− and

K =
©«
�+ 0 �+)

0 �− −�−)
�+ −�− 0

ª®¬ , X =
©«

u+
u−
,

ª®¬ ,
F = ©«

F+
F−
0

ª®¬ = ©«
"+
Ω
· f+

"−
Ω
· f−
0

ª®¬ + ©«
+"+2 · ?=
−"−2 · ?=

0

ª®¬ := !Ω.f + !2 .p,

the discretized form of system (5) has the linear algebraic formulation

KX = F. (6)

The system (6) can be solved by a Uzawa Conjugate gradient/domain decomposition
method [1]. The method can be classically stabilized and the convergence of the
numerical scheme can be proved as ℎ→ 0 .

In what follows, we will focus on the adaptation of a crack inverse problem to this
domain decomposition formulation and its application to a realistic problem.

3 The crack inverse problem

First, we have the following result.

Proposition 1 For anyU > 0, the problem (3) admits a unique solution ?∗ inL2 (ΓC).
Proof The proof is classical: applying the same method as in [3], one easily shows
that � is strictly convex and coercive on L2 (ΓC). �
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The objective function � being strictly convex, first order optimality conditions can
be computed to implement an suitable optimizationmethod (in our case the conjugate
gradient). Let us introduce the adjoint system

−div f(5) = 0 in Ω,
5 = 0 on ΓD,
f(5) · n = C−1 (u − u3) on ΓN,

(7)

where u is a solution of system (1). Is is easy to prove that this adjoint system admits
a unique solution 5 ∈ �1 (Ω). We have the following

Proposition 2 Let ?∗ be the solution of problem (3) and (u∗, 5∗) be the associated
solutions of (1) and (7). Then, the following optimality condition holds:

U?∗ + (5∗ · n±) = 0. (8)

This result can be proved using a classical sensitivity analysis technique. The im-
portant point here is that it gives a way to compute the gradient of the function �:
for a given ? ∈ !2 (ΓC), compute (u, 5) which solve (1) and (7). Then, the Gâteaux
derivative of � is given in !2 (ΓC) by

� ′(?) = U? + (5 · n±), (9)

For a given pressure ? ∈ !2 (ΓC), the computation of the gradient � ′(?) then requires
to solve two systems.

Since we transformed our direct problem into system (4), we now need to adapt
the inverse problem to this formulation. The cost function � defined by (2) then
rewrites into

� (?) :=
1
2

∫
Γ±N

(u± − u3)C−1 (u± − u3)T dΓ±N +
U

2
‖?‖2L2 (ΓC) . (10)

Notice that the observed data u3 can be interpolated on two sub–domains Ω± to
obtain u±

3
corresponding to u±.

In view of (6), denoting ' the reduction matrix ' : X→ U and

U =

(
u+
u−

)
, U3 =

(
u+
3

u−
3

)
,

the discrete cost function is defined as

�3 (p) = 1
2
('X − U3)TC−1"# ('X − U3) + U2 (p

T"�p), (11)

where X is the solution of (6), "# and "� are the mass matrices on Γ# and Γ� ,
respectively. This finite dimensional problem then boils down to finding the saddle
point of the following Lagrangian
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L(X, p,�) = �3 (p) − 〈KX − (!Ωf + !2p),�〉.

Computing the KKT conditions for this problem allows to compute the gradient of
�3 : for a given vector p, let X be the solution of (6) and � be the solution of the
adjoint problem

KT� = C−1"# ('X − U3). (12)

Then, we have
∇�3 (p) = U"�p + !T

2�, (13)

The system (12) and the gradient (13) are the discrete counterparts of (7) and (9).
As (6), the adjoint system (12) is solved by a Uzawa conjugate gradient/domain
decomposition method.

Computational aspects: the problem studied here is actually of quadratic type.
Hence it is natural to use a suitable minimization technique, namely a conjugate
gradient algorithm. It is important to notice that, using the underlying quadratic
form, one can determine the optimal step size. Therefore no line search algorithm is
necessary, which consequently reduces the computational cost.

4 Numerical experiments

Aiming at practical applications, we applied the technique to a realistic volcano,
the Piton de la Fournaise, Île de la Réunion, France. The mesh was built from
a digital elevation model (DEM), provided by the french institute IGN (Institut
Géographique National, French National Geographic Institute). Both the boundary
and volume mesh for the whole domain were generated by Gmsh software (Figure 2,
left). The crack geometry is assumed to be quadrangular and intersecting the surface.
It is constructed following [2] (see Figure 2, left). The crack mesh does not match the
volume mesh. Moreover, it can be easily extended in order to split the domain. We
assume that the crack is submitted to an initial pressure p0. The inverse problem will
consist in determining the unknown pressure from the surface displacements (Figure
2, right). The convergence curves in Figure 3, highlight the efficiency of adapted
optimization algorithm. The conjugate gradient minimization performs efficiently,
even for fine meshes.

5 Conclusion

We have studied a conjugate gradient type method for an interface pressure inverse
problem using a Uzawa conjugate gradient domain decomposition method (from
[1]) as inner solver. Further study is underway to derive a single-loop conjugate
gradient domain decomposition method by (directly) considering the constrained
minimization problem (1)-(2) and using sensitivity and adjoint systems techniques.
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Fig. 2: Triangular surface mesh [2] representing the crack (left), amplitude of the displacement of
a realistic volcano (right).
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A Schwarz Method for the Magnetotelluric
Approximation of Maxwell’s Equations

Fabrizio Donzelli, Martin J. Gander, and Ronald D. Haynes

1 Introduction

Maxwell’s equations can be used tomodel the propagation of electro-magnetic waves
in the subsurface of the Earth. The interaction of such waves with the material in
the subsurface produces response waves, which carry information about the physical
properties of the Earth’s subsurface, and their measurement allows geophysicists to
detect the presence of mineral or oil deposits. Since such deposits are often found to
be invariant with respect to one direction parallel to the Earth’s surface, themodel can
be reduced to a two dimensional complex partial differential equation. Following
[20], the magnetotelluric approximation is derived from the full 3D Maxwell’s
equations,

m�

mC
+ ∇ × � = 0, −m�

mC
+ ∇ × � = �, (1)

in the quasi-static (i.e. long wavelength, low frequency) regime, which implies that
m�
mC

in (1) is neglected. Assuming a time dependence of the form 48lC , where l
is the pulsation of the wave, using Ohm’s law, � = f� + �4, where �4 denotes
some exterior current source, and the constitutive relation � = `� where ` is the
permeability of free space, we obtain

∇ × � = −8l`�, ∇ × � = f� + �4 . (2)

Assuming the plane-wave source of magnetotellurics, and a two-dimensional Earth
structure such that f = f(G, I), the electric and magnetic fields can be decomposed
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into two independent modes. For the TM-, or H-polarization, mode, we have � =

(�G , 0, �I) and� = (0, �H , 0). Hence the first vector valued equation in (2) becomes
a scalar equation,

m�G

mI
− m�I
mG

= −8l`�H , (3)

and the second vector valued equation in (2) gives two scalar equations,

−m�H
mI

= f�G + �4G or �G = − 1
f

m�H

mI
− �

4
G

f
, (4)

and
m�H

mG
= f�I + �4I or �I =

1
f

m�H

mG
− �

4
I

f
. (5)

Substituting (4) and (5) into (3) thus leads to a scalar equation for �H ,

− m
mI

{
1
f

m�H

mI

}
− m

mG

{
1
f

m�H

mG

}
+ 8l`�H = m

mI

{
�4G

f

}
− m

mG

{
�4I

f

}
. (6)

In geophysical applications the coefficient of conductivity f is in general a non-
constant, piece-wise continuous function. We will assume, however, for simplicity
that f ≡ 1. If we then set D := �H , assume homogeneous Dirichlet boundary condi-
tions and let 5 := − m

mI

{
�4G
f

}
+ m
mG

{
�4I
f

}
, we obtain the magnetotelluric approximation

of the Maxwell equations (cf. equation (2.86) in [20])

ΔD − 8lD = 5 in Ω , D = 0 on mΩ . (7)

We further assume for simplicity that Ω is a domain with smooth boundary and that
5 ∈ �∞ (Ω) ∩ � (Ω). The pulsation l is assumed to be real and non-zero. Note that
the solution D of equation (7) could also represent a component of the electric field
if the model had been derived in an analogous fashion from the TE mode.

We are interested in solving the magnetotelluric approximation (7) using Schwarz
methods. The alternating Schwarz method, introduced by H.A. Schwarz in 1869 [18]
to prove existence and uniqueness of solutions to Laplace’s equation on irregular
domains, is the foundational idea of the field of domain decomposition, and has
inspired work in both theoretical aspects and applications to all fields of science
and engineering, see [9, 4] and references therein for more information about the
historical context. Lions [16, 17] reconsidered the problem of the convergence of
the method for the Poisson equation on more general configurations of overlapping
subdomains. In his second paper [17], he followed the idea of Schwarz and proved
convergence of the alternating Schwarzmethod using themaximumprinciple for har-
monic functions. He also introduced a parallel variant of the Schwarz method, where
all subdomain problems are solved simultaneously. Schwarz methods have also been
introduced and studied for the original Maxwell equations (1), see [2, 1, 6, 5, 7, 8],
in regimes where the maximum principle can not be used to prove convergence. We
show here that for the magnetotelluric approximation of Maxwell equations in (7),
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Ω1

Γ1

Ω2

Γ2

Ω3

Γ3

Ω4

Γ4

Fig. 1: Strongly overlapping subdomain decomposition obtained by enlarging a non-overlapping
decomposition, indicated by the dashed lines, by a layer of strictly positive width

which also has complex solutions like the original Maxwell equations, the conver-
gence of the parallel Schwarz method can be proved using a maximum modulus
principle satisfied by complex solutions of (7).

2 Well-Posedness, Schwarz Method and Convergence

We start by establishing the well-posedness of the magnetotelluric approximation of
the Maxwell equations in (7).

Theorem 1 Let Ω ⊂ R2 be a bounded domain with smooth boundary. Assume that
5 ∈ !2 (Ω) and l is a non-zero constant. Then the boundary value problem (7) has
a unique solution D ∈ �1

0 (Ω), depending continuously on 5 .

Proof This result follows from a standard application of the Riesz Representation
Theorem and the Lax-Milgram Lemma. �

We now decompose the domain Ω ⊂ R2 first into non-overlapping subdomains,
and then enlarge each subdomain by a layer of positivewidth to obtain the overlapping
subdomains Ω 9 , for 9 = 1, . . . , �, leading to a strongly overlapping subdomain
decomposition of Ω. An example is shown in Figure 1, where the non-overlapping
decomposition is indicated by the dashed lines, see also [10]. For such strongly
overlapping decompositions, one can define a smooth partition of unity {j 9 }�9=1
subordinated to the open covering {Ω 9 }�9=1, such that the support of j 9 is a set  9
contained in the open subdomain Ω 9 for each 9 = 1, 2, . . . , �, see [19, Theorem 15,
Chapter 2]. The assumption of a strongly overlapping decomposition is not strictly
necessary to use maximum principle arguments, see for example [11, 12], which
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contain even accurate convergence estimates, but we make it here since it simplifies
the application of the maximum modulus principle (via Corollary 1) for studying
Schwarz methods for equations with complex valued solutions. For each Ω 9 , we
denote by Γ 9 the portion of mΩ 9 in the interior of Ω.

The parallel Schwarz method for such a multi-subdomain decomposition starts
with a global initial guess for the solution of (7), D0

glob ∈ �2 (Ω) ∩ �0 (Ω) (less
regularity would also be possible, because of the regularization provided by the
equation). If at step = of the parallel Schwarz method the global approximation D=glob
has been constructed, and D=glob ∈ �2 (Ω) ∩ �0 (Ω), then the iteration produces the
next global approximation by solving, for 9 = 1, . . . , �, the Dirichlet problems

ΔD=+1
9
− 8lD=+1

9
= 5 in Ω 9 ,

D=+1
9

= 0 on Ω 9 ∩ mΩ,
D=+1
9

= D=glob on Γ 9 ,
(8)

and then defining the (= + 1)Cℎ global iterate by using the partition of unity,

D=+1glob =

�∑
9=1

j 9D
=+1
9 . (9)

Since the initial guess D0
glob is smooth, by induction it follows that D=+1glob ∈ �2 (Ω) ∩

�0 (Ω). This fact allows us to use the classical (i.e. non-variational ) formulation of
the maximum modulus principle.

Definition 1 A real valued function E of class �2 (Ω) is said to be subharmonic if
ΔE(G) ≥ 0, ∀G ∈ Ω, and strictly subharmonic if ΔE(G) > 0, ∀G ∈ Ω.
Note that the above definition is not the most general one, but it is suitable for the
purposes of our paper. The property that we will use to prove the convergence of
the parallel Schwarz method is the well-known maximum principle, which is the
content of the next theorem (see [13], Theorem J-7).

Theorem 2 Let E ∈ �2 (Ω) ∩ � (Ω) be a non-constant subharmonic function. Let
$ ⊂ Ω be a proper open subset. Then E satisfies the strong maximum principle,
namely max$ E < maxmΩ E.

The following corollary contains the key estimate for proving the convergence of the
parallel Schwarz method.

Corollary 1 Let  be a closed subset of Ω. Then there exists a constant W ∈ [0, 1)
such that max D < WmaxmΩ D, for all non-constant subharmonic functions D ∈
�2 (Ω) ∩ �0 (Ω).
Proof The result follows as an application of a Lemma originally stated by Schwarz
(see [15], pp. 632-635). �

Since the solution of the magnetotelluric approximation (7) of Maxwell’s equation
has complex valued solutions, it is not directly possible to use themaximum principle
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result in Corollary 1 for proving convergence of the associated Schwarz method (8)-
(9). The key additional ingredient is to prove the following property on the modulus
of solutions of the magnetotelluric approximation:

Theorem 3 Let D ∈ �2 (Ω) ∩� (Ω) be a non-zero solution of the homogeneous form
of equation (7). Then |D |2 is a non-constant subharmonic function.
Proof Taking the complex conjugate of the partial differential equation (7) with
5 = 0, gives a pair of equations, ΔD − 8lD = 0 and ΔD + 8lD = 0. Hence we can
compute

Δ|D |2 = Δ(DD) = ∇(D∇D + D∇D) = ∇D∇D + DΔD + ∇D∇D + DΔD =
= 2|∇D |2 + 8l|D |2 − 8l|D |2 = 2|∇D |2 ≥ 0 .

Therefore, |D |2 is subharmonic. If |D |2 is constant, the same calculations show that
∇D ≡ 0, which implies that D is a constant solution, hence it must be identically
equal to zero, since the equation ΔD − 8lD = 0 has no constant non-zero solutions.�

Wenowprove the convergence of the parallel Schwarzmethod for themagnetotelluric
approximation of Maxwell’s equation in the infinity norm, which we denote by | | · | |(
for any function on a subdomain (.

Theorem 4 The parallel Schwarz method (8)-(9) for the magnetotelluric approxi-
mation (7) of Maxwell’s equations is convergent and satisfies the error estimate

max
9=1,...,�

| |D − D=9 | |Ω 9 ≤ W= max
9=1,...,�

| |D − D0
9 | |Ω 9 , (10)

where D denotes the global solution of problem (7) and D=
9
the approximations from

the parallel Schwarz method (8)-(9), and the constant W < 1 comes from Corollary 1.

Proof For 9 = 1, . . . , �, let  9 ⊂ Ω 9 be the support of the partition of unity function
j 9 , and let 4=9 := D−D=

9
be the error. Then 4=

9
is solution of the homogeneous equation

Δ4=
9
− 8l4=

9
= 0, and hence by Theorem 3 its modulus is a subharmonic function,

and thus by Theorem 2, the modulus of the error |4=
9
| satisfies the strong maximum

principle. We can then estimate on each subdomain Ω 9

| |4=+19 | |Ω 9 = | |4=+19 | |Γ 9 = | |
�∑
9′=1

j 9′4
=
9′ | |Γ 9

≤ max
9′=1,...,�

| |4=9′ | | 9′ ≤ W max
9′=1,...,�

| |4=9′ | |Γ 9′ = W max
9′=1,...,�

| |4=9′ | |Ω 9′ ,

where W ∈ [0, 1) is the maximum of the factor introduced in Corollary 1 over all Ω 9
and corresponding  9 . Since this holds for all 9 , we can take the maximum on the
left and obtain

max
9=1,...,�

| |4=+19 | |Ω 9 ≤ W max
9′=1,...,�

| |4=9′ | |Ω 9′ ,

which proves by induction (10). �
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Remark 1 The convergence factor W < 1 is not quantified in Theorem 4, since Corol-
lary 1 does not provide a method to estimate the constant W in the generality of the
decomposition we used, but such an estimate is possible for specific decompositions,
see for example [11, 12].

Remark 2 In [17], Lions proved the convergence of the classical Schwarz method for
the Poisson equation with Dirichlet boundary conditions using a method that does
not use the maximum principle. His remarkable proof is based on the method of
orthogonal projections, and relies on the fact that the bilinear form associated with
the weak formulation of the Poisson equation is an inner product in the solution
space �1

0 (Ω). We do not see how this method can be extended to prove convergence
of the classical Schwarz method applied to the magnetotelluric approximation of the
Maxwell equations. In our case, the bilinear form associated to the weak formulation
of (7) of the global problem is not an inner product, as it fails to be symmetric and
positive-definite.

3 Numerical examples

We now present two numerical experiments. The simulations are computed on a
domain Ω that consists of two squares Ω1 and Ω2, each of unit size 1 × 1. The
discretization for each square consists of a uniform grid of 30 × 30 points. The
overlap is along a vertical strip whose width is specified by the number of grid
points, denoted by 3.

We first compute the error 4=
9

:= D − D=
9
, as used in the proof of Theorem 4. In

Figure 2 we show, from left to right, the modulus of the error on the left subdomain
for iteration = = 1, = = 5 and = = 15, for an overlap of 3 = 6 horizontal grid
points. We chose l = 1, and the initial error was produced by generating random
values uniformly distributed on the range [0, 1]. Note how the modulus of the error
clearly satisfies the maximum principle. In Figure 3, we plot the dependence of the
interface residual (in the 2-norm) on the iteration number, for three different overlap
sizes 3 = 2, 4, 6. As expected, the performance of the algorithm improves as we
increase the size of the overlap, since increasing the overlap improves the constant
W in Corollary 1 which is the key quantity governing the convergence of the parallel
Schwarz method.

4 Conclusion

We showed in this paper that even though the solutions of the magnetotelluric
approximation of Maxwell’s equations are complex valued, maximum principle
arguments can be used to prove convergence of a parallel Schwarz method. The main
new ingredient is a maximum modulus principle which is satisfied by the solutions
of the magnetotelluric approximation. In a forthcoming paper, we will analyze the
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Fig. 2: Modulus of the error 4=1 := D − D=1 for = = 1, 5, 15 on the left subdomain when using the
parallel Schwarz method for solving ΔD − 8lD = 0. Note how the modulus satisfies the maximum
principle.
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Fig. 3: Decay of the interface residual (in the 2-norm) as a function of the iteration number when
using the parallel Schwarz method for solving ΔD − 8lD = 0 using different overlap sizes (3
denotes the number of grid points in the overlap).

convergence rate of the parallel Schwarz method via Fourier analysis, and we will
also introduce more efficient transmission conditions of Robin (or higher-order)
type at the interfaces between the subdomains, which leads to optimized Schwarz
methods, see [14, 3] and references therein.
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Can Classical Schwarz Methods for
Time-harmonic Elastic Waves Converge?

Romain Brunet, Victorita Dolean, and Martin J. Gander

1 Mathematical model

The propagation of waves in elastic media is a problem of undeniable practical
importance in geophysics. In several important applications - e.g. seismic exploration
or earthquake prediction - one seeks to infer unknown material properties of the
earth’s subsurface by sending seismic waves down and measuring the scattered field
which comes back, implying the solution of inverse problems. In the process of
solving the inverse problem (the so-called "full-waveform inversion") one needs to
iteratively solve the forward scattering problem. In practice, each step is done by
solving the appropriate wave equation using explicit time stepping. However in many
applications the relevant signals are band-limited and it would be more efficient to
solve in the frequency domain. For this reason we are interested here in the time-
harmonic counterpart of the Navier or Navier-Cauchy equation (see [6, Chapter 5.1]
or [9, Chapter 9]1), which is a linear mathematical model for elastic waves

−
(
Δ4 + l2d

)
u = f in Ω, Δ4u = `Δu + (_ + `)∇(∇ · u), (1)

where u is the displacement field, f is the source term, d is the density that we
assume real, `, _ ∈ [R∗+]2 are the Lamé coefficients, and l is the time-harmonic
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1 For the fascinating history on how Navier discovered the equation and then rapidly turned his
attention to fluid dynamics, see [3].
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frequency for which we are interested in the solution. An example of a discretization
of this equation was presented in [10]. In our case, we assumed small deformations
which lead to linear equations and consider isotropic and homogeneous materials
which implies that the physical coefficients are independent of the position and
the direction. Due to their indefinite nature, the Navier equations in the frequency
domain (1) are notoriously difficult to solve by iterative methods, especially if the
frequency l becomes large, similar to the Helmholtz equation [7], and there are
further complications as we will see. We study here if the classical Schwarz method
could be a candidate for solving the time harmonic Navier equations (1) iteratively.

2 Classical Schwarz Algorithm

To understand the convergence of the classical Schwarz algorithm applied to the
time harmonic Navier equations (1), we study the equations on the domain Ω := R2,
and decompose it into two overlapping subdomains Ω1 := (−∞, X) × R and Ω2 :=
(0,∞) × R, with overlap parameter X ≥ 0. The classical parallel Schwarz algorithm
computes for iteration index = = 1, 2, . . .

− (
Δ4 + l2d

)
u=1 = f in Ω1,
u=1 = u=−1

2 on G = X,
− (
Δ4 + l2d

)
u=2 = f in Ω2,
u=2 = u=−1

1 on G = 0.

(2)

We now study the convergence of the classical parallel Schwarz method (2) using a
Fourier transform in the H direction. We denote by : ∈ R the Fourier variable and
û(G, :) the Fourier transformed solution,

û(G, :) =
∫ ∞

−∞
e−i:H u(G, H) dH, u(G, H) = 1

2c

∫ ∞

−∞
ei:H û(G, :) d:. (3)

Theorem 1 (Convergence factor of the classical Schwarz algorithm) For a given
initial guess (u0

1 ∈ (!2 (Ω1)2), (u0
2 ∈ (!2 (Ω2)2), eachFouriermode : in the classical

Schwarz algorithm (2) converges with the corresponding convergence factor

d2;0
(
:, l, �? , �B , X

)
= max{|A+ |, |A− |},

where

A± =
-2

2
+4−X (_1+_2)± 1

2

√
-2 (

-2 + 44−X (_1+_2) ) , - = :2 + _1_2

:2 − _1_2

(
4−_1 X − 4−_2 X

)
.

(4)
Here, _1,2 ∈ C are the roots of the characteristic equation of the Fourier transformed
Navier equations,
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_1 =
√
:2 − l2

�2
B
, _2 =

√
:2 − l2

�2
?
, �? =

√
_+2`
d
, �B =

√
`

d
. (5)

Proof By linearity it suffices to consider only the case f = 0 and analyze convergence
to the zero solution, see for example [8]. After a Fourier transform in the H direction,
(1) becomes 

[
(_ + 2`) m2

G +
(
dl2 − `:2

)]
D̂G + 8: (` + _)mG D̂I = 0,[

`m2
G +

(
dl2 − (_ + 2`) :2

)]
D̂I + 8: (` + _) mG D̂G = 0.

(6)

This is a system of ordinary differential equations, whose solution is obtained by
computing the roots A of its characteristic equation,[ (_ + 2`)A2 + dl2 − `:2 8: (` + _)A

8: (` + _)A `A2 + dl2 − (_ + 2`):2

] [
D̂G
D̂I

]
= 0. (7)

A direct computation shows that these roots are ±_1 and ±_2 where _1,2 are given
by (5). Therefore the general form of the solution is

û(G, :) = U1v+4_1G + V1v−4−_1G + U2w+4_2G + V2w−4−_2G , (8)

where v± and w± are obtained by successively inserting these roots into (7) and
computing a non-trivial solution,

v+ =
(

1
i_1
:

)
, v− =

(
1
− i_1
:

)
, w+ =

(
− i_2
:

1

)
, w− =

( i_2
:

1

)
. (9)

Because the local solutions must remain bounded and outgoing at infinity, the sub-
domain solutions in the Fourier transformed domain are

û1 (G, :) = U1v+4_1G + U2w+4_2G , û2 (G, :) = V1v−4−_1G + V2w−4−_2G . (10)

The coefficients U1,2 and V1,2 are then uniquely determined by the transmission con-
ditions. Before using the iteration to determine them, we rewrite the local solutions
at iteration = in the form

û=1 = U
=
1 v+4_1G + U=2 w+4_2G =

[
e_1G − 8_2

:
e_2G

8_1
:

e_1G e_2G

] (
U=1
U=2

)
=: "G"

=,

û=2 = V
=
1 v−4−_1G + V=2 w−4−_2G =

[
e−_1G 8_2

:
e−_2G

− 8_1
:

e−_1G e−_2G

] (
V=1
V=2

)
=: #G#=.

(11)

We then insert (11) into the interface iteration of the classical Schwarz algorithm
(2),

"X"
==#X#

=−1 ⇔ "=="−1
X #X#

=−1, #0#
=="0"

=−1 ⇔ #==#−1
0 "0"

=−1.
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This leads over a double iteration to

"=+1= ("−1
X #X#

−1
0 "0)"=−1=:'1

X"
=−1, #=+1= (#−1

0 "0"
−1
X #X)#=−1=:'2

X#
=−1,

where '1,2
X

are the iteration matrices which are spectrally equivalent. The iteration
matrix '1

X
is given by

'1
X =

[
e−X (_1+_2) -2

2
_1
_2
+ e−2_1 X -2

1 -1-2
(
e−2_1 X − e−X (_1+_2) )

-1-2
_1
_2

(
e−X (_1+_2) − e−2_2 X

)
e−X (_1+_2) -2

2
_1
_2
+ e−2_2 X -2

1

]
, (12)

where -1 =
:2+_1_2
:2−_1_2

and -2 = −i 2:_2
:2−_1_2

. A direct computation then leads to the
eigenvalues (A+, A−) of '1

X
,

A± =
-2

2
+e−X (_1+_2) ±1

2

√
-2 (

-2 + 44−X (_1+_2) ) , - =
:2 + _1_2

:2 − _1_2

(
e−_1 X − e−_2 X

)
.

(13)
The convergence factor is given by the spectral radius of the matrix '1,2

X
,

d2;0
(
:, l, �? , �B , X

)
= max{|A+ |, |A− |}, (14)

which concludes the proof. �

Corollary 1 (Classical Schwarz without Overlap) In the case without overlap,
X = 0, we obtain from (4) that A± = 1, since

(
'1
X
= Id

)
. Therefore, the classical

Schwarz algorithm is not convergent without overlap, it just stagnates.

The result in Corollary 1 is consistent with the general experience that Schwarz
methods without overlap do not converge, but there are important exceptions, for
example for hyperbolic problems [4], and also optimized Schwarz methods can
converge without overlap [8]. Unfortunately also with overlap, the Schwarz method
has difficulties with the time harmonic Navier equations (1):

Corollary 2 (Classical Schwarz with Overlap)
The convergence factor of the overlapping classical Schwarz method (2) with

overlap X applied to the Navier equations (1) verifies for X small enough

d2;0
(
:, l, �? , �B , X

) 
= 1, : ∈ [0, l

�?
] ∪ { l

�B
},

> 1, : ∈ ( l
�?
, l
�B
),

< 1, : ∈ ( l
�B
,∞).

It thus converges only for high frequencies, diverges for medium frequencies, and
stagnates for low frequencies.

Proof We only give here the outline of the proof, the details will appear in [2],
see also [1]: for the first interval : ∈ [0, l

�?
), the proof is obtained by a direct, but

long and technical calculation. For the second and third interval, : ∈ ( l
�?
, l
�B
) and
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Fig. 1: Modulus of the eigenvalues of the iteration matrix as a function of Fourier frequency for
the classical Schwarz method with �? = 1, �B = 0.5, d = 1, X = 0.1. Left: for l = 1. Right: for
l = 5.

: ∈ ( l
�B
,∞), we compute the modulus of the eigenvalues and expand them for X

small to obtain the result. At the boundary between those intervals for : ∈ { l
�?
, l
�B
},

the natural simplifications _2 = 0 or _1 = 0 lead directly to the result2. We illustrate
the three zones of different convergence behavior for two examples in Figure 1.

We see from Corollary 2 that the classical Schwarz method with overlap can not be
used as an iterative solver to solve the time harmonic Navier equations, since it is in
general divergent on the whole interval of intermediate frequencies ( l

�?
, l
�B
). This

is even worse than for the Helmholtz or Maxwell’s equations where the overlapping
classical Schwarz algorithm is also convergent for high frequencies, and only stag-
nates for low frequencies, but is never divergent. A precise estimate of how fast the
classical Schwarz method applied to the time harmonic Navier equations diverges
depending on the overlap is given by the following theorem:

Theorem 2 (Asymptotic convergence factor) The maximum of the convergence
factor of the classical Schwarz method (2) applied to the Navier equations (1)
behaves for small overlap X asymptotically as

max
:
(max |A± |) ∼ 1 +

√
2�Bl

(
3�2

?−
√
�4
?+8�4

B

)√
�2
?

√
�4
?+8�4

B−�4
?−2�4

B

�? (�2
?+�2

B )
3
2
(√
�4
?+8�4

B−�2
?

) X.

Proof According to Corollary 2, the maximum of the convergence factor is attained
in the interval where the algorithm is divergent, : ∈ ( l

�?
, l
�B
), and this quantity

is larger than one. For a fixed : and a small overlap X, the convergence factor

2 The two values : = l
�?

and : = l
�B

correspond to points in the spectrum where the underlying
Navier equations are singular, and are similar to the one resonance frequency in the Helmholtz case.
They are avoided in practice either by using radiation boundary conditions on parts of the boundary
of the computational domain, or by choosing domain geometries such that these frequencies are
not part of the discrete spectrum of the Navier operator on the bounded domain.
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Fig. 2: Error in modulus at iteration 25 of the classical Schwarz method with 2 subdomains, where
one can clearly identify the dominant mode in the error: Left: l = 1. Right: l = 5.

d2;0 (:, l, �? , �B , X) for : ∈ ( l�? ,
l
�B
) is given by

d2;0 (:, l, �? , �B , X) = 1 + 2l2_2_̄
2
1

�2
? (:4+_̄2

1_
2
2) X + O

(
X2) ∈ R∗+. (15)

We denote by � (:) the coefficient in front of X. In order to compute the maximum
of (15) we solve the equation 3� (:)

3:
= 0. We denote by :B the only positive critical

point for which 32� (:)
3:2 (:B) < 0. By replacing :B into the expression of � (:) we get

the desired result, see [1] for more details. �

3 Numerical experiments

We illustrate now the divergence of the classical Schwarz algorithmwith a numerical
experiment. We choose the same parameters �? = 1, �B = 0.5, d = 1 and overlap
X = 0.1 as in Figure 1. We discretize the time-harmonic Navier equations using %1
finite elements on the domain Ω = (−1, 1) × (0, 1) and impose absorbing boundary
conditions on mΩ. We decompose the domain into two overlapping subdomains
Ω1 = (−1, 2ℎ) × (0, 1) and Ω2 = (−2ℎ, 1) × (0, 1) with ℎ = 1

40 , such that the overlap
X = 0.1 = 4ℎ. Our computations are performed with the open source software
Freefem++. We show in Figure 2 the error in modulus at iteration 25 of the classical
Schwarz method, on the left for l = 1 and on the right for l = 5. In the first case,
l = 1, we observe very slow convergence, the error decreases from 7.894 − 1 to
54 − 2 after 25 iterations. This can be understood as follows: the lowest frequency
along the interface on our domain Ω is : = c, which lies outside the interval
[ l
�?
, l
�B
] = [1, 2] of frequencies on which the method is divergent. The method thus

converges, all frequencies lie in the convergent zone in the plot in Figure 1 on the left
where d2;0 < 1. The most slowly convergent mode is | sin(:H) | with : = c, which
is clearly visible in Figure 2 on the left. This is different for l = 5, where we see
in Figure 2 on the right the dominant growing mode. The interval of frequencies on
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Fig. 3: Spectrum of the iteration operator for the same example as in Figure 1, together with a unit
circle centered around the point (1, 0) . Left: l = 1. Right: l = 5

which the method is divergent is given by [ l
�?
, l
�B
] = [5, 10], and we clearly can

identify in Figure 2 on the right a mode with two bumps along the interface, which
corresponds to the mode | sin(:H) | along the interface for : = 2c ≈ 6, which is the
fastest diverging mode according to the analytical result shown in Figure 1 on the
right.

One might wonder if the classical Schwarz method is nevertheless a good pre-
conditioner for a Krylov method, which can happen also for divergent stationary
methods, like for example the Additive Schwarz Method applied to the Laplace
problem, which is also not convergent as an iterative method [5], but useful as a
preconditioner. To investigate this, it suffices to plot the spectrum of the identity
matrix minus the iteration operator in the complex plane, which corresponds to the
preconditioned systems one would like to solve. We see in Figure 3 that the part of
the spectrum that leads to a contraction factor d2;0 with modulus bigger than one
lies unfortunately close to zero in the complex plane, and that is where the residual
polynomial of the Krylov method must equal one. Therefore we can infer that the
classical Schwarz method will also not work well as a preconditioner. This is also
confirmed by the numerical results shown in Figure 4, where we used first the classi-
cal Schwarz method as a solver and then as preconditioner for GMRES. We see that
GMRES now makes the method converge, but convergence depends strongly on l
and slows down when l grows.

4 Conclusion

We proved that the classical Schwarz method with overlap applied to the time har-
monicNavier equations cannot be used as an iterative solver, since it is not convergent
in general. This is even worse than for the Helmholtz or time harmonic Maxwell’s
equations, for which the classical Schwarz algorithm also stagnates for all propaga-
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Fig. 4: Convergence history for RAS and GMRES preconditioned by RAS for different values of
l

tive modes, but at least is not divergent. We then showed that our analysis clearly
identifies the problematic error modes in a numerical experiment. Using the classical
Schwarz method as a preconditioner for GMRES then leads to a convergent method,
which however is strongly dependent on the time-harmonic frequency parameter l.
We are currently studying better transmission conditions between subdomains, which
will lead to optimized Schwarz methods for the time harmonic Navier equation.
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Asymptotic Analysis for the Coupling Between
Subdomains in Discrete Fracture Matrix Models

Martin J. Gander, Julian Hennicker, and Roland Masson

1 Introduction

We study the behavior of solutions of PDE models on domains containing a het-
erogeneous layer of aperture tending to zero. We consider general second order
differential operators on the outer domains and elliptic operators inside the layer.
Our study is motivated by the modeling of flow through fractured porous media,
when one represents the fractures as entities of co-dimension one with respect to the
surrounding rock matrix. These models are called Discrete Fracture Matrix (DFM)
models [2, 4, 1]. A recent study on DFM models and their discretization can be
found in [3]. Our focus lies on the derivation of coupling conditions, which have to
be satisfied by the traces of the solutions for the matrix domain on each side of the
matrix-fracture interfaces. We emphasize that we are not only concerned with the
derivation of coupling conditions that have to be fulfilled in the limit of vanishing
aperture, but in particular with the derivation of coupling conditions that have to
be fulfilled up to a certain order of the aperture, which in turn occurs as a model
parameter. In our work flow, we first derive exact coupling conditions by means of
Fourier analysis. Reduced order coupling conditions are then obtained by truncation
of the exact conditions at the desired order. Our approach is very systematic and
allowed us to reproduce various coupling conditions from the literature as well as
assess the error of the reduced models.
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Fig. 1 Illustration of the do-
main under consideration. In
our study, we restrict our-
selves to a simple geometry,
where Ω1 = (0, −X) × R,
Ω2 = (X, 1) × R and
Ω 5 = (−X, X) × R, with
0, 1 ∈ R. n denotes the unit
normal in G-direction.

n
x

y

a b0 δ

Ω2

−δ

Ω1 Ωf

2 Model problem

We consider the following problem on a threefold domain as illustrated in Figure 1:

L 9 (D 9 , q 9 ) = ℎ 9 in Ω 9 , 9 = 1, 2, 5 , (1)
q 9 = G 9D 9 in Ω 9 , 9 = 1, 2, 5 , (2)
D 9 = D 5 on mΩ 9 ∩ mΩ 5 , 9 = 1, 2, (3)

q 9 · n = q 5 · n on mΩ 9 ∩ mΩ 5 , 9 = 1, 2, (4)

where L 9 ,G 9 are differential operators, together with some suitable boundary con-
ditions. Only inside the fracture domain Ω 5 , we will restrict our study to the class
of general elliptic models, i.e. we assume that

L 5 (D 5 , q 5 ) = −divq 5 + b
2
· ∇D 5 + ([ − div

b
2
)D 5 and G 5 D 5 = (A∇ − b

2
)D 5
(5)

with [ ∈ R≥0, b ∈ R2 and coercive A ∈ R2×2. For simplicity, we also assume a
trivial source term inside the fracture, i.e. ℎ 5 = 0.

3 Derivation of the reduced models by Fourier analysis

From (1),(2),(5) the Fourier coefficients D̂ 5 (G, :) of D 5 (G, H) have to fulfill for all
: ∈ R

−011mGG D̂ 5 +
(
11 − (012 + 021)8:

)
mG D̂ 5 + (022:

2 + 128: + [)D̂ 5 = 0 in Ω 5 .

(6)

The roots of the characteristic polynomial associated with (6) are _1,2 = A ± B, where

A = − 1
2011
((012 + 021)8: − 11) and B =

(
A2 + 1

011
(022:

2 + 128: + [)
) 1

2
.
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The ansatz for the solution of (6),

D̂ 5 (G, :) = � 5 (:)4_1G + � 5 (:)4_2G ,

together with (3) and (4) immediately yields for the Fourier coefficients D̂ 9 (G, :) of
D 9 (G, H) and q̂ 9 (G, :) of q 9 (G, H), 9 = 1, 2, on the interfaces,

D̂1 (−X, :) = � 5 (:)4−X_1 + � 5 (:)4−X_2 , (7)
D̂2 (X, :) = � 5 (:)4X_1 + � 5 (:)4X_2 , (8)

q̂1 (−X, :) · n = 011_1� 5 (:)4−X_1 + 011_2� 5 (:)4−X_2 + (0128: − 11
2
)D̂1 (−X, :),

(9)

q̂2 (X, :) · n = 011_1� 5 (:)4X_1 + 011_2� 5 (:)4X_2 + (0128: − 11
2
)D̂2 (X, :).

(10)

Equations (7) and (8) are now solved for � 5 and � 5 , which can then be substituted
into the remaining two equations (9) and (10). After some calculations, this leads to
the exact coupling conditions

sinh(2BX)q̂1 (−X) · n + (011B cosh(2BX) + d sinh(2BX))D̂1 (−X)
= 011B4

−2XA D̂2 (X), (11)
− sinh(2BX)q̂2 (X) · n + (011B cosh(2BX) − d sinh(2BX))D̂2 (X)

= 011B4
2XA D̂1 (−X), (12)

where d = 021−012
2 8: . For the remaining part of the paper, we will drop the arguments

indicating the evaluation at G = −X for the functions living in Ω1 and at G = X for
those living in Ω2. Taking the sum (11) + (12) yields an expression related to the
normal velocity jump across the fracture, whereas the difference (11) − (12) gives
an expression related to the pressure jump accross the fracture,

sinh(2BX) (q̂2 − q̂1) · n
= 011B

(
cosh(2BX) (D̂1 + D̂2) − (42XA D̂1 + 4−2XA D̂2)

)
+ d sinh(2BX) (D̂1 − D̂2), (13)

011B
(
cosh(2BX) (D̂2 − D̂1) + (4−2XA D̂2 − 42XA D̂1)

)
= sinh(2BX) (q̂1 + q̂2) · n + d sinh(2BX) (D̂1 + D̂2). (14)

We now expand (13), (14) into a series in X and truncate at a given order. We then
obtain the following reduced order coupling conditions at G = ±X:
1. Truncation after the leading-order term, which we call coupling conditions of

type zero (CC0 coupling conditions):

(q̂2 − q̂1) · n = 0 and D̂2 − D̂1 = 0.
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2. Truncation after the next-to-leading-order term, which we call CC1 coupling
conditions:

(q̂2 − q̂1) · n = X
(
022:

2 + 128: + [
)
(D̂1 + D̂2) +

(
−0218: + 11

2

)
(D̂2 − D̂1),

X(q̂2 + q̂1) · n = 011 (D̂2 − D̂1) + X
(
0128: − 11

2

)
(D̂1 + D̂2).

Of course, we could derive higher order coupling conditions by using higher order
expansions.

We now want to get back to the physical unknowns D 9 and q 9 , 9 = 1, 2. To do so,
we perform an inverse Fourier transform by formally applying the rules,

D̂ 9 ↦→ D 9 , q̂ 9 ↦→ q 9 , :2 ↦→ −mHH , 8: ↦→ mH .

We therefore obtain as reduced order approximations of the exact coupling conditions
between the subdomains Ω1 and Ω2

1. CC0 coupling conditions:

q2 · n − q1 · n = 0 and D2 − D1 = 0. (15)

2. CC1 coupling conditions:

(q2 − q1) · n = X
(
−022mHH + 12mH + [

)
(D1 + D2) +

(
−021mH + 11

2

)
(D2 − D1),

(16)

X(q1 + q2) · n = 011 (D2 − D1) + X
(
012mH − 11

2

)
(D1 + D2). (17)

4 Comparison to the literature

DFM models are a tool for the simulation of flow through fractured porous media,
where the governing equations are mass conservation and Darcy’s law. The approach
illustrated above covers more general problems, and in order to compare our coupling
conditions to existing ones from the literature, we now let

b := 0, [ := 0, and A :=
(
011 0
0 022

)
.

As outlined in [4], one typically derives the reduced order coupling conditions by
integrating the equations over the fracture width,
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0 =
∫ X

−X
divq 5 dG = q 5 · n(X) − q 5 · n(−X) + mH

∫ X

−X
q 5 dG

= q2 · n − q1 · n + 2X022m
2
H* 5 , (18)∫ X

−X
q 5 · ndG = 011 (D 5 (X) − D 5 (−X)) = 011 (D2 − D1), (19)

and then uses some ad-hoc approximations∫ X

−X
q 5 · ndG ≈ 2X

q 5 · n(X) + q 5 · n(−X)
2

= X(q1 · n + q2 · n), (20)

D2 + D1 ≈ 2* 5 , (21)

where * 5 := 1
2X

∫ X

−X D 5 dG. Combining these equations leads to the coupling condi-
tions

X022m
2
H (D1 + D2) + q2 · n − q1 · n = 0, (22)

X(q2 · n + q1 · n) = 011 (D2 − D1). (23)

Note that, by means of (21), condition (22) is equivalent to the tangential mass
conservation inside the fracture together with mass exchange between the fracture
and rock matrix.

Theorem 1 The coupling conditions (22), (23) coincide with the coupling conditions
(16),(17) for the diffusion equation with diagonal matrix �. Furthermore, the exact
solution obeys formally (22), (23) with an error of order three, for X→ 0.

Proof For the diffusion equation with diagonal matrix �, the terms in the coupling
conditions (16), (17), which are related to the advection and reaction constants and
the terms related to the off-diagonal entries in the diffusion matrix vanish. By direct
comparison, we observe that the resulting equations coincide with the coupling
conditions (22), (23), which shows the first statement of the theorem. Furthermore,
for the diffusion equation with diagonal matrix �, the coupling conditions (13), after
dividing by sinh(2BX), and (14), after dividing by cosh(2BX), yield

q1 · n − q2 · n =
(
X022mHH + 1

3
X302

22
011

m2
HH +

2
15
X503

22

02
11

m3
HH + · · ·

)
(D1 + D2), (24)

D2 − D1 =
( X
011
+ 1

3
X3022

02
11

mHH + 2
15
X502

22

03
11

m2
HH + · · ·

)
(q1 + q2) · n. (25)

Hence, by substitution of the exact solution into the approximate coupling conditions
(22), (23), we formally obtain residuals of order three, for X → 0, which confirms
the second statement of the theorem. �

From (24),(25), we observe that the asymptotic behavior of the exact coupling
conditions depends only on the asymptotic behavior of the ratio X

011
and of the



438 Martin J. Gander, Julian Hennicker, and Roland Masson

product X022. We call these two characteristic quantities the fracture resistivity and
conductivity, respectively. In [5], a rigorous asymptotic analysis for the Laplace
equation is conducted, with the focus on the solution in the limit X = 0. In this
context, coupling conditions (at G = ±0) are derived, for the cases X

011
→ W ∈ R,

X
011
→∞, X

011
→ 0, provided 011 → 0, which turn out to correspond to the coupling

conditions, which we derive by means of truncating (24),(25) at order X0 (with
011 = 022 for isotropic diffusion).

1. Case X
011
→ W ∈ R (note that this implies X011 → 0):

q1 · n − q2 · n = 0 and D2 − D1 = W(q1 + q2) · n.

2. Case X
011
→∞ (note that this implies X011 → 0):

q1 · n − q2 · n = 0 and q1 · n + q2 · n = 0.

3. Case X
011
→ 0 and X011 → 0 corresponds to (15).

We can now complete this study by considering the cases X011 → W ∈ R or
X011 →∞ (which both imply X

011
→ 0). We obtain

4. Case X011 → W ∈ R:

q1 · n − q2 · n = WmHH (D1 + D2) and D2 − D1 = 0.

5. Case X011 →∞:

mHH (D1 + D2) = 0 and D2 − D1 = 0.

5 Numerical results

We present here a series of test cases for isotropic diffusion in all of the three domains
Ω1 = (−10,−X)× (−10, 10),Ω2 = (X, 10)× (−10, 10) andΩ 5 = (−X, X)× (−10, 10).
The diffusion coefficients are a in Ω 5 and 1 in the domains Ω1,Ω2. This means that
we consider the model solved on the full domain, which consists of the Laplace
equation ΔD 9 = 0 in Ω 9 , 9 = 1, 2, 5 , together with the coupling conditions

D1 (−X) = D 5 (−X) and D2 (X) = D 5 (X),
mGD1 (−X) = amGD 5 (−X) and mGD2 (X) = amGD 5 (X),

and compare the solution to those obtained by the reduced models, which consist
of the Laplace equation ΔD 9 = 0 in Ω 9 , 9 = 1, 2, together with either leading order
(CC0) coupling conditions,

D1 (−X) = D2 (X) and mGD1 (−X) = mGD2 (X),



Coupling Between Subdomains in Discrete Fracture Matrix Models 439

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0.001  0.01  0.1  1

E
R
R
O
R

 O
F

 R
E
D
U
C
E
D

 S
O
L
U
T
IO
N

FRACTURE APERTURE

NU=0.1

linear
cubic
CC1
CC0

10-12

10-10

10-8

10-6

10-4

10-2

100

 0.001  0.01  0.1  1

E
R
R
O
R

 O
F

 R
E
D
U
C
E
D

 S
O
L
U
T
IO
N

FRACTURE APERTURE

NU=10

linear
cubic
CC1
CC0

10-12

10-10

10-8

10-6

10-4

10-2

100

 0.001  0.01  0.1  1

E
R
R
O
R

 O
F

 R
E
D
U
C
E
D

 S
O
L
U
T
IO
N

FRACTURE APERTURE

NU=1000

linear
cubic
CC1
CC0

Fig. 2: The reference solution and the !∞-error for the solutions of the reduced models for a = 10,
a = 0.1 and a = 0.001 (from top to bottom). The error is plotted for CC0 and for CC1 coupling
conditions.

or coupling conditions containing next-to-leading-order corrections (CC1),

mGD1 (−X) − mGD2 (X) = XamHH (D1 (−X) + D2 (X)),
D2 (X) − D1 (−X) = Xa−1 (mGD2 (X) + mGD1 (−X)),

which have been shown to have an error of O(X3) compared to the exact solution, for
diffusion problemswith diagonalmatrix �.We use homogeneousDirichlet boundary
conditions at H = ±10 and non-homogeneous Dirichlet boundary conditions with
values ± cos(cH/20) at G = ±10. From Figure 2, we observe an increase of the



pressure jump across the fracture, when increasing the fracture resistivity, as encoded
in the coupling conditions. From the error plots, we see that the theoretical order of
convergence is reproduced, although we note that, in the case of a = 0.001, we need
to decrease the fracture width quite severely to enter the regime of theoretical order
of convergence.

6 Conclusion

We presented a rigorous derivation of coupling conditions for DFM models of very
general type, i.e. advection-diffusion-reaction in the fracture and even more general
second order PDEs in the surrounding matrix domains. The derivation of coupling
conditions relies on a Fourier transform of the physical unknowns in direction tan-
gential to the fracture and, subsequently, on the elimination of the fracture unknowns’
Fourier coefficients by performing a continuous Schur complement. Reduced order
coupling conditions are then obtained by straightforward truncation of an expansion.
We compared the coupling conditions to a commonly used family of (diffusion)
models from the literature and obtained correspondence for the coupling conditions
truncated after the next-to-leading-order terms. We further derived coupling condi-
tions for the fracture resistivity tending to a constant, to infinity and to zero, and
found correspondence to the literature, which contains results for the special case of
the Laplace equation only.
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A Nonlinear Elimination Preconditioned Inexact
Newton Algorithm for Steady State
Incompressible Flow Problems on 3D
Unstructured Meshes

Li Luo, Rongliang Chen, Xiao-Chuan Cai, and David E. Keyes

1 Introduction

The Newton algorithm and its variants are frequently used to obtain the numerical
solution of large nonlinear systems arising from the discretization of partial differ-
ential equations, e.g., the incompressible Navier-Stokes equations in computational
fluid dynamics. Near quadratic convergence can be observed when the nonlinearities
in the system are well-balanced. However, if some of the equations have stronger
nonlinearities than the others in the system, a Newton-like algorithm may suffer
from slow convergence in the form of a long stagnation in the residual history, or not
converge at all.

Nonlinear preconditioning aims to tackle this problem by creating an inner itera-
tion with improved balance, which can be thought of as making the residual contours
more spherical (i.e., hypersphericity in high dimension). Nonlinear preconditioners
require solving nonlinear subproblems in inner iterations to remove implicitly local
high nonlinearities that cause Newton’s method to take small updates, so that the fast
convergence of global Newton iteration can be restored. A nonlinear preconditioner
can be applied on the left or on the right of the nonlinear function. The idea of left
preconditioning [2] is to replace the nonlinear function by a preconditioned one with
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more balanced nonlinearities, and then solve the new system using a Newton-like al-
gorithm. In contrast, right preconditioning such as nonlinear elimination (NE) [4, 3]
does not change the nonlinear function but modifies the unknown variables of the
original system. The application of NE can be viewed as a subspace correction step
to provide a new starting point for the global Newton iteration, then the solution is
updated in the whole space.

In this paper, we develop a nonlinear elimination preconditioned inexact Newton
algorithm for steady state flow problems in 3D. It is well known that such problems
are usually difficult to solve if a good initial guess is not available. The Newton-like
algorithms may diverge though applied with some globalization techniques such as
line search. To overcome the difficulty,we introduce an iterative restricted elimination
approach based on the magnitude of the local residual, which successfully reduces
the number of global Newton iterations. Numerical experiments show the value
of the proposed algorithm in comparison to the classical inexact Newton method
applied globally, and the impact of tuning parameters.

2 The nonlinear elimination preconditioned inexact Newton
algorithm

Consider � : '= → '=. We aim to find G∗ ∈ '=, such that

� (G∗) = 0, (1)

starting froman initial guess G0 ∈ '=, where� = (�1, . . . , �=)) ,�8 = �8 (G1, . . . , G=),
and G = (G1, . . . , G=)) . We first recall the inexact Newton algorithm with backtrack-
ing (INB). Assume G: is the current approximate solution. A new G:+1 can be
computed via

G:+1 = G: + _: B: , (2)

where _: is the step length, and the inexact Newton direction B: satisfies

‖� ′
(
G:

)
B: + �

(
G:

)
‖ ≤ [: ‖� (G: )‖. (3)

Here [: ∈ [0, 1) is a forcing term that determines how accurately the Jacobian
system needs to be solved. To enhance the robustness of INB, we adapt the choice of
the forcing term based on norms that are by-products of the iteration, as suggested
by Eisenstat and Walker [5].

In many practical situations, especially for nonlinear equations that have unbal-
anced nonlinearities, _: is much smaller than 1 since it is often determined by the
components with the strongest nonlinearities. The objective of nonlinear elimina-
tion (NE) is to balance the overall nonlinearities of the system through subspace
correction. To illustrate the algorithm, we denote by H = ! (F , G) the operation of
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the subspace correction step, where F is a modified nonlinear function and G is
an intermediate approximate solution. The basic algorithm of NE preconditioned
inexact Newton method with backtracking (INB-NE) can be described as follows:

Algorithm 1: The nonlinear elimination preconditioned inexact Newton
method with backtracking (INB-NE)
Step 1 Start from the initial guess G0 and set : = 0, G−1 = G0.
Step 2 Check convergence:

• If the global condition ‖� (G: )‖ ≤ WA ‖� (G0)‖ is satisfied, stop.
• If ‖� (G: )‖/‖� (G:−1)‖ > d0 and : < #=4, go to Step 3; otherwise, go to

Step 4.
Step 3 The NE step: perform subspace correction iteratively.

• Set G (0) = G: .
• For ; = 0, . . . , #; − 1:

(i) Construct the nonlinear function F (G).
(ii) Evaluate G (;+1) = !

(F , G (;) ) .
(iii) If ‖� (G (;+1) )‖/‖� (G (0) )‖ < d1, break.

• Set G: = G (;+1) , go to Step 4.
Step 4 The global INB step:

• Inexactly solve � ′(G: )B: = −� (G: ).
• Compute _: using the cubic backtracking technique.
• Update G:+1 = G: + _: B: .
• Set : = : + 1, go to Step 2.

In the algorithm, WA is the relative tolerance for the nonlinear solver, d0 and d1 are
preselected factors to measure the relative reduction of the global residual, and #=4
is used to control the number of applications of NE.

Next, we discuss the construction of F (G) and ! (F , G) in detail. In this paper,
we consider a point-based elimination approach, i.e., when one variable on some
particular mesh point is selected to eliminate, all other variables corresponding to
that mesh point are also eliminated. Specifically, let � be an index set of " mesh
points, where each index corresponds to< unknown components G82 and< nonlinear
residual components �82 , 2 = 0, . . . , < − 1. At each subspace correction step, we
decompose � into a “bad" subset � (;)

1
with " (;)

1
mesh points and a “good" subset

�
(;)
6 = �\� (;)

1
with " − " (;)

1
mesh points, where � (;)

1
and � (;)6 correspond to the

variables that have strong and weak nonlinearities, respectively. In this paper we
consider the bad subset of mesh points � (;)

1
as

�
(;)
1
=

{
8 | If max2{|�82 (G (;) ) |} > V‖� (G (;) )‖∞, 2 = 0, . . . , < − 1

}
, (4)

where V > 0 is a preselected factor. With this subset, we define two subspaces
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+
(;)
1
=

{
E | E = (E0, . . . , E=−1)) ∈ '=, E82 = 0 if 8 ∉ � (;)

1

}
, (5)

and + (;)6 =

{
E | E = (E0, . . . , E=−1)) ∈ '=, E82 = 0 if 8 ∈ � (;)

1

}
. (6)

The corresponding restriction operators are denoted as ' (;)
1

and ' (;)6 , which map the
vectors from '= to+ (;)

1
and+ (;)6 , respectively. Then, the modified nonlinear function

F is defined as

F (G) = ' (;)6 (G − G (;) ) + ' (;)1 (� (G)). (7)

The nonlinear system F (G) = 0 is solved by using the classical INB algorithm with
the initial guess G (;) . G (∗) is accepted as the approximate solution if the stopping
condition ‖F (G (∗) )‖ ≤ W=4A ‖F (G (;) )‖ is satisfied, where W=4A is the relative tolerance
for the nonlinear solver. In practice, we replace the equations corresponding to the
good components by G82 − G (;)82 = 0 and keep the others unchanged. Therefore, the
solve of F (G) = 0 can be performed in the whole space.

To construct the operator !, we introduce a restricted bad subset

�
(;)
1,Y

=

{
8 | If max2{|�82 (G (;) ) |} > (V + Y)‖� (G (;) )‖∞, 2 = 0, . . . , < − 1

}
, (8)

where the restricted size Y > 0 is a given parameter. With this subset, we define
the corresponding subspaces + (;)

1,Y
and + (;)6,Y in a similar way to (5) and (6). The

corresponding restriction operators are denoted as ' (;)
1,Y

and ' (;)6,Y , respectively. Then,
with the approximate solution G (∗) , we define the corrected solution G (;+1) for the
subspace correction step as

G (;+1) = ! (F , G (;) ) = ' (;)6,Y (G (;) ) + ' (;)1,Y (G (∗) ). (9)

Remark 1 In this paper, an additive Schwarz preconditioned GMRES method is
employed as the linear solver to obtain the solution of the Jacobian systems in both
the global INB process and the NE step.

3 Numerical experiments

Let Ω be a bounded domain in '3. The system of interest can be described by the
steady state incompressible Navier-Stokes equations, as follows:{

d(u · ∇)u − ∇ · 2 = 0, in Ω,

∇ · u = 0, in Ω.

Here u = (D, E, F)) is the velocity, d is the density, and 2 = −?I + ` (∇u + ∇u)
)
is

the Cauchy stress tensor, where I is an identity matrix, ? is the pressure, and ` is the
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viscosity coefficient. A P1-P1 stabilized finite element method is used to discretize
the incompressible Navier-Stokes equations, which results in a nonlinear system
� (G) = 0 to be solved. Here G is a vector of the velocity and pressure unknowns
defined at the mesh points.

The algorithms studied in this paper are implemented in PETSc [1]. All computa-
tions are carried out on the Tianhe-2 supercomputer. The Jacobian matrices arising
from both the global INB process and the NE step are computed analytically. The
relative tolerances WA and W=4A are set to be 10−10 and 10−3, respectively. The restart
value of GMRES is fixed at 200. In the linear Schwarz preconditioner, the size of
overlap is fixed to 2. A point-block incomplete LU (ILU) factorization with 3 fill-in
levels is used to apply the approximate inverse action of the subdomain matrix. For
all the numerical tests, we fix the parameters d0 = 0.8, d1 = 0.2, and #=4 = 3. A
zero vector is used as the initial guess, i.e., G0 = 0. It is observed in our tests that only
one application of NE is needed for the global Newton to converge quickly, which
usually happens at the 3rd global Newton step.

We first consider a lid-driven cubical cavity flowwith different Reynolds numbers.
The length of the cavity is � = 1m. A fluid with density d = 1kg/m3 is driven by the
wall at H = � which moves tangentially in the G direction with a constant velocity
* = 1m/s. The other walls impose a no slip boundary condition. The Reynolds
number is defined as '4 = d*�/`.We vary the viscosity ` to test different Reynolds
numbers 1000, 1600, 1800, and 2000. In this case, we use V = 10−2, Y = 0, and
#; = 1. A tetrahedral mesh with 1,761,316 elements and 313,858 nodes is used for
the test. The simulation is conducted using 240 processor cores.

For '4 = 2000, the projections of streamlines on equidistant planes are shown
in Fig. 1 (left). In Fig. 1 (right), we show the histories of the nonlinear residuals
by using the classical INB and the proposed INB-NE. It is observed that, for the
classical INB, the residual curve converges quickly for case '4 = 1000, but stagnates
longer for cases '4 = 1600 and '4 = 1800, and diverges for case '4 = 2000. For
INB-NE, the residual curves for these four cases converge within 16 global nonlinear
steps. Comparatively, the proposed algorithm is more robust with respect to higher
Reynolds numbers.

To study how NE removes the strongest nonlinearities, we show in Fig. 2 the
residual contour of component D before and after the application of NE, and the
corresponding “bad" subset colored in red, at the 3rd global Newton step for case
'4 = 2000. Table 1 shows the numbers of iterations and compute times obtained
using different '4. In the table, “NI6;>10;" denotes the number of global Newton
iterations, “LI6;>10;" denotes the averaged number of GMRES iterations per global
Newton, “NI=4" refers to the averaged number of Newton iterations per subspace
correction in NE, “LI=4" is the averaged number of GMRES iterations per Newton in
NE, “T=4(s)" is the compute time in second for theNEpreconditioner, and “TC>C0;(s)"
is the total compute time in second. As '4 increases, though extra compute time is
spent on the nonlinear preconditioning, the total compute time of INB-NE is less
than that of the classical INB due to significant decrease of the number of global
Newton iterations.
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Fig. 1: Lid-driven cavity flow: (left) streamlines for case '4 = 2000, (right) nonlinear residual
history. V = 10−2, Y = 0, and #; = 1.

Fig. 2: Lid-driven cavity flow at the 3rd global Newton step for case '4 = 2000: (left) residual
contour of component D before NE, (middle) “bad" subset in red, (right) residual contour of
component D after NE.

Table 1: The numbers of iterations and compute times obtained using different '4 in the case of
lid-driven cavity flow. “–" indicates that the case fails to converge.

INB INB-NE
'4 NI6;>10; LI6;>10; TC>C0;(s) NI6;>10; LI6;>10; NI=4 LI=4 T=4(s) TC>C0;(s)
1000 10 24.40 31.44 12 29.25 8 6.62 21.38 60.90
1600 18 32.29 64.72 15 28.00 8 6.87 21.86 70.82
1800 26 39.54 101.52 15 34.60 8 7.38 21.85 73.84
2000 – – – 16 37.93 8 7.63 21.73 78.23

We next consider another well-understood benchmark problem, flow around a
cylinder, as defined in [6]. The detailed geometry can be found in the reference. The
height and width of the channel is � = 0.41m, and the diameter of the cylinder
is � = 0.1m. The inflow condition is * (0, H, I) = 16*<HI(� − H) (� − I)/�4,
yielding '4 = d*̄�/`, where *̄ = 4*</9. The outlet is imposed with a natural
outflow boundary condition. We fix the density to d = 1kg/m3, the velocity to
*< = 0.45m/s, and vary the viscosity ` to test different Reynolds numbers '4 = 20,
120, 170, and 200. In this case, we use V = Y = 5 × 10−4 and #; = 2. A tetrahedral
mesh with 4,909,056 elements and 851,024 nodes is used for the test. The simulation
is conducted using 480 processor cores.
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The velocity contour on the plane I = 0.5� for case '4 = 20 is shown in Fig. 3
(left). The histories of the nonlinear residuals obtained using the classical INB and
the the present INB-NE are shown in Fig. 3 (right). As '4 increases, the number
of Newton iterations of the classical INB increases rapidly. When '4 is up to 200,
INB fails to converge. In contrast, INB-NE converges well for all the four cases and
requires fewer nonlinear iterations than the classical INB. Table 2 shows the numbers
of iterations and compute times obtained using different '4. Similar to the case of
driven cavity flow, when '4 becomes larger, the proposed INB-NE is more efficient
than the classical INB in terms of the total compute time.
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Fig. 3: Flow around a cylinder: (left) velocity contour for case '4 = 20, (right) nonlinear residual
history. V = Y = 5 × 10−4, #; = 2.

Table 2: The numbers of iterations and compute times obtained using different '4 in the case of
flow around a cylinder. “–" indicates that the case fails to converge.

INB INB-NE
'4 NI6;>10; LI6;>10; TC>C0;(s) NI6;>10; LI6;>10; NI=4 LI=4 T=4(s) TC>C0;(s)
20 9 31.67 41.51 8 34.38 5.5 12.73 43.72 81.76
120 19 52.05 106.85 11 52.27 6.5 11.85 49.65 108.29
170 23 64.13 142.63 13 45.62 6.5 12.62 50.34 116.87
200 – – – 14 43.57 7.5 12.27 57.69 127.43

To study the impact of the parameters on the performance of the NE precondi-
tioner, we test the case of flow around a cylinder at '4 = 200 with different values
of #; , V, and Y. Results are listed in Table 3. In general, when increasing the number
of subspace correction steps #; or decreasing the preselected factor V, the number
of global Newton iterations decreases, but this does not necessarily result in a better
performance in terms of the total compute time. On the other hand, a suitable choice
of the restricted size Y improves the convergence of the global Newton iteration. It
is seen form the table that the configuration of #; = 2 and V = Y = 5 × 10−4 leads to
the smallest compute time for the concerned problem.
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Table 3: The numbers of iterations and compute times obtained using different values of parameters
for the case of flow around a cylinder at '4 = 200.

V = Y = 5 × 10−4

#; NI6;>10; LI6;>10; NI=4 LI=4 T=4(s) TC>C0;(s)
1 20 54.7 8.5 12.6 66.8 181.8
2 14 43.6 7.5 12.3 57.7 127.4
3 14 49.1 6.7 9.5 73.6 146.5

Y = V, #; = 2
V NI6;>10; LI6;>10; NI=4 LI=4 T=4(s) TC>C0;(s)

2 × 10−3 17 41.6 7.5 6.5 53.3 137.1
10−3 16 46.2 7 8.2 51.3 133.8

5 × 10−4 14 43.6 7.5 12.3 57.7 127.4
V = 5 × 10−4, #; = 2

Y NI6;>10; LI6;>10; NI=4 LI=4 T=4(s) TC>C0;(s)
0 18 49.7 6 14.9 46.7 142.4

5 × 10−5 16 43.3 6 15.0 47.3 127.9
5 × 10−4 14 43.6 7.5 12.3 57.7 127.4
5 × 10−3 16 42.1 8.5 11.2 67.0 149.3

4 Conclusions

We demonstrated the robustifying effect of a nonlinearly preconditioned inexact
Newton algorithm for steady state incompressible flow problems in 3D. The key
idea is to perform iterative subspace correction steps to remove the local high
nonlinearities that cause difficulty for classical Newton-like algorithms. We tested
the algorithm using two well-understood examples including a lid-driven cavity flow
and the flow around a cylinder. Results of numerical experiments show that the
proposed algorithm is more robust and converges faster than the classical algorithm
in problems with high Reynolds numbers where globalized Newton methods may
stagnate.
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A Neumann-Neumann Method for Anisotropic
TDNNS Finite Elements in 3D Linear Elasticity

Lukas Maly and Dalibor Lukas

1 Introduction

We are interested in solving a problem of linear elasticity in three dimensions. Let
Ω ∈ R3 be a bounded connected domain with the Lipschitz boundary mΩ. An elasto-
static problem is described by the equilibrium equation (2) and Hooke’s law (1),
which couples the strain and stress tensors for linear elastic materials. We seek for
the displacement vector u : Ω → R3 and the stress field 2 : Ω → R3×3

sym subject to
volume forces f and the boundary conditions (3) and (4) mΩ = Γ� ∩ Γ# . Therefore,
we solve the problem

C−1 2 − 9(u) = 0 in Ω, (1)
−div2 = f in Ω, (2)

u = u� on Γ� , (3)
2= = t# on Γ# , (4)

where u� and t# are the prescribed displacement and surface traction, respectively.
The tensor 9(u) = 1

2 (∇u + (∇u)>) is a symmetric strain tensor, and by C−1 we
denote the compliance tensor, which implements Hooke’s law for a given Young
modulus and Poisson ratio.

Let n be an outer unit normal vector. Then the normal component E= and the
tangential component vg of a vector field v on the boundary are given by
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E= = v · n, vg = v − E=n,

where the dot symbol stands for the inner product between vector fields. The vector-
valued normal component 2= of a tensor 2 can be split into a normal-normal
component f== and a normal-tangential component 2=g by

2= = 2n, f== = 2= · n, 2=g = 2= − f==n.

2 TDNNS Formulation

Wewant to solve the stated problem on thin plate-type domains, therefore we use the
tangential displacement normal-normal stress (TDNNS) formulation as introduced
in [13] and published in a series of papers [11, 10, 9, 8]. The authors developed
a new mixed method for the Hellinger-Reissner formulation of elasticity, where
the displacement u is sought in the H(curl) Sobolev space, i.e., continuity of the
tangential components of the displacements is preserved.Meanwhile the stresses live
in a new Sobolev space H(div div), which can be approximated with a symmetric
stress tensor preserving continuity of the normal part of their normal component.

The TDNNS elements are applicable for nearly incompressible materials and
for structurally anisotropic discretization of slim domains. Here we assume that the
Ω is a polyhedral Lipschitz domain (possibly a thin layer in one direction). Let
Tℎ =

⋃<
:=1{): }, ): = )x × ) C : )x ∈ T x

ℎ
, ) C ∈ T C

ℎC
be a tensor product triangulation

of Ω. Since we want to incorporate anisotropic geometrical elements, we need to
distinguish sizes of mesh elements in plane- (isotropy-) and thickness- (anisotropy-)
directions. We denote them by ℎ and ℎC , respectively. Then for the displacements we
use the second family of Nédélec space Vℎ with a continuous tangential component,
and for the stresses, we use a normal-normal continuous space�ℎ . Correct definitions
of the appropriate tensor product finite element spaces require more technical details,
therefore we leave the spaces undefined here, and refer the interested reader to [10,
Chapter 6] or [11, 6] for their correct definitions.

The discrete mixed TDNNS formulation of the original problem (1)–(4) reads as:
find u ∈ Vℎ and 2 ∈ �ℎ such that∫

Ω

(
C−1 2

)
: 3 dx + 〈div 3, u〉+ =

∫
Γ�

D�,=g== ds ∀3 ∈ �ℎ , (5)

〈div2, v〉+ = −
∫
Ω

f · v dx +
∫
Γ#

t# ,g · v3 ds ∀v ∈ Vℎ , (6)

with duality pairing that can be evaluated by element-wise volume and boundary
integrals
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〈div 3, v〉+ =
∑
) ∈Tℎ

[
−
∫
)

3 : 9 dx +
∫
m)

g==E= ds
]
. (7)

We can identify the volume integral in (5) with matrix A, the duality product
in (5) and (6) defined by (7) with matrix B, and the right hand sides in (5) and (6)
with vectors F1 and F2, respectively. Similarly, the sought finite element solutions
can be identified with vectors S↔ 2 and U↔ u. Then we can write a linear system
for the discrete mixed TDNNS formulation in the following form,[

A B>
B 0

] [
S
U

]
=

[
F1
F2

]
. (8)

2.1 Hybridization

The systemmatrix in (8) is symmetric but indefinite, as is typical whenmixed formu-
lations are considered. So far, the required continuity of tangential displacement and
normal-normal stress is enforced directly by the conforming choice of the solution
spaces Vℎ and �ℎ . We can break the continuity of the stress space and re-enforce it
via Langrangian multipliers. The Lagrangian multipliers will exist in the facet space
+= and will correspond to normal displacements on element interfaces. Therefore,
we shall denote them as D=. To be equivalent with the normal-normal continuity
condition for 2, together with the traction condition f== |Γ# = 0, functions in +=
have to fulfill the following equation,∑

) ∈Tℎ

∫
m)

g==E= ds = 0 ∀E= ∈ +=. (9)

This leads to an enlarged system with discontinuous stress finite elements,
Ã B>1 B>2
B1 0 0
B2 0 0



S̃
U
U

 =

F̃1

F2

0

 , (10)

where all coupling degrees of freedom are connected to displacement quantities.
The matrix Ã is block-diagonal with each block corresponding to one element. Such
a matrix can be inverted in optimal complexity and thus, we can eliminate all stress
degrees of freedom from the system by static condensation,

B1Ã
−1

B̃> B1Ã
−1

B>2
B2Ã

−1
B>1 B2Ã

−1
B>2



U

U

 =

B̃1Ã

−1
F̃1 − F2

B2Ã
−1

F̃1

 . (11)

The system matrix in (11) is symmetric and positive definite. The Langrange func-
tions are identified with the vector U. We will abbreviate the system using the
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notation
KÛ = F̂. (12)

3 Domain Decomposition

Finite elements in linear elasticity have typically relative high number of degrees
of freedom. This is even worse for mixed formulations. Although the stresses were
hybridized from the system, there is still significant number of degrees of freedom for
displacements. The lowest order anisotropic prismatic and hexahedral finite elements
have 60 and 84 degrees of freedom per element, respectively.

This aspect clearly brings a limitation in the sense of problem size. For a large
number of mesh elements, the corresponding linear system becomes too large to be
solved using direct solvers. Therefore, we resort to an iterative solver and substruc-
turing domain decomposition method as a preconditioner technique [2, 3, 12, 14].
We start our research of preconditioners of mixed TDNNS elements with one which
is straightforward and relatively simple to implement, to get a preliminary overview,
namely the Neumann-Neumann method described in Section 3.1.

We partition the original domain Ω into # non-overlapping subdomains Ω(8) :

Ω =

#⋃
8=1
Ω
(8)
, Ω(8) ∩Ω( 9) = ∅ for 8 ≠ 9 , Γ :=

#⋃
8=1

mΩ(8) ,

such that each subdomain is a union of elements of the global mesh. Using the
index (8) we indicate an association to subdomain Ω(8) . By the union of individual
subdomain boundaries without the global boundary of Ω we define the interface Γ.

The degrees of freedom can be subdivided into two groups; coupling, those being
associated with the interface (shared with at least one of the other subdomains, or
being on the Dirichlet or Neumann boundary), and interior, which are not coupling.
In our setting, the coupling degrees of freedom are associated with an edge or face.
All the coupling degrees of freedom in the system are denoted by the lower index �
while the interior ones are denoted by the lower index �. The system (12) can then
be reordered into the following form[

K� � K��

K�� K��

] [
Û�

Û�

]
=

[
F̂�
F̂�

]
. (13)

The interior degrees of freedom are related only to the individual subdomains
and thus can easily be eliminated from the system using the same idea we used in
the hybridization of stresses. This procedure leads to a classical method referred to
in the literature as primal domain decomposition, the Schur complement, particular-
solution, and the three-step approach [7, 5].

The main idea of using the described domain decomposition procedure resides
in preconditioning of the global Schur complement matrix in such a way that the
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resulting method can be effectively run in parallel. In future, we plan to apply some
of the known preconditioner techniques used in [2, 3, 14].

3.1 Neumann-Neumann preconditioner

One of the basic preconditioners of the Schur complement system is the Neumann-
Neumann method, which is derived from its local additive construction. Since the
Schur complement can be assembled subdomain-wise using local Schur comple-
ments multiplied with the restriction operator

S =
∑
8

R(8)>S(8)R(8) , S(8) = K(8)
��
−K(8)

��

(
K(8)
� �

)−1
K(8)
��
, (14)

a simple idea for how to obtain an approximation of S is to also assemble individual
inverses subdomain-wise,

S−1 ≈
∑
8

D(8)R(8)>
(
S(8)

)−1
R(8)D(8) =: M−1. (15)

Matrix D(8) in the formula is a diagonal matrix, whose entry D(8)
::

is computed as a
reciprocal of a number of subdomains that share the :-th degree of freedom.

It is important to note that the Schur complement S(8) on a subdomain has the
same null space dimension as the stiffness matrix K(8) . Therefore, local problems
on floating subdomains have to be treated with care, since the matrices are singu-
lar. Then, the application of the preconditioner corresponds to solving a problem
with pure Neumann boundary conditions. For more details on Neumann-Neumann
preconditioning, see [1, 4]. In the numerical experiment presented in Section 4,
none of the subdomains is floating due to the Dirichlet boundary condition and the
two-dimensional decomposition.

4 Numerical Experiments

We present here a simple problem of linear elasticity in three dimensions. Our
domainΩ := (0; 1) × (0; 1) × (0; !I) is represented by a plate with varying thickness
in the I-direction. The plate is rigidly fixed on the bottom and top side. As we
described above, all volume forces are reflected on the right hand side in (12) and
thus they do not play any role in the study of the system matrix properties. We set
Young’s modulus � to be 1, and Poisson’s ration a to be 0.285. A diagram of the
model problem is depicted in Fig. 1 on the left. On the right, we present a simple
two-dimensional (# × #) domain decomposition of the plate geometry.
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Fig. 1:A diagram of the model problem on plate geometry of thickness !I and its two-dimensional
decomposition into # × # subdomains in the GH-plane. Dashed lines on the right represent the
interface.

We started the development of the scalable parallel algorithmwith this simple #×
# domain decomposition to study and fully understand the behavior of the presented
systems within the TDNNS formulation of linear elasticity. We construct the Schur
complement matrix and its Neumann-Neumann preconditioner as described above.
In Table 1 and Table 2, we present condition numbers with respect to discretization
size ℎ. To discretize the domain Ω ,we use anisotropic hexahedral elements with
only one element in the thickness direction, i.e. ℎC = !I . The number of subdomains
varies from 2 × 2 to 8 × 8.

Presented numerical experiments were implemented in Matlab (version 8.5.0.19-
7613 (R2015a)). The implementation uses sparse matrices. Condition numbers pre-
sented in Tables 1 and 2 were computed using the built-in condest function, and
inverse matrices were assembled explicitly. Computations were performed on a clas-
sical portable laptop, the biggest problem consisted of 4,096 elements that in case
of 2 × 2 decomposition translate into more than 20,000 inner, and more than 3,000
coupling degrees of freedom.
Table 1: Condition numbers of the Schur complement and preconditioned Schur complement for
a plate with thickness !I = 0.25.

# × # 2 × 2 4 × 4 8 × 8
�/ℎ ^(S) ^(M−1S) ^(S) ^(M−1S) ^(S) ^(M−1S)
1 1.14 · 104 6.16 · 102 3.05 · 103 1.61 · 103 1.23 · 103 1.56 · 103

2 1.42 · 103 8.72 · 101 8.14 · 102 2.54 · 102 2.81 · 103 4.78 · 103

4 5.21 · 102 8.50 · 101 1.48 · 103 1.00 · 103 1.38 · 104 3.03 · 104

8 1.17 · 103 5.63 · 102 7.22 · 103 8.31 · 103 8.16 · 104 2.72 · 105

16 4.92 · 103 3.81 · 103 4.59 · 104 8.22 · 104

32 3.23 · 104 3.43 · 104

As presented in Table 1, the preconditioner is not working very well when the
thickness is 0.25. The conditioning stays more or less the same except in the case
of 4 subdomains and a low �/ℎ ratio. The situation significantly differs when the
thickness is 0.01, as in Table 2. In this case, the conditioning is decreased by two
orders for all decompositions regardless of the �/ℎ ratio.
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Table 2: Condition numbers of the Schur complement and preconditioned Schur complement for
a plate with thickness !I = 0.01.

# × # 2 × 2 4 × 4 8 × 8
�/ℎ ^(S) ^(M−1S) ^(S) ^(M−1S) ^(S) ^(M−1S)
1 2.19 · 109 5.58 · 107 5.36 · 108 6.32 · 107 1.36 · 108 1.59 · 107

2 3.19 · 108 3.53 · 106 8.14 · 107 2.24 · 106 2.10 · 107 6.13 · 105

4 6.76 · 107 7.75 · 105 1.80 · 107 2.23 · 105 4.99 · 106 8.32 · 104

8 1.78 · 107 1.97 · 105 4.60 · 106 5.82 · 104 1.57 · 106 1.47 · 104

16 4.60 · 106 5.05 · 104 1.26 · 106 1.29 · 104

32 1.47 · 106 1.29 · 104

It is well known that the efficiency of the local Neumann-Neumann precondi-
tioner deteriorates with a growing number of subdomains, therefore we expect the
same trend for a continuation of Tables 1 and 2. In order to improve the presented
preconditioner, one needs an additional coarse problem, e.g. by projecting (deflating)
against certain modes (yet to be found) or by using sophisticated primal constraints
(yet to be found) in a BDDC framework.

5 Conclusion and outlook

We have briefly introduced the TDNNS formulation for a problem of linear elas-
ticity in 3-dimensions, which leads to large and ill-conditioned systems. Based on
our experience, we apply a primal domain decomposition procedure to get an initial
overview. We try to follow similar ideas as presented in [9], where the authors in-
troduced FETI preconditioned methods for TDNNS elements in 2-dimensions. Our
# × # domain decomposition of thin plate geometry demonstrates the limited effi-
ciency of the Neumann-Neumann preconditioner, and moves us to further research.
We aim to end up with a parallel and scalable method, therefore, next we plan to im-
plement some of the modern methods that achieve a bound for the condition number
of order � (1 + log(�/ℎ))2, as discussed in [14].
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Domain Decomposition for the Closest Point
Method

Ian May, Ronald D. Haynes, and Steven J. Ruuth

1 Introduction

The discretization of elliptic PDEs leads to large coupled systems of equations.
Domain decomposition methods (DDMs) are one approach to the solution of these
systems, and can split the problem in away that allows for parallel computing. Herein,
we extend twoDDMs to elliptic PDEs posed intrinsic to surfaces as discretized by the
Closest Point Method (CPM) [19, 16]. We consider the positive Helmholtz equation

(2 − ΔS) D = 5 , (1)

where 2 ∈ R+ is a constant and ΔS is the Laplace-Beltrami operator associated with
the surface S ⊂ R3 . The evolution of diffusion equations by implicit time-stepping
schemes and Laplace-Beltrami eigenvalue problems [14] both give rise to equations
of this form. The creation of efficient, parallel, solvers for this equation would ease
the investigation of reaction-diffusion equations on surfaces [15], and speed up shape
classification [18], to name a couple applications.

Several methods exist for the discretization of surface intrinsic PDEs. The surface
may be parametrized to allow the use of standard methods in the parameter space
[10]. Unfortunately, many surfaces of interest do not have simple, or even known,
parametrizations. Given a triangulation of the surface, a finite element discretization
can be formed [9]. This approach leads to a sparse and symmetric system but is
sensitive to the quality of the triangulation. Level set methods for surface PDEs [4]
solve the problem in a higher dimensional embedding space over a narrow band
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containing the surface. The solution of model equation (1) by this method requires
using gradient descent, as the approach was formulated only for parabolic problems.
The CPM is also discretized over a narrow band in the embedding space, but has the
advantage of using a direct discretization of equation (1).

The solution of the linear system arising from the CPMdiscretization of themodel
equation (1) has relied primarily on direct methods, although a multigrid method
was discussed in [5]. Herein we formulate restricted additive Schwarz (RAS) and
optimized restricted additive Schwarz (ORAS) solvers compatible with the CPM to
step towards efficient iterative solvers and to allow for parallelism. The optimized
variant of the classical RAS solver uses Robin transmission conditions (TCs) to
pass additional information between the subdomains [11, 20], and can accelerate
convergence dramatically. This formulation is described in Sections 4 and 5 after
reviewing the CPM in Section 2 and (O)RAS solvers in Section 3. Then, we discuss
a PETSc [1, 2] implementation and show some numerical examples in Section 6.
A more thorough exploration of these solvers, and an initial look at their use as
preconditioners, can be found in May’s thesis [17].

2 The closest point method

The CPMwas introduced in [19] as an embeddingmethod for surface intrinsic PDEs.
It allows the reuse of standard flat space discretizations of differential operators and
provides a surface agnostic implementation. At the core of this method is the closest
point mapping, �%S (G) = arg min

H∈S
|G − H | for G ∈ R3 , which identifies the closest

point on the surface for (almost) any point in the embedding space. This mapping
exists and is continuous in the subset of R3 consisting of all points within a distance
^−1∞ of the surface, where ^∞ is an upper bound on the principal curvatures of the
surface [6].

From this mapping, an extension operator � can be defined that sends functions
defined on the surface, 5 : S → R, to functions defined on the embedding space via
composition with the closet point mapping, � 5 = 5 ◦�%S . The extended functions
are constant in the surface normal direction and retain their original values on the
surface. This extension operator can be used to define surface intrinsic differential
operators from their flat space analogs [19].

Discretization typically requires a Cartesian grid on the embedding space within
a narrow tube surrounding the surface. The extension operator can be defined by any
suitable interpolation scheme, with tensor product barycentric Lagrangian interpo-
lation [3] being used here. As such, the computational tube must be wide enough
to contain the interpolation stencil for any point on the surface. Using degree ?
interpolation and a grid spacing of ΔG requires that the tube contain all points within
a distance of W = ΔG(? + 2)

√
3/2 from the surface, thus limiting the acceptable grid

spacings in relation to ^∞.
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The grid points within the computational tube form the set of active nodes, Σ�.
For (1), we need only discretize the regular Laplacian on R3 . Here we consider the
second order accurate centered difference approximation requiring 23 + 1 points.
Around Σ� and lying outside the tube, a set of ghost nodes, Σ� , is formed from any
incomplete differencing stencils.With a total of #� active nodes and #� ghost nodes,
we define the discrete Laplacian and extension operators, Δℎ : R#�+#� → R#� and
E : R#� → R#�+#� , where Δℎ applies the centered difference Laplacian over all
active nodes, and E is the discretization of � . E extends data on the active nodes
to both the active and ghost nodes, and has entries consisting of the interpolation
weights for each node’s closest point.

TheLaplace-Beltrami operator can be directly discretized asΔℎS,38A = Δ
ℎE, which

was used successfully for parabolic equations with explicit time-stepping in [19].
However, for implicit time-stepping [16] and eigenvalue problems [14] a modified
form is needed. In [16] it was recognized that there was a redundant interpolation
being performed, and that its removal could stabilize the discretization. The stabilized
form ΔℎS = − 23

ΔG2 I +
(

23
ΔG2 I + Δℎ

)
E, will be used in the remainder of this work.

3 (Optimized) Restricted additive Schwarz

Both RAS and ORAS are overlapping DDMs, and can work on the same set of
subdomains (given an additional overlap condition for ORAS [20]). We define these
solvers from the continuous point of view and subsequently discretize, rather than
defining them purely algebraically. This will ease the discussion of TCs within the
context of the CPM later in Section 5.

First, the whole surface S is decomposed into #( disjoint subdomains, S̃ 9 , for
9 = 1, . . . , #( . These disjoint subdomains are then grown to form overlapping
subdomains S 9 , whose boundaries are labelled depending on where they lie in the
disjoint partitioning. Taking Γ 9: = mS 9 ∩ S̃: gives mS 9 =

⋃
:

Γ 9: and allows the

definition of the local problems{
(2 − ΔS) D (=+1)9

= 5 , in S 9 ,
T9:D (=+1)9

= T9:D (=) , on Γ 9: , : = 1, . . . , #( , : ≠ 9 ,
(2)

where T9: are generally linear boundary operators defining the TCs. RAS is achieved
by choosing T9: as identity operators, corresponding to Dirichlet TCs, while ORAS
uses Robin TCs, T9: =

(
m

mn̂ 9: + U
)
, where n̂ 9: is the outward pointing boundary

normal on Γ 9: and U ∈ R+ is a constant weight on the Dirichlet contribution.
The subproblems in equation (2) are initialized with a guess for the global solution

D (0) (defined at least over the boundaries Γ 9: ,∀ 9 , :), which is usually just taken as
D (0) = 0. After all of the subproblems have been solved a new global solution is
constructed with respect to the disjoint partitioning, D (=+1) =

∑
9

D
(=+1)
9

���
S̃ 9
, where
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the use of the term restricted indicates that the portion of the local solutions in the
overlap regions are discarded. From this new approximation for the global solution
the local problems may be solved again with new boundary data, and the process
repeats until the global solution is satisfactory.

4 Subdomain construction

To solve problems arising from the CPM we first need to decompose the global set
of active nodes Σ�. (O)RAS solvers rely on both a disjoint partitioning of the active
nodes and an induced overlapping partitioning. Following the notation in Section
3, disjoint partitions will be denoted by Σ̃ 9 , overlapping partitions by Σ 9 , and the
boundaries of the overlapping partitions by Λ 9 .

To ensure the solvers work on a variety of surfaces, we seek an automated and
surface agnostic partitioning scheme to generate the disjoint partitions. METIS [13]
is a graph partitioner that is frequently used within the DD community to partition
meshes [8]. The stencils of Δℎ and E may be used to induce connectivity between the
active nodes and define a graph. Here we only consider nearest neighbor coupling
through the stencil for Δℎ . Fig. 1 shows a portion of one such disjoint partition, in
black circles, for a circular surface.

With Σ̃ 9 obtained from METIS, overlapping subdomains Σ 9 can be formed. This
construction proceeds in the following steps:

1. All nodes in Σ̃ 9 are added to Σ 9 .
2. #$ layers of overlap nodes are added around Σ 9 . Layers are added one at a time

from globally active nodes neighboring Σ 9 .
3. A subset of the ghost nodes, Σ� , are placed in Σ�

9
which consists of nodes that

neighbor a member of Σ 9 .
4. The shapes of the disjoint and overlapping subdomains are not known in advance.

The boundary mS 9 is approximated discretely by the closest points of the final
layer of overlap nodes, and held in the set Λ 9 .

5. Nodes needed to complete stencils from the ambient Laplacian or extension
operator, including extension from the points G8 ∈ Λ 9 , are placed in the set Σ��9 .

6. For ORAS a layer of ghost nodes around Σ��
9

are also placed in Σ��
9

.

The active nodes in the 9 th subdomain consist of Σ 9 and the active portion of
Σ��
9

. Σ��
9

is kept separate as that is where the TCs in Section 5 are defined. Each of
these sets are shown in Fig. 1, which shows a portion of one subdomain on a circle
in the vicinity of the points in Λ 9 at one of its boundaries.

The Robin TCs, to be defined in Section 5, need some final information about the
subdomain. Every node in Σ��

9
is identified with the point in Λ 9 that is closest to it.

This identification will be used to override the global closest point function in the
following section. For each point in Λ 9 we also need to know the direction that is
simultaneously orthogonal to the boundary and the surface normal direction. We call
this the conormal direction. It is in this direction that the Neumann component of the
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Fig. 1 A portion of a subdo-
main from a circular problem
with #( = 8 subdomains and
#$ = 4 layers of overlap is
shown here. The nodes are
marked according to their role
in the subdomain as described
in Section 4. The points be-
longing to the set Λ 9 are
shown by (nearly coincident)
black stars.

j

j\ j

G
j

BC
j (active)
BC
j (ghost)

Robin condition will be enforced. However, the discrete nature ofΛ 9 makes this con-
struction difficult. Instead we define the conormal vectors from the point of view of
the boundary nodes. Take G8 ∈ Σ��9 as a node whose associated conormal direction,
@̂8 , is sought. Let H8 be its closest point inΛ 9 , and =̂8 be the unit surface normal there.
Connecting the boundary location to the boundary node via 38 = G8 − H8 , we obtain
a usable approximation to the conormal by computing the component of 38 that is
orthogonal to =̂8 and normalizing, i.e., @̂8 = (38 − (38 · =̂8) =̂8)/(|38 − (38 · =̂8) =̂8 |).
In the unlikely event that 38 lies perfectly in the surface normal direction, we set
@̂8 = 0 which recovers the natural boundary condition on the computational tube as
discussed at the end of Section 5.

5 Transmission conditions

Boundary conditions in the CPM are imposed by modifying the extension operator
over the nodes Σ��

9
beyond the surface boundary [14]. As such, the local operators

will take the form
A 9 =

(
2 + 23

ℎ2

)
−

(
23
ℎ2 + Δ

ℎ
9

) [
E 9

T 9

]
, (3)

where E 9 is the extension operator for the nodes in Σ 9 as inherited from the global
operator and T 9 is the modified extension operator for the nodes in Σ��

9
. When

solving for the local correction to the solution the right hand side of the local
problem, A 9E 9 = A 9 , will be the restriction of the residual to Σ 9 . The final rows
of the right hand side, those lying over Σ��

9
, become zeros corresponding to the

homogenous TCs.
Homogeneous Dirichlet TCs can be enforced to first order accuracy by extending

zeros over all of Σ��
9

. With the right hand side already set to zero there, the modified
extension reduces to the identitymapping,T 9 =

[
0 I

]
, with the zeromatrix padding

the columns corresponding to the interior nodes.
We discretize the Robin condition
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mD

m@̂8

����
�%S 9 (G8)

+ UD
(
�%S 9 (G8)

)
= 0, (4)

using a forward difference in the @̂8 direction for each node in Σ��
9

and the first
order accurate Dirichlet condition from above. Taking the partial derivative mD

m38
, and

applying the change of variables 38 = @̂8 + =̂8 , allows one to write the Neumann term
in equation (4) in terms of the displacement vector 38 from Section 4. Assuming
for the moment that 38 and @̂8 are not perpendicular, the derivative in the conormal

direction can be approximated by mD
m@̂8

���
�%S 9 (G8)

≈ D (G8)−D
(
�%S 9 (G8)

)
38 ·@̂8 where �%S 9

denotes the modified closest point function identifying points in Σ��
9

with points in
Λ 9 . Combining this with (4), and applying the identity extension for the Dirichlet
component, D(G8) = D(�%S 9 (G8)), we find thatT 9 must enforce the extension D(G8) =
D

(
�%S 9 (G8)

)
1+U38 ·@̂8 ,with D

(
�%S 9 (G8)

)
replaced by the same interpolation used in the global

scheme discussed in Section 2.
As 38 approaches the surface normal direction, 38 · @̂8 will tend to zero. In this

event, the extension reduces to D(G8) = D

(
�%S 9 (G8)

)
, which is just the standard

extension corresponding to the interior. Fortuitously, this case arises when the point
G8 lies adjacent to the interior points where this condition would be applied anyway,
and in our experience this ensures that the method remains robust.

6 Results

The solvers described in the previous sections were implemented in C++, with
PETSc [1, 2] providing the linear algebra data structures and MPI parallelization,
and Umfpack [7] providing the local solutions. Here we focus on evaluating the
solver, though in practice one should accelerate the solver with a Krylov method.
The (O)RAS solver was placed into a PETSc PCSHELL preconditioner, allowing it
to be embedded in any of their Krylov methods, and we have found coupling with
GMRES to be a favorable pair.

Equation (1) was solved over the Stanford Bunny [21], which has been scaled to
be two units tall. The original triangulation has not been modified in any way beyond
this scaling. This surface has several holes and is complicated enough to stress the
solvers, making it a good test case. Our chosen grid spacing was ΔG = 1/120, which
paired with tri-quadratic interpolation gives #� = 947, 964 active nodes in the global
problem. The origin was placed at the center of the bounding box containing the
bunny and the right hand side 5 = q(c − q) sin(3q) (sin \ + cos(10\))/2 was used
after extending it to be constant along the surface normals.

Table 1 shows the effects of subdomain count #( , overlap width #$, and Robin
parameter U. For comparison, GMRES preconditioned with the standard block-
Jacobi method with 64, 96, and 128 blocks requires more than 10000 iterations. The
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#$ = 4, U = 16 #( = 64, U = 16 #( = 64, #$ = 4

#( 64 96 128 #$ 4 6 8 U 16 32 64
RAS 992 1237 1533 992 747 610 992 992 992

ORAS 526 672 833 526 418 393 526 707 868
Table 1:Here the iterations to convergence of the ORAS solver are gathered for various parameters.
Convergence was declared when the 2−norm of the residual was reduced by a factor of 106.

solvers display the expected behavior with the iteration count increasing for larger
subdomain counts and decreasing with larger overlap widths. ORAS consistently
requires fewer iterations than RAS, though the final sub-table shows the dependence
of this performance on the appropriate choice of Robin weight U. The partitioning,
the initial error, and the error in the approximate solution after 10 and 550 iterations
are visible in Fig. 2 for one run of the solver.

Choosing an optimal value for U is non-trivial as it depends on the value of
2, the mesh width, and the geometry. Additionally, the presence of cross points in
decomposition, where more than two subdomains meet, complicate the matter. From
the planar case, it is known that U ∼ O (

ΔG−1/2) , but determining precise values a
priori is limited to simple splittings [11, 12]. An upcoming work from the same
authors explores this in much greater detail.

Fig. 2: The Stanford Bunny test problem solved with ORAS using #( = 64, #$ = 4, U = 16. The
first panel shows the disjoint partitioning from METIS. The second, third, and fourth panels show
the error in the solution after the 1st, 10th, and 500th iterations compared to the converged solution.

7 Conclusion

Restricted additive Schwarz and optimized restricted additive Schwarz solvers were
formulated for the closest point method applied to (1). These solvers provide a solu-
tion mechanism for larger problem sizes and will allow users of the CPM to leverage
large scale parallelism. Table 1 shows the dramatic reduction in iteration count when
Robin TCs are used. These solvers were more completely evaluated in [17], which
includes an exploration of their utility as preconditioners. The optimized conditions
come at the cost of some additional complexity in the implementation, and even the
standard RAS solver brings parallel capabilities to the user. Interesting extensions to
this work include multiplicative methods, non-overlapping Robin schemes, two-level
solvers, and inclusion of advective terms in the model equation.
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Towards a Time Adaptive Neumann-Neumann
Waveform Relaxation Method for Thermal
Fluid-Structure Interaction

Azahar Monge and Philipp Birken

1 Introduction

Our prime motivation is thermal fluid-structure interaction (FSI) where two domains
with jumps in the material coefficients are connected through an interface. There
exist two main strategies to simulate FSI models: the monolithic approach where
a new code is tailored for the coupled equations and the partitioned approach that
allows to reuse existing software for each sub-problem. Here we want to develop
multirate methods that contribute to the time parallelization of the sub-problems for
the partitioned simulation of FSI problems.

We suggest here a parallel, time adaptive multirate method to solve two hetero-
geneous coupled heat equations which could be applied to FSI problems. The work
to be presented is the time adaptive extension of the parallel multirate method in
[12]. Some work has already been done regarding time adaptive multirate methods
for the simulation of FSI problems. A time adaptive partitioned approach based on
the Dirichlet-Neumann iteration for thermal FSI was presented in [4, 5]. However,
the Neumann-Neumann method is inherently parallel. In [10], two new iterative
partitioned coupling methods that allow for the simultaneous execution of flow and
structure solvers were introduced.

A new method that at each iteration solves the two subproblems simultaneously
in parallel before exchanging information across the interfaces for the coupling of
two parabolic problems was introduced in [9, 8, 6]. There, the Neumann-Neumann
waveform relaxation (NNWR)method,which is awaveform relaxation (WR)method
based on the classical Neumann-Neumann iteration, is described. It allows the use
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of different spatial and time discretizations for each subdomain. In [13], a pipeline
implementation of theNNWRmethod together with its parallel efficiency is analyzed
for the coupling of homogeneous materials. However, parallelization in time for the
coupling of heterogeneous materials was not yet considered.

In a previous article [12], we proposed and analyzed a parallel multirate parti-
tioned approach based on the NNWR algorithm [9, 8, 6] for two coupled parabolic
problems with heterogeneous material coefficients. In this work, time adaptivity is
added to the multirate approach resulting in a partitioned coupled scheme that allows
at each iteration to find the local solutions of the subproblems over a certain time
window using different time step controllers. In this setting, one does not need to
exchange information across the interface after each time step. The numerical re-
sults show the advantages of the time adaptive method over the previous multirate
approach.

2 Model problem

The unsteady transmission problem reads as follows, where we consider a domain
Ω ⊂ R3 which is cut into two subdomainsΩ = Ω1∪Ω2 with transmission conditions
at the interface Γ = mΩ1 ∩ mΩ2:



U<
mD< (x,C)

mC
− ∇ · (_<∇D< (x, C)) = 0, x ∈ Ω< ⊂ R3 , < = 1, 2,

D< (x, C) = 0, x ∈ mΩ<\Γ,
D1 (x, C) = D2 (x, C), x ∈ Γ,
_2

mD2 (x,C)
mn2

= −_1
mD1 (x,C)
mn1

, x ∈ Γ,
D< (x, 0) = D0

< (x), x ∈ Ω<,

(1)

where C ∈ [)0, ) 5 ] and n< is the outward normal to Ω< for < = 1, 2.
The constants _1 and _2 describe the thermal conductivities of thematerials onΩ1

and Ω2 respectively. �1 and �2 represent the thermal diffusivities of the materials
and they are defined by

�< =
_<

U<
, with U< = d<2?< (2)

where d< represents the density and 2?< the specific heat capacity of the material
placed in Ω<, < = 1, 2.
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3 The Neumann-Neumann waveform relaxation algorithm

We now describe the Neumann-Neumann waveform relaxation (NNWR) algorithm
[9, 8]. The main advantage of the NNWRmethod is that it allows to find the solution
on the subdomains in parallel.

The NNWR algorithm starts by imposing continuity of the solution across the
interface (i.e, given a common initial guess 60 (x, C) on Γ × ()0, ) 5 )). One can then
find the local solutions D:+1< (x, C) on Ω<, < = 1, 2 through the following Dirichlet
problems:


U<

mD:+1< (x,C)
mC

− ∇ · (_<∇D:+1< (x, C)) = 0, x ∈ Ω<,
D:+1< (x, C) = 0, x ∈ mΩ<\Γ,
D:+1< (x, C) = 6: (x, C), x ∈ Γ,
D:+1< (x, 0) = D0

< (x), x ∈ Ω<.

(3)

Now the second coupling condition which is the continuity of the heat fluxes
is added. To this end, one solves two simultaneous Neumann problems to get the
correction functions k:+1< (x, C) on Ω<, < = 1, 2 where the Neumann boundary
condition at the interface Γ× ()0, ) 5 ) is prescribed by the addition of the heat fluxes
of the solutions D:+1< (x, C) given by the Dirichlet problems:


U<

mk:+1< (x,C)
mC

− ∇ · (_<∇k:+1< (x, C)) = 0, x ∈ Ω<,
k:+1< (x, C) = 0, x ∈ mΩ<\Γ,
_<

mk:+1< (x,C)
mn< = _1

mD:+11 (x,C)
mn1

+ _2
mD:+12 (x,C)

mn2
, x ∈ Γ,

k:+1< (x, 0) = 0, x ∈ Ω<.

(4)

Finally, the interface values are updated with

6:+1 (x, C) = 6: (x, C) − Θ(k:+11 (x, C) + k:+12 (x, C)), x ∈ Γ, (5)

where Θ ∈ (0, 1] is the relaxation parameter. Note that if one uses the optimal
relaxation parameter, we obtain a direct solver instead of an iterative method [6, 12].

In [12, 11], we presented a multirate method for two heterogeneous coupled heat
equations based on the NNWR algorithm. There, an interface interpolation that
preserves a second order numerical solution of the coupled problem when using
SDIRK2 was described to communicate data between the subdomains through the
space-time interface in themultirate case. Furthermore, we performed a fully discrete
one-dimensional analysis of the NNWR algorithm in (3)-(5). By making use of
properties of Toeplitz matrices, we found the optimal relaxation parameter Θ>?C in
1D assuming implicit Euler in time, structured spatial grids and conforming time
grids on both subdomains. Θ>?C then depends on the material coefficients U1, U2,
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_1, _2, the spatial resolution ΔG and the time resolution ΔC. In the limits of ΔC/ΔG2

to zero and to infinity, respectively, the optimal relaxation parameter is given by

Θ0
>?C =

U1U2

(U1 + U2)2
, Θ∞>?C =

_1_2

(_1 + _2)2
. (6)

Using Θ>?C , we get the exact solution at the interface after one iteration, leaving
only to solve the two Dirichlet problems once. We then showed numerically that the
nonmultirate 1DΘ>?C gives excellent estimates for the multirate case using SDIRK2
both in 1D and 2D.

4 Time adaptive method

We now introduce a new adaptive scheme that, in contrast to the multirate method in
[12], increases efficiency by allowing larger step sizes without increasing the error
of the numerical solution. We build our partitioned time adaptive approach on the
SDIRK2-NNWR algorithm introduced in [11, chap. 6] and in [12]. To that end, an
error estimate at each time step is needed to be able to choose a new step size. In
particular, we use an embedded technique [7, chap. IV.8].

In our approach, time adaptive integrators for the two Dirichlet problems (3) build
two independent time grids g1 and g2. The Neumann problems (4) and the update
step (5) then use these grids.

As our time adaptive SDIRK2-NNWR algorithm contains two time adaptive
Dirichlet solvers, the corresponding local errors are given by the difference

r=+1< = u(<) ,=+1
�

− û(<) ,=+1
�

, (7)

where u(<) ,=+1
�

and û(<) ,=+1
�

are the two solutions of the embedded SDIRK2 method
for < = 1, 2 and = is the index of the time recursion. Taking the Euclidean norm
throughout we consider the error estimate at each time step given by ‖r=+1< ‖2, < =

1, 2.We then use a proportional-integral controller (PI controller) for implicit Runge-
Kutta methods of order ? introduced by [14, 15],

ΔC=+1< = ΔC=<

(
C>;

‖r=+1< ‖2

)1/6? (
C>;

‖r=<‖2

)1/6?
, (8)

on the subdomain Ω< for < = 1, 2 respectively and ? = 2 for SDIRK2. In the first
step, the estimate of the previous local error r0

< is not available and then we use
r0
< = C>;.
In order to start the integration, one also needs to pick an initial step size. We

use the following formula suggested by Gustaf Söderlind and inspired by [1, pp.
682-683] which is dependent on the rhs of the ODE evaluated at C0, i.e, 5 (u0):



470 Azahar Monge and Philipp Birken

ΔC0< =
|) 5 − )0 | · C>;1/2

100 · (1 + ‖ 5 (u0)‖2) =
|) 5 − )0 | · C>;1/2

100 ·
(
1 + ‖M(<)

� �

−1
A(<)
� �

u(<) ,0
�
‖2

) , (9)

whereM(<)
� �

and A(<)
� �

for < = 1, 2 correspond to the mass and stiffness matrices of
the finite element (FE) discretization of the first equation in (3) respectively.

We choose the inner time adaptive tolerance finer than the outer tolerance TOL
used to terminate the iteration. Specifically, we take C>; = )$!/5 for < = 1, 2. This
choice is motivated by [16] and already used in a similar context in [3, sec. 6].

4.1 Relaxation parameter in the time adaptive case

The aim here is to adapt the formula derived for Θ>?C for a fixed step size ΔC in [12]
to the variable step size context. We propose to start the algorithm with an initial
guess for Θ and update the value after each iteration once the time grids g1 and g2
have already been computed.

For the non adaptive SDIRK2-NNWR, it was observed in [12] that the optimal
relaxation parameter moves between the spatial and the temporal limits (6) of Θ>?C
in terms of ΔC/ΔG2. Therefore, we suggest to take an intermediate value between the
two limits for the first iteration. Although other options were tried as the geometric
mean between the limits, the minimum or the maximum, the arithmetic mean was
found to be the most efficient.

To update the relaxation parameter after each iteration, we average all obtained
variable step sizes getting the means Δ̄C1 and Δ̄C2 for each space-time subdomain
Ω1 × [)0, ) 5 ] and Ω2 × [)0, ) 5 ]. Once we have the values Δ̄C1 and Δ̄C2 we choose Θ
by inserting the the larger of the averaged time steps into the formula from [12] for
the fixed time step multirate SDIRK2-NNWR algorithm.

5 Numerical results

All the results in this section have been produced by implementing the algorithm
in Python using the classical 1D or 2D linear FE discretization on equidistant and
identical triangular meshes on both subdomains and using as a initial condition the
smooth function 6(G) = −1668G4 + 5652G3 − 5553G2 + 1842G in 1D or 6(G, H) =
2 sin(cH2) sin((cG2)/2) in 2D on the domain Ω = Ω1 ∪ Ω2 = [0, 1] ∪ [1, 2] or
Ω = Ω1 ∪ Ω2 = [0, 1] × [0, 1] ∪ [1, 2] × [0, 1] respectively. Physical properties of
the materials are shown in table 1.

Figure 1 shows the global error of the overall solution on Ω with respect to the
tolerance for the coupling between air and steel in 1D and 2D. They have been
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Table 1: Physical properties of the materials. _ is the thermal conductivity, d the density, 2? the
specific heat capacity and U = d2? .

Material _ (W/mK) d (kg/m3) 2? (J/kgK) U (J/K m3)
Air 0.0243 1.293 1005 1299.5

Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

calculated with respect to a reference solution DA4 5 that has been computed using
the time adaptive SDIRK2-NNWR algorithm for a very fine tolerance. One observes
in Figure 1 how the error decreases proportionally to the tolerance as expected in a
time adaptive numerical method.
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Fig. 1: Global error as a function of the tolerance of the time adaptive SDIRK2-NNWR algorithm
for different couplings in 1D and 2D. Figure (a): ΔG = 1/50, [)0, )5 ] = [0, 1] and )$! = 14 −
9, 14−8, .., 14−1. Figure (b):ΔG = 1/10, [)0, )5 ] = [0, 100] and)$! = 14−4, 14−3, .., 14−1.

Finally, we compare the performance of the multirate SDIRK2-NNWR algorithm
with fixed time steps in [12] to the time adaptive SDIRK2-NNWR algorithm intro-
duced in this paper. Figure 2 shows the global error as a function of work for both
variants. To compute the work we added together all timesteps performed on both
subdomains over all iterations. The stepsizes ΔC<, < = 1, 2 for the multirate case are
the minimum stepsizes chosen by the time adaptive algorithm on each subdomain.
This way, the methods produce almost the same error. In order to get the relation
between the number of timesteps and the global error, we measure both magnitudes
for a decreasing sequence of tolerances. Number of iterations are specified in table
2. Figure 2 shows that the time adaptive curve is below the multirate curve meaning
that less work is employed to reach the same accuracy of the solution using the time
adaptive scheme. This difference increases when the tolerance decreases. In 1D this
results in 100 times less time steps and in the more relevant 2D case, in 10 times less
time steps.
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Fig. 2: Comparison between time adaptive and multirate SDIRK2-NNWR algorithm. Global error
as a function of work with respect to the total number of timesteps for different couplings in 1D
and 2D. Figure (a): ΔG = 1/50, [)0, )5 ] = [0, 1] and )$! = 14 − 9, 14 − 8, .., 14 − 1. Figure
(b): ΔG = 1/10, [)0, )5 ] = [0, 100] and )$! = 14 − 4, 14 − 3, .., 14 − 1.

Table 2: Total number of fixed point iterations (FPI) and total number of timesteps over all FPI
(Work) of the time adaptive SDIRK2-NNWR algorithm for different tolerances.

TOL 14 − 1 14 − 2 14 − 3 14 − 4 14 − 5 14 − 6 14 − 7 14 − 8 14 − 9
FPI 1D 4 6 8 10 14 15 15 15 11
FPI 2D 3 15 10 16 19 - - - -
Work 1D 15 36 74 164 496 1397 4135 12796 29996
Work 2D 24 225 233 849 1023 - - - -

However, the method is not as robust in 2D as in 1D and fails for tolerances
smaller than 14 − 5. This is because the convergence rate is extremely sensitive to
the relaxation parameter. Due to lack of better choices, we use the optimal parameter
from 1D in 2D, and combined with the adaptive time step this apparently leads to
decreased robustness.

6 Conclusions and Further Work

We have introduced a time adaptive extension of the multirate SDIRK2-NNWR
method in [12]. We inserted two different controllers in the Dirichlet solvers to build
two independent time grids g1 and g2 increasing the efficiency of the algorithm.
The new algorithm achieves the same solution as the multirate SDIRK2-NNWR
algorithm in [12] while optimizing the number of time steps. Numerical results
show that the time adaptive method uses 100 times less time steps than the multirate
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method in 1D and 10 times less time steps in 2D. However, the 2D extension of the
time adaptive SDIRK2-NNWR algorithm is not as robust as the 1D version.

Many aspects of the time adaptive approach are left for further research. The
extension of the approach to 3D, investigate alternatives adding time step con-
trollers on the Neumann problems as well, implement time adaptivity with respect
to macrosteps or study the influence of the initial condition on the performance of
the method. Another future direction would be to apply the time adaptive multirate
approach explained in this paper to nonlinear thermal FSI cases.
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Localization of Nonlinearities and Recycling in
Dual Domain Decomposition

Andreas S. Seibold, Michael C. Leistner, and Daniel J. Rixen

1 Introduction

Newton-Krylov domain decompositionmethods are well suited for solving nonlinear
structural mechanics problems in parallel, especially due to their scalability proper-
ties. A Newton-Raphson method in combination with a dual domain decomposition
technique, such as a FETI method, takes advantage of the quadratic convergence
behaviour of the Newton-Raphson algorithm and the scalabality and high paral-
lelizability of FETI methods. In order to reduce expensive communication between
computing cores and thus Newton-iterations, a localization step for nonlinearities
was proposed for FETI2, FETI-DP andBDDC solvers [12, 8]. Furthermethodologies
on nonlinear preconditioning of a global Newton method for cases with high local
nonlinearities can be found in literature as well [2]. To further improve the efficiency
of FETI2-solvers methods have been developed, such as adaptive multiprecondi-
tioning [15], derived from simultaneous FETI [7], and reuse techniques of Krylov
subspaces [6]. These reuse techniques are rather memory-intensive. More efficient
recycling strategies based on Ritz-vectors were therefore developed [9]. In this con-
tribution, we combine those recycling methods with localization of nonlinearities
and apply them to static and dynamic structural mechanics problems. We start with
the introduction of the model problems and the solution strategy in Sec. 2.1. Then we
introduce the localization technique in Sec. 2.2, the adaptive multipreconditioning
in Sec. 3 and the used recycling methods in Sec. 4. Finally, we present our numerical
results in Sec. 5.
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2 Localized nonlinearities in dual domain decomposition

2.1 Modelproblem and nonlinear solution strategy

We consider a static structural mechanics problem with nonlinear material behavior,
discretized with Finite Elements and decomposed into #B substructures B of the form

f (B)
8=C
(u(B) ) + B(B)) , − f (B)4GC = 0,

#B∑
B=1

B(B)u(B) = 0, (1)

where u describes the displacements of the elastic structure and the primary solution
of the problem. The substructures are coupled with Lagrange-multipliers , imposed
on the boundary of each substructure by a signedBooleanmatrixB [5]. Accelerations
¥u and velocities ¤u are added with the related massM and damping D for a structural
mechanics problem, which results in the dynamic nonlinear system of equations

M(B) ¥u(B) + D(B) ¤u(B) + f (B)
8=C
(u(B) ) + B(B)) , − f (B)4GC = 0,

#B∑
B=1

B(B) ¥u(B) = 0.

This dynamic system can now be integrated by a suitable time-integration scheme
and handled as subsequently described for the static system. For our experiments
we use a generalized-U scheme [3]. These systems are solved by a Newton-Raphson
scheme and the resulting linearized system by a FETI-method [5] at each time or load
step. By linearizing the system of equations (1) at Newton-iteration = and resolving
it for the incremental displacements, we get the tangent interface problem[

F= −G=
G)= 0

] [
X,
X"

]
=

[
0
e=

]
−

[
d=

G)= ,=

]
F= =

#B∑
B=1

B(B)K(B)
+

) ,=
B(B)

)

G= =
[
B(1)R(1)= . . . B(#B)R(#B)=

]
e= =

[
R(1)

)

= f (1)4GC . . . R
(#B))
= f (#B)4GC

])
d= = −

#B∑
B=1

B(B)K(B)
+

) ,=

(
f8=C (u(B)= ) − f4GC + B(B)) ,=

)
+ B(B)u(B)=

and the local linear solves for the incremental displacements

Xu(B) = −K(B)+
) ,=

B(B)
)

X, −K(B)+
) ,=

(
f (B)
8=C
(u(B)= ) − f (B)4GC + B(B)

)

,=)
)
+ R(B)= X"

Here, K(B)
) ,=

is the tangent stiffness, R(B)= its null space and F= the tangent interface
operator with the superscript + denoting a pseudoinverse. The null spaceR(B)= and its
corresponding additional unknowns X" can be seen as rigid body modes of floating
substructures and are needed for solvability [5]. This isn’t needed in structural
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dynamics due to the additional mass matrix. The interface problem is then solved by
a preconditioned conjugate gradient.

2.2 Localization of nonlinearities

In order to reduce Newton-iterations and hence iterations of the conjugate gradient
method, one can solve local nonlinear problems as some kind of preconditioning step
for the global linear solution step within the Newton algorithm [12, 11, 8]. In case
of a FETI2-solver this is achieved by solving local nonlinear Neumann-problems
while keeping the Lagrange-multipliers constant, whereas for FETI-DP and BDDC
far more options are available [8]. Thus, the displacements

Xu(B) = −K(B)+
) ,=6,=;

(
f (B)
8=C
(u(B)
=6,=;
) − f (B)4GC + B(B)

)

,=6−1

)
, u(B)

=6,=;+1 = u(B)
=6,=;

+ Xu(B)

are calculated within local Newton iterations =; after using the displacements of
the previous global Newton-iteration =6 − 1 as an initialization. To ensure local
solvability, the Lagrange-multipliers have to be initialized with the natural coarse
grid [12, 11]

G)0 ,0 = e0 ,0 = G0

(
G)0 G0

)−1
e0 (2)

3 Adaptive Multipreconditioning

A preconditioner H =
∑#B
B=1 B

(B)S(B)B(B) is commonly used for an efficient solution
of the interface problem, here a Dirichlet-preconditioner with the Schur-complement
S [13]. Due to the summation of the local preconditioners, some local information
gets lost. Hence, multipreconditioning, also known as simultaneous FETI (S-FETI)
[7], has been proposed using separated preconditioners H(B) leading to independent
search directions z(B)

8
= H(B)r8 in each FETI-iteration 8 for the residual r. To avoid

large search spaces, a g-criterion has been introduced to modify the S-FETI to an
adaptive multipreconditioned FETI (AMP-FETI) method [16, 9]. The g-criterion
controls which substructures are chosen for multipreconditioning. To this end the
expression

Θ
(B)
8
=

$)
8
W)
8 F
(B)W8$8

r)
8+1H

(B)r8+1
, W8 = PZ8

is used with $8 being step-lengths from the CG iteration 8 and the natural coarse-grid
projector P. Only the substructures that fulfill the criterion Θ(B)

8
< g are chosen. The

parameter g can be set by the user and g = 0.1 leads to robust behavior in most cases
and has been used in this paper [15, 1]. The search space is constructed with such
� = ( 91, 92, . . . ) chosen substructures as
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Z8 =
[∑

:∉� z(:)
8
| z( 91)
8
| z( 92)
8
| . . .

]

4 Recycling methods for dual solutions

In order to further increase the FETI-solver’s efficiency and render it scalable, we
introduce a deflation or coarse space C for the search directions W8 , which leads
to a two-level FETI (FETI2) solver [4]. A coarse-problem is solved during the
initialization and iterations of the FETI-solver. The remaining search space has to
be F-conjugate, which is ensured by the projector

P� = I − C(C) FC)−1C) F.

In the so-called total reuse of Krylov subspaces (TRKS), proposed in [6], all the
previous solutions are reused to build the coarse grid

C=6 =
[
C=6−1 w=6,8=1 . . . w=6,8=84=3 .

]
In order to improve memory-efficiency, people have investigated the convergence be-
havior of a preconditioned conjugate gradient algorithm. This is mainly governed by
the eigenspectrum of the preconditioned operator HF. High, well-separated eigen-
values might slow down convergence according to studies in [14]. These high eigen-
values are usually captured during the first few iterations of the FETI-solver. Hence,
by first solving the eigenvalue-problem

S(B)y(B) = Φ(B)B(B)
)

HB(B)y(B) , (3)

called generalized eigenvalues in the overlaps (GenEO), the high eigenmodes are pre-
computed separately [16]. Here Φ(B) are the eigenvalues and y(B) the corresponding
eigenvectors. To reduce the high initial cost of the Schur-complements, a local Ritz
Ansatz has been applied in [9], approximating the GenEO eigenvectors and resulting
in a smaller eigenproblem. The Ritz space of substructure B is then constructed as

V(B) = S(B)
−1
B(B)

)

V(B)
,
, V(B)

,
=

[
W0$0 . . . W=B−1$=B−1

]
, =B ≤ 84=3 ,

where the solution space of the first =B iterations is considered and =B limits the Ritz
space size. With such a Ritz space follows the approximation of (3)

V(B)
)

S(B)V(B)q(B) = Φ(B)V(B)
)

B(B)
)

HB(B)V(B)q(B) ,

which can be rewritten as

V(B)
)

,
F(B)V(B)

,
q(B) = Φ(B)V(B)

)

,
F(B)HF(B)V(B)

,
q(B) , F(B) = B(B)S(B)

−1
B(B)

)

.

The resulting coarse space with the first :B local Ritz vectors is
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C(B) =
[
HF(B)V(B)

,
q(B)1 . . . HF(B)V(B)

,
q(B)
:B
,

]
where :B has to fulfill :B ≤ =B . This method is subsequently called local Ritz (LRitz)
approach. It may be even reasonable to build the coarse space directly out of Ritz
spaces only, without solving an eigenproblem [10]

C =

[
HF(1)V(1)

,
. . . HF(#B)V(#B)

,
.

]
This method is referred to as local Ritz direct (LRitzDir) below.

5 Numerical results

5.1 Recycling methods applied to static mechanical problems

50mm

10mm

Fig. 1: Left clamped cantilever beam partitioned to 10 rectangular substructures under pull load
(left) and bending load (right). Mooney-Rivlin-material (Invariant-parameters: �10 = 0.4# /<<2,
�01 = 0.1# /<<2,  = 1 · 102# /<<2); pull-load: 5# , bending-load: 1.5 · 10−3#

Table 1: FETI-iterations cumulated over Newton-iterations and loadsteps and normalized to the
NLF-method without recycling. (NLF: classic nonlinear FETI, LoNo: FETI with localized nonlin-
earities) Load case: pull, 10 loadsteps; Absolute cumulated number of iterations for NLF None:
224

NL-
Method

NLF NLF LoNo NLF NLF LoNo LoNo LoNo

Recycling None plReuse None LRitzDir LRitz plReuse LRitz LRitzDir
rel. Iter 1 0.75 0.7366 0.6964 0.5804 0.5268 0.4955 0.4420

We apply the methods introduced above to a homogeneous, nonlinear cantilever
beam (Mooney-Rivlin material model and geometrical nonlinearity without damp-
ing) under static pull and static bending load and rectangular substructuring, as shown
in Fig. 1. The cumulated numbers of FETI-iterations are normalized to the classic
nonlinear FETI method (NLF) without recycling in Table 1 since that is the reference
we want to compare the performance gain to. The TRKS approach is renamed plain
Reuse (plReuse) as we no longer have Krylov-subspaces due to multipreconditioning
[9]. The coarse spaces are limited to a fixed global size to get compareable results.
The combination of localizations and LRitzDir resulted in a reduction of global
iterations by 55%. Hence, localizations combine well with recycling methods. The
LRitzDir method in particular performs better with localizations than in combination
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with the classic nonlinear FETI. The LRitz approach suffers from a slower build up
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Fig. 2: Coarse grid dimension over load steps in static pull case (Colours are the same as in Fig. 3).

Table 2: Over Newton-iterations and load steps cumulated numbers of FETI-iterations normalized
to theNLF-methodwithout recycling. Load case: bending; Absolute cumulated number of iterations
for NLF None: 519

NL-
Method

LoNo NLF LoNo NLF LoNo NLF NLF LoNo

Recycling None None plReuse LRitzDir LRitz LRitz plReuse LRitzDir
rel. Iter 1.0617 1 0.9422 0.8112 0.7380 0.4566 0.3988 0.3738
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Fig. 3: Eigenvalue spectrum of interface operator HP)�F sorted from lowest to highest in last load
step 40 with localizations (left) and classical nonlinear FETI (right). Loadcase: bending

Table 3: Global Newton iterations of first 3 (of 40) loadsteps. Loadcase: bending

NL-
Method

LoNo LoNo NLF NLF LoNo LoNo NLF NLF

Recycling None plReuse None LRitzDir LRitz LRitzDirLRitz plReuse
LoadStep1 14 19 4 3 10 13 3 3
LoadStep2 4 4 4 3 2 2 2 2
LoadStep3 4 4 4 3 2 2 2 2

of the coarse grid in Fig. 2. Due to the small chosen limit of the Ritz-space by =B = 4
and a reduction of global Newton-iterations, the solver is unable to capture the high
modes fast enough. In the bending case, the localizations lead to worse performance
than the NLFmethod without recycling due to instabilities of local rotational modes,
mentioned as non-physical nonlinearities in literature [12, 11]. The combined local-
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ization and LRitzDir outperforms the NLF though. In Fig. 3, it is able to capture all
the bad modes better than in the NLF. This doesn’t apply for the LRitz method. The
coarse grid is filled up within the first load step of LoNo-method due to many global
Newton iterations, but with unfavorable modes. In NLF, it takes more load steps,
but apparently better modes are chosen here, which accelerates the solution process.
In the case of LRitzDir, the higher number of global Newton iterations in the first
load step is well compensated by fewer Newton iterations compared to NLF in later
load steps. Anyway, the high number of load steps has been chosen to obtain a stable
convergence of the algorithm with localizations. Fewer load steps would have been
needed for the classic nonlinear method. Moreover, one has to bear in mind the cost
of more local solves for the localization method.

5.2 Recycling methods applied to dynamic mechanical problems

We also apply the localization and recycling methods to a dynamic mechanical
bending problem, meshed with Gmsh 3.0.6 and partitioned with its Metis partitioner.
Here with the plain reuse technique more iterations are needed than with Ritz
Table 4: Number of FETI-iterations cumulated over time steps and global Newton-iterations and
normalized to the NLF-method without recycling. Load case: dynamic bending beam. Absolute
number of cumulated iterations for NLF None: 1473

NL-
Method

LoNo LoNo NLF NLF LoNo NLF LoNo NLF

Recycling None plReuse None plReuse LRitz LRitz LRitzDirLRitzDir
rel. Iter 1.0930 1.0088 1 0.8771 0.8629 0.7916 0.7461 0.7264

approximations due to persistent high modes. The application of localizations leads
to slightly more iterations, even with recycling methods. The influence of nonlinear
material is rather low due to time stepping and localization won’t be able to reduce
global iterations significantly.

6 Conclusions

In this work, we applied recent recycling methods and adaptive multiprecondition-
ing for a FETI2-method together with nonlinear localization to static and dynamic
structural mechanics problems. We were able to reduce global iterations by up to
62% with this combination, even for homogeneous material properties in the static
bending case. This is counterbalanced by very low load step-sizes though, as oth-
erwise the localized method would not converge due to instabilities in rotational
rigid body modes. However, the static case under pull load shows quite promis-
ing results and localization combines well with recycling techniques. Hence, if the
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stability issues could be fixed, these methods would be a reasonable technique to
reduce communication, but at a cost of additional local solves. We were unable to
test these methods in parallel due to our current implementation limitations. So it
still has to be evaluated, whether the increased local solves are compensated by the
reduced global iterations. Moreover, we applied these methods to dynamic structural
mechanics problems, where we don’t encounter the stability issues due to the present
mass-matrix. Localizations didn’t provide any reduction of iterations either due to
limited nonlinear influences caused by time stepping. Hence, it might be different
for a model with local, highly nonlinear phenomena, such as cracks and damaging,
which will be supported by our implementation in the future.
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New Coarse Corrections for Optimized
Restricted Additive Schwarz Using PETSc

Martin J. Gander and Serge Van Criekingen

1 Introduction

Additive Schwarz Methods (ASM) are implemented in the PETSc library [2, 1, 3]
within its PCASM preconditioning option. By default this applies the Restricted
Additive Schwarz (RAS) method of Cai and Sarkis [4]. We here present the im-
plementation, using PETSc tools, of two further improvements for this method: a
new and more effective coarse correction, as well as optimized transmission condi-
tions, resulting in an Optimized two-level Restricted Additive Schwarz (or ORAS2)
method.

It is well known that domain decomposition methods applied to elliptic prob-
lems need a coarse correction to be scalable, since without it, information is only
transferred from each subdomain to its direct neighbors which makes the number of
iterations grow with the number of subdomains; for exceptions, see [6, 7]. Scalabil-
ity is achieved by introducing a coarse grid on which a reduced-size calculation is
performed to compute a coarse correction at each iteration of the solution process,
yielding a two-level method. Our choice of the coarse grid points follows the method
introduced in [11]: the coarse grid points are chosen in 1D to be the extreme grid
points of the non-overlapping subdomains used to define RAS, and for a rectan-
gular decomposition in 2D, four coarse grid points are placed around each cross
point of the non-overlapping decomposition. This choice of placing the coarse grid
nodes leads to substantially faster convergence than the classical option of equally
distributing the coarse grid points within each subdomain.

As for optimized transmission conditions, we consider Robin transmission con-
ditions instead of the classical Dirichlet ones, i.e., a well-chosen combination of
Dirichlet and Neumann values at subdomain interfaces such as to minimize the
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number of iterations. We follow here the method described in [8] which only re-
quires modifying the diagonal entries of interface nodes in the subdomain matrices.
A good choice of these diagonal entries leads to a much faster convergence of the
associated domain decomposition method than using the standard diagonal entries
from RAS.

We present weak scaling numerical results on a 2-D Laplace test case using up to
16384 CPU cores. Combining coarse correction and optimized transmission condi-
tions, we obtain substantially improved computation times with the new optimized
two-level RAS method which, despite a larger memory footprint, proves to be com-
petitive with the multigrid library HYPRE (with the default options of the PETSc
interface to this library).

2 Coarse Correction and the two-level RAS method

We consider the solution of �x = b on a domain Ω decomposed into a set of
possibly overlapping subdomains Ω 9 . Introducing a restriction operator ' 9 onto
each subdomain Ω 9 , local matrices can be built as � 9 = ' 9 � '

)
9
. To obtain the

Restricted Additive Schwarz (RAS) method, we need also to introduce a partition
of Ω into non-overlapping subdomains Ω̃ 9 , as well as the corresponding restriction
operators '̃ 9 . Then, the RAS method is defined by the iterations [4]

x=+1 = x= +
�∑
9=1

'̃)9 �
−1
9 ' 9 (b − �x=). (1)

The RAS method has the drawback of yielding a non-symmetric system even for
symmetric problems, but was shown to converge faster than the Additive Schwarz
method because it remedies its non-convergent behavior in the overlaps [9].

To obtain a two-level method through coarse correction, we introduce a restriction
operator '2 to the coarse space, such that the coarse system matrix reads �2 =
'2 � '

)
2 . In turn, the two-level RAS method with multiplicative coarse correction

(denoted RAS2 in what follows) can be written as

x=+1/2 = x= +
�∑
9=1

'̃)9 �
−1
9 ' 9 (b − �x=), (2)

x=+1 = x=+1/2 + ')2 �−1
2 '2 (b − �x=+1/2). (3)

The definition of the coarse space, that is, the choice of the coarse grid nodes,
is critical to obtain an efficient two-level method. Two possible choices are shown
in Fig. 1. Compared to the classical approach (circles), the new approach (squares)
introduced in [11] shows superior performance since it resolves the residual location
along the interfaces well (see also [8, 12]), and is therefore the choice made here (-
we however compare the iteration counts for the two methods in Section 4). For the
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Fig. 1: Two choices of the coarse grid nodes in 1-D and 2-D: 1) the middle of each subdomain
(circles) or 2) one node on each side of the (non-overlapping) subdomain interfaces (squares) in
1-D, or in 2-D four nodes around each cross point of the (non-overlapping) decomposition.

1-D case, it was actually shown in [11] that, for the Laplace equation, the new coarse
correction yields convergence in two iterations, which is because the new coarse
basis functions are harmonic within the subdomains.

In PETSc, the coarse correction was implemented using the PCSHELL precondi-
tioning tool, which gives the possibility to entirely define the preconditioner. This
self-defined preconditioner was then (multiplicatively) composed with the built-in
PCASM (i.e., RAS) preconditioner using the PCCOMPOSITE composition tool [2].

3 Optimized Interface Conditions and the ORAS2 method

In the RAS iterations (1), each local � 9 matrix corresponds to a discretized lo-
cal problem with homogeneous Dirichlet boundary conditions. Optimized inter-
face conditions are introduced by modifying these matrices into �̂ 9 matrices, each
corresponding to a discretized local problem with homogeneous Robin boundary
conditions of the type

mD 9

m= 9
+ ? D 9 = 0 on mΩ 9 \ mΩ. (4)

The resulting optimized RAS method will be denoted by ORAS, and a good choice
of the parameter ? in (4) is important for good performance.

Starting from the RAS2 iterations (2)-(3), the optimized two-level RAS method,
denoted by ORAS2, is obtained as in the one-level case by modifying the local � 9
matrices into �̂ 9 matrices to express Robin interface conditions.

In the numerical experiments below, we consider the 2-D Laplace problem on the
unit square, discretized using the 5-point finite difference stencil. Following [8], we
obtain �̂ 9 using only a first-order accurate discretization of the normal derivative in
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the Robin conditions, which requires modifying only diagonal entries of � 9 , namely
those corresponding to the unknowns on the interfaces. As for the optimized value ?∗
of the parameter ?, we follow again [8] and take, for the one- and two-level methods
(i.e., ORAS and ORAS2)

?∗one-level = 2−1/3c2/3 (>E; ? · ℎ)−1/3, (5)
?∗two-level = 2−1/3c2/3 (>E; ? · ℎ)−1/3 (�G,H)−2/3, (6)

where ℎ and � denote the fine and coarse mesh sizes. As for the value of the overlap
>E; ?, it has to be handled with some care: in the formulas (5)-(6), it is the geometrical
(i.e., physical) overlap of the method, while the overlap value defined in PETSc is the
number of extra mesh layers per subdomain at interfaces. An overlap of 1 in PETSc
implies one extra mesh layer for both subdomains at an interface, thus an algebraic
overlap of 2 (- an algebraic overlap of 0 corresponds to Block Jacobi). An algebraic
overlap of 2 means a geometrical overlap of 3ℎ for the RAS method and ℎ for the
(one- or two-level) ORASmethod [10, 14], and thus >E; ? = 1 in the above formulas.
Similarly, an overlap of 2 in PETSc corresponds to an algebraic overlap of 4, that is
a geometrical overlap of 5ℎ for RAS and 3ℎ for ORAS, and thus >E; ? = 3.

To end this section, note that PETSc provides the PCSetModifySubMatrices
tool to modify the diagonal values of the local matrices.

4 Weak Scalability Results

As stated earlier, we perform numerical experiments on the 2-D Laplace problem on
the unit square discretized using the 5-point finite difference stencil. We perform a
weak scalability analysis, that is, increase the size of the problem while maintaining
constant the workload per processor. Each subdomain of the decomposition is han-
dled by one CPU core (corresponding to oneMPI rank).We increase the number � of
subdomains/cores following the list � = 4, 16, 64, 256, 1024, . . . with decomposition
into � = 1

�
× 1
�

subdomains on the unit square (� being the coarse mesh size as
before). To maintain the workload per CPU core constant, the fine mesh size ℎ is
decreased proportionally, such that the ratio ℎ/� remains constant as well as, in turn,
the local problem size within each subdomain. We consider two workloads, the first
one with a 256 × 256 fine mesh within each subdomain, the second (heavier) one
with 512 × 512 local meshes, yielding a ℎ/� ratio of .004 and .002, respectively.

Three different supercomputers were used to perform our tests: Ada and Turing
at the Institute for Development and Resources in Intensive Scientific Computing
(CNRS/IDRIS), and Occigen at the National Computing Center for Higher Ed-
ucation (CINES). The Ada and Occigen machines are meant for a wide-ranging
usage and are composed of large memory SMP nodes interconnected by a high-
speed InfiniBand network, for a cumulated peak performance of 233 Tflop/s and
3.5 Pflop/s, respectively. The Turing machine is an IBM Blue Gene/Q massively
parallel architecture with a cumulated performance of 1.258 Pflop/s.
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(a) RAS and RAS2 (b) ORAS and ORAS2

(c) RAS2 and ORAS2 (zoom) (d) RAS2 and ORAS2 (GMRES zoom)

Fig. 2: Number of iterations in the weak scaling experiment with ℎ/� = .004 (last panel with
GMRES acceleration).

Fig. 2 shows in the first three pannels the number of stationary iterations obtained
using the one- and two-level (O)RASmethods up to 1024 CPU cores. As can be seen
on Figs. 2a and 2b, the one-level methods do not scale (here in terms of iterations),
while the two-level methods do. Fig. 2c zooms on the two-level results of the previous
plots, showing the superiority of the optimizedmethods. In Fig. 2dwe show that using
GMRES acceleration to the experiments in Fig. 2c lowers the iteration counts for
all methods, but does not change the relative superior performance of the optimized
methods compared to the classical ones. The equivalent zoomed plot obtained (with
stationary iterations) using the classical approach consisting in choosing coarse grid
nodes in the middle of each subdomain (circled points in Fig. 1) is visible on Fig. 5a.
As expected, these results confirm the lower iteration count of the new approach
already observed in [11].

Fig. 3 shows Ada timings for the two workloads (ℎ/� = .004 and ℎ/� = .002)
with stationary iterations, using up to 1024 cores. As above in terms of iterations,
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(a) ℎ/� = .004 (b) ℎ/� = .002

Fig. 3: Computation times (s.) for the weak scaling experiment up to 1024 cores on Ada, for the
two different workloads. HYPRE/BoomerAMG is used with the default PETSc settings.

we here observe that the RAS2 and ORAS2 scale well in terms of computing time,
with the optimized methods again showing superior performances. The use of a
second layer of overlap does not appear beneficial in the ORAS2 method. On these
plots also appear the corresponding results obtained using the multigrid library
HYPRE as interfaced by PETSc, with the default settings. This amounts to using
the BoomerAMG [13] component of HYPRE, for which the default settings are meant
to work fairly well for two-dimensional diffusion problems [5]. The HYPRE results
exhibit a scalability curve that is not as flat as the (O)RAS2 ones within this range
of number of processors, with comparable computing times.

Numerical tests were pursued up to 16384 cores using the Occigen and Turing
machines, as shown in Fig. 4. The scalability properties of the RAS2 and ORAS2

(a) Occigen timings (b) Turing timings

Fig. 4: Computation times (s.) for the weak scaling experiment up to 16384 cores on Occigen and
Turing with ℎ/� = .004.
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methods remain decent, with the latter again performing better. As for the HYPRE
results, they exhibit on Occigen (Fig. 4a) the expected scalability above 4092 cores,
but not up to 1024 cores, as already observed above on Ada. This behavior remains
unexplained to us, and has been observed repeatedly on these twomachines of similar
architecture. Changing architecture and running on Turing (Fig. 4b) however yields
a flat scalability curve for HYPRE already below one thousand cores. The computing
times on Turing are noticeably slower than on Occigen due to slower processors.

Finally, Fig. 5b shows thememory footprints of the differentmethodsmeasured on
Occigen. The overlapping RAS2 and ORAS2 methods yield very close footprints,

(a) RAS2 and ORAS2 (zoom, coarse nodes in
the middle of each subdomain).

(b) Average (on all the MPI tasks) of the max-
imal physical memory consumption.

Fig. 5: Number of iterations with the classical choice of coarse grid nodes (left) and memory
footprint (right) in the weak scaling experiment with ℎ/� = .004.

which differ significantly from the non-overlapping ones only at 16384 cores, prob-
ably because of MPI scalability effects. Fig. 5b also shows that the HYPRE method
yields the lowest memory footprint and it is unclear to us wether this comes from a
better implementation or if it has a theoretical explanation.

5 Conclusions

We implemented two improvements to the RAS method built in the PETSc library,
namely a new coarse correction to obtain a (scalable) two-level method, as well as
optimized interface conditions. This implementation was done using only existing
PETSc tools, mainly preconditioner composition and submatrix modification.

We showed numerically that combining these two improvements yields substantial
improvement on the standard RAS and, on a 2-D Laplace problem, the resulting
ORAS2 method appears competitive with the multigrid HYPRE library up to 16k
cores, despite a larger memory footprint.
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On the Derivation of Optimized Transmission
Conditions for the Stokes-Darcy Coupling

Martin J. Gander1 and Tommaso Vanzan1

1 Introduction

Recently a lot of attention has been devoted to the Stokes-Darcy coupling which is a
system of equations used to model the flow of fluids in porous media. In [2, 1] a non
standard behaviour of the optimized Schwarz method (OSM) has been observed: the
optimized parameters obtained solving the classical min-max problems do not lead
to an optimized convergence. The authors in [2, 1] proposed to consider a different
optimization problem and they claimed that the unexpected behaviour is due to the
Krylov acceleration. In this manuscript, we study OSM as an iterative method and
as a preconditioner for GMRES and we show that the discrepancy is not due to the
Krylov acceleration but to a limitation in the derived convergence factor.

2 The Stokes-Darcy model

We consider a domain Ω divided by an interface Γ into two subdomains, Ω1 and
Ω2. In Ω1, a Newtonian fluid is present described by the Stokes equations whose
unknowns are the velocity field u 5 = (D, E)> and the pressure field ? 5 ,

−∇ · T = 5 in Ω1, (1)
∇ · u 5 = 0 in Ω1,

where T = 2` 5 (∇Bu 5 ) − ? 5 I is the stress tensor, with ∇Bu 5 the symmetrized
gradient, and ` 5 is the fluid viscosity. The motion of the fluid in the porous media is
modelled through the Darcy equations whose unknowns are the velocity and pressure
fields in the porous media domain u3 , ?3 ,

1 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, Genève, e-mail: {martin.
gander},{tommaso.vanzan}@unige.ch.
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u3 = −K∇?3 + g, ∇ · u3 = 0 in Ω2, (2)

where K is the permeability tensor and g is a body force vector. Equation (2) can be
simplified taking the divergence of the first equation to obtain a second order elliptic
PDE only for the pressure field,

−∇ · K∇?3 = −∇ · g in Ω2. (3)

Both (1) and (3) are closed byDirichlet boundary conditions on the external boundary
mΩ \ Γ, i.e. u 5 = h 5 , ?3 = ℎ3 on mΩ \ Γ. However the Stokes and Darcy equations
still need to be coupled along the common interface Γ and there are many possible
choices, see Paragraph 3 of [3]. In the following we prescribe the continuity of the
normal velocities and of the normal stresses and the so called Beaver-Joseph-Saffman
(BJS) condition,

u 5 · n = −(K∇?3) · n + g · n,
−n · (2` 5 ∇Bu 5 − ? 5 I) · n = ?3 , (4)
−g · (2` 5 ∇Bu 5 − ? 5 I) · n = jB (u 5 )g .

We remark that the BJS condition (4)3 is not a coupling condition but only a closure
condition for the Stokes equations. OSMs use enhanced transmission conditions on
the interface, thus we take a linear combination of the coupling conditions (4)1,2
introducing the real parameters B1 and B2 which are chosen to optimize the conver-
gence. TheOSM for the Stokes-Darcy system (1)-(3)-(4) then computes for iterations
= = 1, 2 . . .

−∇ · (2` 5 ∇Bu=5 − ?=5 I) = f, in Ω1, (5)

∇ · u=5 = 0, in Ω1

−∇ · K∇?=3 = −∇ · g, in Ω2,

?=3 − B1
(
K∇?=3 · n − g · n)

= −n · (2` 5 ∇Bu=−1
5 − ?=−1

5 I) · n
+ B1u=−1

5 · n on Γ,

−n · (2` 5 ∇Bu=5 − ?=5 I) · n − B2u=5 · n = ?=−1
3 + B2

(
K∇?=−1

3 · n − g · n
)

on Γ,

−g · (2` 5 ∇Bu=5 − ?=5 I) · n = jB (u=5 )g on Γ.

In [2], the authors perform a Fourier analysis of the OSM (5). Their analysis fol-
lows one of the standard approaches in the literature, i.e. the problem of interest
is posed in a simplified setting where one can exploit the Fourier transform for un-
bounded domains or separation of variables for bounded domains. Unfortunately this
last approach is not possible here since no analytical expression is available for the
eigenvectors of the Stokes operator in bounded domainswithDirichlet boundary con-
ditions. Furthermore, to simplify the calculations they assume that K = diag([1, [2)
with [ 9 > 0, 9 = 1, 2. They finally obtain that the convergence factor of algorithm
(5) for all the Fourier frequencies : ∈ R is
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d(:, B1, B2) =
����2` 5 |: | − B1

2` 5 |: | + B2
· 1 − B2

√
[1[2 |: |

1 + B1
√
[1[2 |: |

���� . (6)

The optimal choice B1 = 2` 5 |: | and B2 =
1√

[1[2 |: |
would lead to a direct method

which converges in just two iterations, however this choice corresponds to non-
local operators once backtransformed. Therefore a more practical choice is to set
B1 = 2` 5 ? and B2 =

1√
[1[2 ?

for some ? ∈ R. An equivalent choice of optimized
parameters has been treated in [2] where the authors obtain the following result:

Theorem 1 (Proposition 3.3 in [2]) The unique solution of the min-max problem

min
?

max
:∈[:min ,:max ]

d(:, ?), (7)

is given by the unique root of the non linear equation d(:min, ?) = d(:max, ?).
A possible improvement consists in considering two free parameters, choosing B1 =
2` 5 ? and B2 =

1√
[1[2@

with ?, @ ∈ R. In [1], the authors propose to choose the

couple ?, @ such that d(:min, ?, @) = d( :̂ , ?, @) = d(:max, ?, @), i.e. they impose
equioscillation to obtain the optimized parameters. Even though often the solution
of such min-max problems is indeed given by equioscillation, a priori there is no
reason why this should be the case also for the Stokes-Darcy coupling. In fact
for heterogenous problems, it has been observed that there can exist a couple of
parameters which satisfies the equioscillation property, but leads to a non optimized
convergence or even to a divergence method, see [6, 4, 7]. In Theorem 2 we refine
Proposition 1 of [1].

Theorem 2 The solutions of the min-max problem
min
?,@∈R

max
:∈[:min ,:max ]

d(:, ?, @), (8)

where d(:, ?, @) = 2` 5
√
[1[2

��� :−?
1+2` 5 √[1[2: ?

· :−@
1+2` 5 √[1[2:@

���, are given by two
pairs (?∗

8
, @∗
8
), 8 = 1, 2 which satisfy the non linear equations |d(:min, ?

∗
8
, @∗
8
) | =

|d( :̂ , ?∗
8
, @∗
8
) | = |d(:max, ?

∗
8
, @∗
8
) |, :̂ being an interior maximum. Moreover ?∗2 = @

∗
1

and @∗2 = ?
∗
1.

Proof The proof is based on arguments presented in [4, 8, 7] and we outline the
main steps. We first observe that d(:, ?, @) is invariant under ? ↔ @, hence we
consider only ? < @ and moreover d(:, ?, @) = 0 for : = @ and : = ?. The
partial derivatives with respect to the parameters satisfy sign(m?d) = sign(? −
:) and sign(m@d) = sign(@ − :), therefore at optimality we conclude that ?, @
lie in [:min, :max], see the proof of Theorem 1 in [8]. Solving m: d = 0, we get
that there exists a unique interior maximum :̂ , with ? < :̂ < @, so that we can
restrict max:∈[:min ,:max ] d(:, ?, @) = max{d(:min, ?, @), d( :̂ , ?, @), d(:max, ?, @)}.
Repeating the same arguments of Lemma 2.9 in [7], we obtain that at the optimum
we must have d(:min, ?, @) = d(:max, ?, @), so that we can express q as function
of p and we can restrict the study to min? max{d(:min, ?, @(?)), d( :̂ , ?, @(?))}.
Defining X := 2` 5

√
[1[2, the equioscillation constraint is equivalent to



494 Martin J. Gander and Tommaso Vanzan

; (?) :=
:min − ?

1 + X:min?

1 + X:max?

:max − ? =
:max − @(?)

1 + X@(?):max

1 + X@(?):min
:min − @(?) =: 6(?). (9)

Since m?; (?) < 0 and m?6(?) > 0, @(?) must be a decreasing function of ? so
that eq (9) is satisfied. Then using the sign of the derivatives of d with respect to ?
and @ and the explicit expression of @(?), we have 3d(:min , ?)

3?
> 0 and 3d( :̂ , ?)

3?
< 0

for :min < ? < @(?). These observations are sufficient to conclude, see Theorem
1 in [8], that the solution of min? max{d(:min, ?, @(?)), d( :̂ , ?, @(?))} is given
by the unique ?∗1, such that d(:min, ?

∗
1, @(?∗1)) = d( :̂ , ?∗1, @(?∗1)) and @∗1 given by

@∗1 = @(?∗1). Due to the invariance ? ↔ @, we get the same results in the case @ < ?

and we conclude that the other couple satisfies ?∗2 = @
∗
1 and @

∗
2 = ?

∗
1. �

In [2, 1], the authors studied extensively the methods obtained from Theorems 1-2
as preconditioners for GMRES. They observed that these optimized parameters do
not lead to an optimized convergence and they proposed to minimize the !1 norm
instead of the maximum of the convergence factor,

min
?

1
:max − :min

∫ :max

:min

d(:, ?)3:. (10)

The reason behind this choice lies in the assumption that the Krylov method can
take care of isolated slow frequencies, and therefore it would be better to have a
convergence factor that is very small for a large set of frequencies with possibly high
peaks. This approach was first discussed in [5] for the Helmholtz problem, with the
significant difference that theOSMdoes not converge for theHelmholtz frequencyl,
and thus the authors proposed to minimize min? max:∈[:min ,l− ]∪[l+ ,:max ] d(:, ?).
Since such a bad performance of the optimized parameters obtained from a min-max
problem in combination with a Krylov method does not have comparison in the
literature, we investigate it in details in the next Section.

3 Numerical study of the optimized Schwarz method

We consider the domains Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (−1, 0) and a uniform
structured mesh with mesh size ℎ = 0.02, so that :min = c and :max = c/ℎ. We
discretize the corresponding error equations of (5) with Taylor-Hood finite elements
P2

2−P1 for the Stokes unknowns and P2 elements for the Darcy pressure. The physical
parameters are set equal to ` 5 = 0.1, [1 = [2 = 1. The stopping criterion for the
iterative method is ‖D=‖� 1 + ‖E=‖� 1 + ‖?=

5
‖!2 + ‖?=

3
‖� 1 < 10−9 and similarly for

GMRES the tolerance is 10−9. Figure 1 shows the number of iterations to reach
convergence. On the left panel we show with a circle the optimized parameter ?
obtained from Theorem 1 and with a square the optimized ? obtained solving (10).
We observe that indeed the solution of (10) leads to a faster convergence than
the classical approach of Theorem 1 for the preconditioned GMRES. This is in
accordance with the results proposed in [2, 1], where it has been shown that the
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Fig. 1: Number of iterations to reach the tolerance 10−9 for different optimized parameters. On the
left, the circle represents the solution of Theorem 1, the square corresponds to the solution of (10).
On the right the triangles correspond to the double solutions of Theorem 2 and the contour plot
refers to the iterative method.
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Fig. 2: Comparison of the theoretical and numerical convergence factors. On the left, optimized
parameter from Theorem 1 and on the right, optimized parameter from (10).

solution of (10) leads to an equivalent or faster convergence than Theorem 1 for a
wide range of parameters. However, we remark that (10) leads to a faster method
than (7) also for the iterative method and not only under Krylov acceleration! On
the right panel of Fig. 1 we observe that also Theorem 2 does not lead to an
optimized convergence and the symmetry of the parameters has disappeared. To
understand better the behaviour of the method, we initialize it setting as initial
condition one by one the sine functions which correspond to the restriction of the
Fourier basis {4−8:G}: on bounded domains with Dirichlet boundary conditions.
We then compute numerically an approximation of the convergence factor defining

dE (:, ?) =
( ‖E3 ‖

�1
‖E1 ‖

�1

)
, d?3 (:, ?) =

(
‖?3
3
‖
�1

‖?1
3
‖
�1

)
, where E= is the Stokes velocity in

the y direction at iteration = and ?=
3
is the Darcy pressure at iteration =. From the

results presented in Figure 2, we observe two major issues: the first one is a very
poor approximation of high frequencies. This is due to the fact that the chosen finite
element spaces P2

2 −P1 −P2 are not capable of representing properly the exponential
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boundary layer of the high frequencies near the interface. We propose two remedies
which can also be combined. We could first raise the order of the approximation
of the finite element spaces to P2

3 − P2 − P3 and/or refine the mesh in the normal
direction to the interface. Both remedies improve the representation of the high
frequencies and in the following we only consider the first one. The second issue lies
in a unusual oscillatory behaviour of the low, odd frequencies. This is due to the fact
that the unbounded analysis used to obtain the convergence factor is not transferable
to the bounded case, since the sines do not form a separated variable solution for the
Stokes operator with Dirichlet boundary conditions. Hence, for instance in the right
panel of Figure 2, the first frequency sin(cG) is transformed after one iteration into
a complicated combination of higher frequencies so that actually the parameter ?
makes the method much faster than the theory predicts. Therefore it is not possible
to diagonalize the iteration as the formula of the convergence factor (6) assumes.
This phenomeon was first discussed in [8, 7] where the authors show that for the
coupling of theLaplace equationwith an advection-diffusion equationwith tangential
advection, the unbounded analysis leads to inefficient optimized parameters since the
two equations lack a common eigenbasis. We consider now the Stokes-Darcy system
(5) with periodic boundary conditions on the vertical edges in order to make the
bounded problem as similar as possible to the unbounded case. In this setting there
exists a separated variable solution for the Stokes problem involving the Fourier
basis {4−8:G}: , see [9]. In Figure 3 we show both the numerical and theoretical
convergence factors computed for even frequencies {sin(2:cG)}: . The same results
are obtained using the other periodic frequencies {cos(2:cG)}: . Comparing with
Figure 2, we observe that nowwe have an excellent agreement between the numerical
and theoretical convergence factors and thus we would expect that the optimized
parameters from the min-max theorems provide optimized convergence. We thus
start the OSM method (5) with initial guesses given by a linear combination of
periodic sine and cosine functions multiplied by random coefficients. Figure 4 shows
that both Theorem1 and 2 now lead to optimized convergence for the iterativemethod
(5) and we also observe the symmetry of the optimized parameters in the right panel
as Theorem 2 predicts. However concerning GMRES, we note that the optimized
parameter from Theorem 1 is still a bit too small. This can be understood studying
the eigenvalues of the preconditioned matrix system which are shown in Figure
5. Analyzing the large real eigenvalue, we have observed that the corresponding
eigenvector is given by a zero velocity field u 5 , a constant pressure ? 5 and a linear
Darcy pressure ?3 . This constant mode is actually not treated by the unbounded
Fourier analysis and it is not present in our initial guess for the iterative method.
Defining the functions ?=

3
= �= (H + !) and ? 5 = %= with %, � ∈ R and ! is the

vertical length of the subdomains, and inserting them into the OSM algorithm (5), we
obtain a convergence factor d(: = 0, ?) := 1−B2

1+B1
. Solving numerically the min-max

problem min? max
:∈{0}∪[:min ,:max ]

d(:, ?) we obtain the equioscillation between d(0, ?)
and d(:min, ?) and a numerical value of ? ≈ 48. In the right panel of Figure 5 we
start the method with a totally random initial guess and this shows that taking into
account the constant mode actually makes our analysis exact.



Optimized transmission conditions for the Stokes-Darcy coupling 497

0 50 100 150

k

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150

k

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Fig. 3: Comparison of the theoretical and numerical convergence factors. On the left for the single
sided optimized parameter from Theorem 1 and on the right one for the double sided parameters
of Theorem 2. The minimum frequency is now :min = 2c.

0 10 20 30 40 50

p

5

10

15

20

25

30

35

40

45

50

55

60

It
e
ra

ti
o
n
s

Iterative method

GMRES

12

12

12

13

1
3

13

13

1
3

1
4

14

14

14

14

1
4

1
5

1
5

15

15

1
6

1
6

16

16

1
7

1
7

17

1
8

1
8

1
9

1
9

1
9

2
0

2
0

2
1

2
43

0

4
0

1 2 3 4 5 6 7 8

2µfp

0.05

0.1

0.15

0.2

0.25

1/
(√

η
1
η
2
q)

Fig. 4: Number of iterations to reach the tolerance 10−9 for different optimized parameters. On the
left, the circle represents the solution of Theorem 1, the square corresponds to the approach of (10).
On the right the triangles correspond to the double solutions of Theorem 2 and the contour plot
refers to the iterative method.

4 Conclusions

In this manuscript we showed that the bad performance of the optimized parameters
of the min-max problems for the Stokes-Darcy coupling is not due to the Krylov
acceleration but to the difficulty of transferring the unbounded Fourier analysis
to the bounded case. For Dirichlet boundary conditions, the problem lies in the
odd frequencies which mix among them during the iterations and therefore the
convergence factor (6) loses its accuracy. For periodic boundary conditions, we
recover a perfect agreement between the unbounded analysis and the numerical
simulations for periodic frequencies, however the Fourier analysis does not deal
with the constant mode which is present in the bounded case. Including the constant
mode in the analysis we recover the optimality of the min-max optimized parameters
for periodic boundary conditions.
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