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1 Introduction

Historically, coarse spaces for domain decomposition methods were based on a

coarse grid, like in geometric multigrid methods, see e.g. [17, page 36]ȷ “The sub‚

space �0 is usually related to a coarse problem, often built on a coarse mesh”. More

recently, a wealth of research has been devoted to design new coarse spaces for high

contrast problemsȷ after irst steps in [3, 13], where volume eigenfunctions were used,

see also [2], a coarse space using the eigenfunctions of the Dirichlet‚to‚Neumann

maps on the boundary of each subdomain was developed in [15, 1]. This then led

to the GenEO coarse space [16], and also motivated the ACMS based coarse space

[11], all seminal for many further developmentsȷ for FETI, see for example [14], or

for the GDSW coarse space, see [12]. A diferent idea for new coarse spaces is to

irst deine an optimal coarse space, which makes the method a direct solver [6, 7],

and then to approximate it, which led to the SHEM coarse space [8, 9, 10, 4].

Our new idea here is to design a coarse space based on insight from the eigenmodes

of the parallel Schwarz iteration operator that converge most slowly. We start with a

numerical experiment for Laplace’s equation on the unit square divided into 4 × 4

subdomains using the classical parallel Schwarz method of Lions with minimal

overlap1. In Figure 1 we observe that the error in the iteration, after an initial

transient phase, forms two typical distinct modes which converge most slowlyȷ for

the constant initial guess we see a continuous mode consisting of aine ˘harmonic¯
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Fig. 1: Error for the parallel Schwarz method of Lions with 4×4 subdomains at iteration 0, 1, 10, 20

from top to bottom. Leftȷ constant initial error, Rightȷ random initial error.

functions in each subdomain, whereas for the random initial guess these functions

seem to be discontinuous across subdomains. Our goal is to understand this behavior

by studying the eigenmodes of the continuous parallel Schwarz iteration operator,

and to deduce from this study a very efective new coarse space for Schwarz methods.



Fundamental Coarse Space Components for Schwarz Methods with Crosspoints 41

Ω̃11 Ω̃1�

Ω̃� � Ω̃� �+1

Ω̃�+1 � Ω̃�+1 �+1

Ω̃�1 Ω̃��

Fig. 2: Leftȷ general decomposition of a rectangle into � × � subrectangles Ω̃� � . Rightȷ adding

2� overlap to obtain the subdomains Ω� � .

2 Modal analysis of the Schwarz iteration map

We consider a general decomposition of a rectangle into � × � smaller overlapping

rectangles Ω� � , as indicated in Figure 2. We denote by (� � , ��) the crosspoints of the

nonoverlapping decomposition. The parallel Schwarz iteration from
∏

�1 (Ω� � ) into

itself maps the old error iterate � = {�� � } which is harmonic in the subdomains, into

a new error � = {�� � }, also harmonic in the subdomains. We allow in our analysis

the more general Robin transmission conditions, which on the vertical interfaces are

���� � + ��� � = ���� �+1 + ��� �+1, � = � � + �,

−���� �+1 + ��� �+1 = −���� � + ��� � , � = � � − �,

and similarly on the horizontal interfaces at �� ± �. For � = +∞ and � > 0,

our results will correspond to the classical parallel Schwarz method of Lions with

Dirichlet transmission conditions. If 0 < � < +∞ and � ≥ 0, our results will

correspond to a possibly non‚overlapping optimized parallel Schwarz method.

An eigenmode of the iteration map associated to an eigenvalue � is deined by

� = ��, � being the convergence factor of this mode. For simplicity, we study the

case where all underlying nonoverlapping subdomains are squares of equal sides �.

The error function �� � in the subdomain Ω� � is harmonic, and we use separation of

variables,

�� � = (�� � sin � (�−� �−1) +�′� � sin � (�−� � )) (�� � sinh � (�−��−1) +�′� � sinh � (�−��))

for the oscillatory modes in �. Exchanging � and � gives the oscillatory modes in �.

Aine modes are obtained by replacing sin � (� − � �−1) by (� − � �−1) for instance.

By a lengthy, technical computation, we obtain

Theorem 1 (Eigenvalue-Frequency Relation)

Deining for each � ≠ 0 the quantities

�−
:= � cos � (�−�)−� sin � (�−�), �−

ℎ
:= � cosh � (�−�)−� sinh � (�−�),

�+
:= � cos � (�+�)+� sin � (�+�), �+

ℎ
:= � cosh � (�+�)+� sinh � (�+�),

�0
:= � cos �� + � sin ��, �0

ℎ
:= � cosh �� + � sinh ��,
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the eigenvalue �, the angular frequency � and the coeicients of the eigenmode are

related by

�(�+ + �
( �)
� �0)�� ��� � = (�0 + �

( �+1)
� �−)�� �+1�� �+1,

�(�0 + �
( �+1)
� �+)�� �+1�� �+1 = (�− + �

( �)
� �0)�� ��� � ,

�(�+
ℎ
+ �

(�)
� �0

ℎ
)�� ��� � = (�0

ℎ
+ �

(�+1)
� �−

ℎ
)��+1 ���+1 � ,

�(�0

ℎ
+ �

(�+1)
� �+

ℎ
)��+1 ���+1 � = (�−

ℎ
+ �

(�)
� �0

ℎ
)�� ��� � ,

˘1¯

where the numbers �
( �)
� :=

�′
� �

�� �
and �

(�)
� :=

�′
� �

�� �
for � = 1, . . . �−1 and � = 1, . . . �−1.

The dispersion relation ˘equation for the modes¯ is obtained from ˘1¯ by multiplying

pairwise the equations, which leads to

Theorem 2 (Eigenvalues of the � × � Schwarz iteration map)

�2 =
�− + �

( �)
� �0

�+ + �
( �)
� �0

�0 + �
( �+1)
� �−

�0 + �
( �+1)
� �+

, � = 1 . . . � − 1,

�2 =
�−
ℎ
+ �

(�)
� �0

ℎ

�+
ℎ
+ �

(�)
� �0

ℎ

�0

ℎ
+ �

(�+1)
� �−

ℎ

�0

ℎ
+ �

(�+1)
� �+

ℎ

, � = 1 . . . � − 1.

˘2¯

With Theorem 1 and Theorem 2, we thus have a complete characterization of the

eigenmodes of the classical and optimized parallel Schwarz iteration map for de‚

compositions of the form in Figure 2 for squares. The aine modes, some of which

we observed in the numerical experiment in Figure 1, are obtained by letting � go to

zero in ˘2¯, and we obtain by a direct calculation

Corollary 1 (Existence of affine Eigenmodes) For � × � subdomains, there are

2(� − 1) aine modes. There are no aine modes when � ≠ � .

For our initial experiment setting, � = � = 4, there are 6 aine eigenmodes,

shown in Figure 3 for � = 10
15 to emulate classical parallel Schwarz, and overlap

� = 0.1. We clearly recognize on the top left the slowest eigenmode we saw in

the numerical experiment in Figure 1 on the left. We also see a corresponding

discontinuous eigenmode just below on the left in Figure 3, responsible for the same

slow convergence in our numerical experiment in Figure 1 on the right, since their

eigenvalues are equal in modulus. It is therefore important for a good coarse space for

Schwarz methods to contain both continuous and discontinuous harmonic functions

per subdomain.

3 The special case of 2 × 2 subdomains

For a 2× 2 domain decomposition, the relation ˘2¯ between � and � takes the simple

form
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Fig. 3: Aine eigenmodes for 4 × 4 subdomains.
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Fig. 4: Functions � in red, �ℎ in green and −�ℎ in blue. Leftȷ classical parallel Schwarz method

of Lions. Middleȷ overlapping optimized Schwarz. Rightȷ Nonoverlapping optimized Schwarz.

�2
= (�(�))2

= (�ℎ (�))2 , �(�) = �−

�+ (�), �ℎ (�) =
�−
ℎ

�+
ℎ

(�). ˘3¯

Then � is determined by either choosing the positive or negative sign,

�(�) = �ℎ (�), �(�) = −�ℎ (�). ˘4¯

Each of these equations has a sequence of solutions we denote by � �
1
(�, �, �) and

� �
2
(�, �, �). We show in Figure 4 these functions of � , and intersections represent

thus solutions of ˘4¯. We chose subdomain length � = 1, and, if present, for the

overlap � = 0.1 and the Robin parameter � = 10. The frequencies � �
1
(�, �, �)

are at the intersection between the red and the green curve, while the frequencies

� �
2
(�, �, �) are at the intersection between the red and the blue curve. The value of

any of the functions at those points represents a corresponding eigenvalue � of the

Schwarz iteration map.

In Figure 5 we show the two aine eigenmodes, at the top the continuous and

the bottom the discontinuous ones, corresponding to � = 0 in ˘4¯, together with the
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Fig. 5: Slowest, aine eigenmodes. Leftȷ classical parallel Schwarz method of Lions. Middleȷ

overlapping optimized Schwarz. Rightȷ nonoverlapping optimized Schwarz.

corresponding � for all three Schwarz variants. These are the most slowly converging

modes, and their corresponding eigenvalues in modulus show that the three diferent

parallel Schwarz variants have very diferent convergence speedsȷ classical parallel

Schwarz method of Lions on the left converges most slowly, while optimized Schwarz

with overlap in the middle is the fastest, followed by optimized Schwarz without

overlap. The aine eigenmodes in Figure 5 look however very similar for all three

Schwarz variants, an observation which is the basis for our new coarse space for

Schwarz methods.

4 A new coarse space for parallel Schwarz methods

The aine eigenmodes in Figure 5 do not only look very similar, they are asymptot‚

ically the same, and the following theorem shows that they are the basis to assemble

such aine eigenfunctions for more general � .

Theorem 3 (Asymptotic Assembly Theorem) When the overlap � is small, and/or

the Robin parameter � is large, the aine modes for � × � subdomains are asymp-

totically special linear combinations of the two limiting aine functions Θ� and Θ�

from the 2 × 2 decomposition modulo translations.

For our initial 4 × 4 subdomain example, the precise asymptotic formulas, with

respect to � =
�
�

˘classical parallel Schwarz method of Lions¯ or � = �� ˘optimized

Schwarz¯, are for the eigenvalues, with � = ±1,

� (1) , � ∼ �(1 − 2 +
√

2

�
), � (2) , � ∼ �(1 − 2

�
), � (3) , � ∼ �(1 − 2 −

√
2

�
),
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Fig. 6: Our new coarse space assembly for 4 × 4 subdomains. Topȷ continuous functions Θ�
� �

.

Bottomȷ discontinuous functions Θ�
� �

.

and for the corresponding six eigenfunctions shown in Figure 3 we have

� (1) ,1 ∼ Θ�
11

+ Θ�
13

+ Θ�
31

+ Θ�
33

+
√

2(Θ�
12

+ Θ�
21

+ Θ�
23

+ Θ�
32
) + 2Θ

�
22
,

� (1) ,−1 ∼ Θ
�
11

+ Θ
�
13

+ Θ
�
31

+ Θ
�
33

−
√

2(Θ�
12

+ Θ
�
21

+ Θ
�
23

+ Θ
�
32
) + 2Θ

�
22
,

� (2) ,1 ∼ Θ�
11

− Θ�
13

− Θ�
31

+ Θ�
33
,

� (2) ,−1 ∼ Θ
�
11

− Θ
�
13

− Θ
�
31

+ Θ
�
33
,

� (3) ,1 ∼ Θ�
11

+ Θ�
13

+ Θ�
31

+ Θ�
33

−
√

2(Θ�
12

+ Θ�
21

+ Θ�
23

+ Θ�
32
) + 2Θ�

22
,

� (3) ,−1 ∼ Θ
�
11

+ Θ
�
13

+ Θ
�
31

+ Θ
�
33

+
√

2(Θ�
12

+ Θ
�
21

+ Θ
�
23

+ Θ
�
32
) + 2Θ

�
22
.

We therefore propose a new coarse space for Schwarz methods, based on assembling

the continuous and discontinuous ’hat’ functions Θ�
� �

and Θ
�
� �

from the 2 × 2 subdo‚

main decomposition, as illustrated for our example in Figure 6. We allow our new

two‚level Schwarz methods also to perform more than just � = 1 domain decompo‚

sition iteration or smoothing step, since the new coarse space is so efective that it

does not need to be used at every iteration, as we will see in the next section.
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Fig. 7: Leftȷ inite element setting for our 4 × 4 model problem. Rightȷ convergence comparison of

the one‚ and two‚level optimized Schwarz methods.

Fig. 8: Leftȷ inite element example obtained from METIS. Rightȷ convergence comparison of the

one‚ and two‚level optimized Schwarz methods.

5 Numerical experiments

We start with a numerical experiment for our 4×4 example, running a nonoverlapping

optimized Schwarz method ˘OSM¯ to solve Laplace’s equation using now a inite

element discretization, as indicated in Figure 7 on the left.

On the right, we show how the error decreases, both for the one‚level OSM and

2‚level‚OSM with two diferent numbers of smoothing steps � = 1, 4. We see that it

is suicient to use a coarse correction with our new coarse space only every fourth

Schwarz iteration with a two‚level optimized parameter �opt = 50.3, and this value

is very diferent from the one‚level optimized parameter �opt = 14.1, as one can see

from the one‚level convergence curves, see also Section 6.

We next show a numerical experiment for a more general decomposition ob‚

tained by METIS, shown in Figure 8. Here we constructed our new coarse space by

generating harmonic functions in the subdomains from edge solutions of the Laplace‚
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Fig. 9: Leftȷ one‚level OSM after 70 iterations. Rightȷ two‚level OSM with � = 1 after 60 iterations

˘since macheps is already reached¯.

Beltrami operator, and we span both continuous and discontinuous ’hat’ functions as

in the rectangular decomposition. For cross points with an even number of incoming

edges, we need again two functions, one continuous and one discontinuous, like in

the rectangular case, and for cross points with an odd number of incoming edges,

we need three functions, one continuous and two discontinuous ones, except when

only 3 edges are incoming, for which case one continuous coarse function suices!

We see again a similar behavior in the convergence of the optimized new two‚level

Schwarz method, and a coarse correction every fourth iteration suices with our new

coarse space.

6 A note on the optimized Robin parameter

From the literature on optimized Schwarz methods, the optimized choice of the Robin

parameter is known from two subdomain analysis [5], e.g. in the non‚overlapping

case �∗ ∼ �√
�ℎ

. In the case with cross points, there are no results available so far.

We irst show a numerical experiment for our 4 × 4 original model problem from

Figure 7 running the method for many values of the parameter �, and plotting the

error as a function of �, see Figure 9. We clearly see that in both cases there is a best

parameter �∗. This parameter is �∗
1
= 14.1 for the one‚level method, and �∗

2
= 50.3

for the two‚level method, also used in Figure 7.

In order to better understand this optimized choice, we return to the optimization

of the convergence factor for 2 × 2 subdomains. Recall that the relevant frequencies

� �
�

are a discrete set, deined in ˘4¯. We show in Figure 10 the convergence factor,

|� | =
�

�

�

�−
ℎ

�+
ℎ

�

�

� as a function of � , for our optimized Schwarz method, � = 1/2 and three

diferent ine mesh parameters ℎ. Best performance in optimized Schwarz methods

is obtained by equioscillation in the convergence factor [5], in the non‚overlapping

case between the lowest and highest frequency ˘green curves in Figure 10¯. Since

our new coarse space with aine modes removes the lowest frequency, the best
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Fig. 10: Convergence factors |�ℎ (� ) | of our optimized Schwarz methods for ℎ = 1/24, 1/25, 1/26

from left to right. Green‚starȷ one level, magental‚circleȷ two level method

parameter choice now only needs to equioscillate with the second lowest and the

highest frequency ˘magenta curves in Figure 10¯, which explains why �∗ for the two‚

level method with our new coarse space is larger than �∗ for the one‚level method.

One can show that for given � and ℎ, the highest frequency index is �0 =
1

2

�
ℎ
+ 1,

and equating the values of |�ℎ (�) | at � = 0 and � = �2 (�0, �) gives the optimized

parameter �∗
1

for the one‚level method. For the two‚level method, equating the values

of |�ℎ (�) | at � = �2 (1, �) and � = �2 (�0, �) yields the optimized value �∗
2

for the

two‚level method. An asymptotic analysis gives

�∗
1
∼
︂

�

2�ℎ
, �∗

2
∼ �

︂

coth �

2�ℎ
, �∗ ∼ �

︂

coth �

�ℎ
, ˘5¯

where �∗ is the best parameter obtained for two subdomains. Naturally we can enrich

our new coarse space with the next, non‚aine modes that come in the Schwarz

iteration spectrum, which we show in Figure 11 ˘the corresponding ones exchanging

� and � are not shown¯, and then the optimized parameter would again increase

further when an OSM is used. We see that these modes are very similar to the

SHEM modes, but again they come in pairs, thus reducing the SHEM coarse space

dimension by a factor of two. We see however also speciic new modes appear, like

the ones in the top row of Figure 11 which form a tip at the cross point, and were not

in the spectral sine decomposition of the SHEM coarse space, an issue which merits

further investigation.

7 Conclusion

We designed a new coarse space for Schwarz methods, based on a spectral analysis

of the parallel Schwarz iteration operator. Our new coarse space is assembled from

continuous and discontinuous hat functions obtained from the eigenfunctions of

local 2 × 2 subdomain decompositions. The new coarse space components are the

same for the classical parallel Schwarz method of Lions, and overlapping and non‚

overlapping optimized Schwarz. We showed numerically that our new coarse space
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Fig. 11: First non aine modes to enrich our new coarse space.

is also very efective on more general decompositions, like the ones obtained by

METIS, and that using a coarse space modiies in an important way the optimized

parameter in the Robin transmission conditions of the optimized Schwarz methods.

Further enrichment is possible with known oscillatory enrichment functions, again

from the analysis of local 2 × 2 subdomain decompositions.

Clearly our work is just a irst step for the construction of such type of new coarse

spaces. Our approach can be used to detect good coarse space components for other

types of partial diferential equations, like problems with high contrast, advection

difusion problems, or also the much harder case of time harmonic wave propagation.

This is possible also for situations where there is no general convergence theory for

the associated Schwarz method available, since it is based on a direct spectral study

of the Schwarz iteration operator in a simpliied setting.
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