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The domain decomposition method ˘DDM¯ initially designed, with the celebrated
paper of Schwarz in 1870 [24] as a theoretical tool for partial diferential equations
˘PDEs¯ has become, since the advent of the computer and parallel computing tech‚
niques, a major tool for the numerical solution of such PDEs, especially for large
scale problems. Time harmonic wave problems ofer a large spectrum of applications
in various domains ˘acoustics, electromagnetics, geophysics, ...¯ and occupy a place
of their own, that shines for instance through the existence of a natural ˘possibly
small¯ length scale for the solutionsȷ the wavelength. Numerical DDMs were irst
invented for elliptic type equations ˘e.g. the Laplace equation¯, and even though the
governing equations of wave problems ˘e.g. the Helmholtz equation¯ look similar,
standard approaches do not work in general.

The objective of this work is to make a rapid, but hopefully pedagogical, survey of
the research led mainly at INRIA ˘in the teams ONDES then POEMS and ALPINES¯
since 1990, on non overlapping domain decomposition methods for time harmonic
wave propagation problems, based on the notion of impedance transmission con‚
ditions. Our point of view, and we consider that this sets us apart from the rest of
the wave DDM community, is theory drivenȷ we proposed and progressively devel‚
oped a uniied framework that guarantees the well‚posedness and convergence of
the related iterative algorithms in the most general cases (geometry, variable coef-

ficients, boundary conditions. . . ¯. This research was punctuated by four Phd theses.

• The PhD thesis of B. Després [10] ˘1991¯ is deinitely a pioneering work which
constitutes a decisive step. It is worthwhile mentioning that P. L. Lions [18]
˘1988¯, [19] ˘1990¯ wrote his papers on the theory of DDMs for elliptic prob‚
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lems at the same period.

• With the PhD thesis of S. Ghanemi [15], at CERFACS in 1996, we developed our
general theoretical framework, proposed using second order local transmission
conditions and initiated non‚local transmission conditions [7] ˘after [16, 21]¯.

Then there was a big pause ˘about 15 years¯ in our activity, during which a
huge literature was devoted to Optimized Schwarz Methods ˘OSMs¯ associated
to local impedance operators ˘see also Section 2¯, up to the opportunity of a
contract with CEA ˘French Nuclear Agency¯ which started the second phase of
our activity.

• The PhD thesis of M. Lecouvez [17] ˘2015¯, in collaboration with CEA, permit‚
ted us to develop the notion of non‚local transmission operators.

• The PhD thesis of E. Parolin [22] ˘2020¯ supported by the ANR Project Non‚
localDD which closes a chapter of the story with the notion of elliptic DtN
operators, the treatment of Maxwell’s equations and a solution to the cross
points issue [3].

1 Elliptic equations versus Helmholtz equation

In this section, we expose the general ideas, more formalism will be introduced in
Section 2. To emphasize the diference of status between the two types of equations
w.r.t. DDM, let us simply consider the equation with constant coeicients

−Δ� + �2� = � , in R� , � ∈ C, where ˘1¯

‚ if � ∈ R+ȷ in this case ˘1¯ is of ˘strongly¯ elliptic nature

‚ if � = ��, � ∈ R+ ˘Helmholtz¯ ȷ one models waves with frequency �.

The distinction is important for DDMs ȷ for instance, the classical overlapping
Schwarz method converges ˘linearly in most case¯ in the elliptic case but does not

converge for the Helmholtz equation. In fact, in the elliptic case, the boundary value
problems ˘BVPs¯ associated with ˘1¯ enjoy many nice properties including the �1‚
coercivity of �(�, �) =

∫
(∇� · ∇� + �2 � �), the associated bilinear form, and their

solutions are often interpreted as the solutions of convex minimization problems.
With this point of view, P.L. Lions gave a general proof of convergence of the
Schwarz method by interpreting the error at each step of the algorithm as the result
of successive orthogonal projections on two ˘with two subdomains¯ supplementary
subspaces of �1 [18]. These problems also beneit from the maximum principle,
which also provides another way for proving the convergence of the Schwarz method.

On the contrary, if � = ��, �(�, �) =
∫
(∇� · ∇� − �2 � �), the natural bilinear form

for Helmholtz, is no longer coercive and there is no underlying variational principle
for the corresponding BVPs. Also, there is no maximum principleȷ the ˘complex
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valued¯ solutions naturally oscillate with the wavelength � = 2�/�.

Fortunately, good news comes from the boundaryȷ if � satisies −Δ� − �2 � = 0 in

a bounded domain Ω with boundary Γ and outgoing normal � then ˘multiply the

equation by �, integrate over Ω, apply Green’s formula and take the imaginary part¯

I�
∫

Γ

��� � = 0, i. e. I�
〈
���, �

〉
Γ
= 0, ˘2¯

with ⟨· , ·⟩Γ the inner product in �2 (Γ) ≡ �2 (Γ;C). This leads to the following

isometry result, where ∥ · ∥Γ denotes the �2 (Γ)‚norm

∥ ��� + �� � ∥2
Γ
= ∥ ��� − �� � ∥2

Γ
, ˘3¯

˘simply note that the diference of the two sides of ˘3¯ is proportional toI� ⟨���, �⟩Γ
which is 0 by ˘2¯¯. One obtains many other isometry results by playing with identity

˘2¯ȷ introducing a "boundary operator" Λ ˘understand that it transforms a function

deined on Γ into another function deined on Γ¯, supposed to be bijective ˘between

appropriate spaces¯ with ˘formal¯ adjoint Λ∗, we remark that

I�
〈
���, �

〉
Γ
= 0 ⇔ I�

〈
���,Λ

−1
Λ�

〉
Γ
= 0 ⇔ I�

〈
(Λ∗)−1���,Λ�

〉
Γ
= 0,

from which we deduce the other isometry result

∥ (Λ∗)−1��� + ��Λ� ∥2
Γ
= ∥ (Λ∗)−1��� − ��Λ� ∥2

Γ
. ˘4¯

Introducing the positive deinite self‚adjoint boundary operator � = Λ∗Λ ˘called

impedance operator in the sequel¯ and the associated norm

(�, �) :=
〈
�,�−1�

〉
Γ
,



�


2

:=
〈
�,�−1�

〉
Γ
, ˘5¯

so that ˘4¯ rewrites ∥ ��� + ���� ∥2
= ∥ ��� − ���� ∥2. ˘6¯

This is one of the reasons which led us, in the context of iterative overlapping DDMs,

denoting {Ω � } the subdomains ˘with outgoing normals � � ¯, to propose

�� �
��� + ������ = (�ℎ�)�−1, ��� = �� |Ω �

, ˘7¯

as a boundary condition in Ω � , where (�ℎ�)�−1 is a quantity, depending on the previ‚

ous iteration and the adjacent subdomain, providing the good continuity conditions

at convergence ˘Section 2¯. An important consequence of the properties of � ˘sym‚

metric positive deinite¯ is that ˘7¯ is of absorbing nature so that the local problem in

Ω � is automatically well posed. Moreover, as we shall see in Section 2, the isometry

result ˘6¯ can be exploited to prove the convergence of the iterative algorithm.
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Fig. 1: The subdomains Ω1 and Ω2 ˘left¯. The scattering operators �1 ans �2 ˘center¯. The layers

�1 and �2, cf Section 5 ˘right¯

2 Impedance based transmission conditions and related DDM

Presentation of the method on a simple model. Let (���) consist in solving the

Helmholtz equation in a Ω⊂R� , bounded, with a perfectly relecting inner boundary

Γ1 and absorbing outer boundary Γ2ȷ

(���) − Δ� − �2 � = � , in Ω, � = 0, on Γ1, ��� + � � � = 0, on Γ2.

Introducing an interface Σ that splits Ω into two subdomains Ω1 ˘interior¯ and Ω2

˘exterior¯, see Figure 1 ˘left picture¯, (���) is equivalent to a transmission problem
(��)+ (��) ˘local problem + transmission conditions¯ where, with obvious notation
˘in particular, � � is the unit normal vector to Σ, outgoing w. r. t. Ω � ¯

(��)



−Δ� � − �2 � � = � , in Ω � , � =1, 2

�1 = 0, on Γ1,

���2 + � � �2 = 0, on Γ2,

(��)
{
(n) �1 = �2, on Σ,

(d) ��1
�1 + ��2

�2 = 0, on Σ.

Given � ∈ [0, 1/2], we introduce an impedance operator � with the property that

� ∈ L
(
�� (Σ), �−� (Σ)

)
is a positive and self‚adjoint isomorphism. ˘8¯

With this choice, the norm deined by ˘5¯ ˘with Γ replaced byΣ, and ⟨·, ·⟩Σ understood
as a duality bracket¯ is a Hilbert space norm in �−� (Σ).

Next, we rewrite (��) in an equivalent way ˘thanks to the injectivity of �¯ by
considering the two independent linear combinations (��) (n) ± �� (��) (d), i. e.

{
��1

�1 + � ���1 = −��2
�2 + � ���2, (1)

��2
�2 + � ���2 = −��1

�1 + � ���1, (2)
˘9¯

where ˘9¯‚˘j¯ is seen here as a boundary condition for � � . The iterative DDM algo‚
rithm consists in applying a fixed point procedure ˘with relaxation¯ to ˘9¯. Precisely,
we construct inductively two sequences ��

�
∈ �1 (Ω � ), � = 1, 2, by imposing, at each

step n, the local equations (��) completed by the following boundary conditions on
Σ ˘where � ∈ ]0, 1[ is the relaxation parameter¯
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{
��1

��
1
+ � ����

1
= �

(
− ��2

��−1
2

+ � ����−1
2

) + (1 − �)
(
��1

��−1
1

+ � ����−1
1

)
,

��2
��

2
+ � ����

2
= �

(
− ��1

��−1
1

+ � ����−1
1

) + (1 − �)
(
��2

��−1
2

+ � ����−1
2

)
.

˘10¯

The reader will notice that, by construction, the local problems in (��
1
, ��

2
) are well

posed, and can be solved in parallel.

A functional analytic observation. It is insightful to look at the quantities in ˘9¯ for
the two extreme values for � ∈ [0, 1/2]. Given � � ∈ �1 (Ω � ) with Δ� ∈ �2 (Ω � ) ȷ

• if � = 0, for instance � = �, the identity ȷ the combination ��� � ± � � � � are not
well balanced since � naturally belongs to �1/2 (Σ) while ��� only belongs to
�−1/2 (Σ),

• if � = 1/2 ȷ the presence of � ∈ L
(
�1/2 (Σ), �−1/2 (Σ)

)
re‚equilibrates the

combination as a sum of two terms in �−1/2 (Σ).

In fact, a misfit is present as soon as � ≠ 1/2 and one can thus anticipate that the
best option should be � = 1/2. This will be conirmed by the analysis ˘Section 3¯.

A rapid guided tour into the bibliography. A lot of literature has been devoted to
DDMs based on transmission written in impedance form.

• In the original work of B. Després [10] ˘or [11] for Maxwell¯, � = � � where �

is a bounded strictly positive function, which its ˘8¯ with � = 0.

• Since the mid 90’s a huge literature has been devoted to "local" operators � as
rational functions of the Laplace‚Beltrami operator ΔΣ [16, 21, 13, 2], with a
great iliation with local absorbing conditions ˘Remark 1¯. These often do not
satisfy ˘8¯ and a general theory ˘existence for local problems and convergence¯
is missing.

• In [8], we promote the use of non‚local impedance operators � itting ˘8¯ with
� = 1

2
in particular boundary integral operators issued from potential theory.

Some optimized Schwarz methods, for instance Boubendir‚Antoine‚Geuzaine’s one,
perform very well in practice ˘despite examples of failure, see [8], Section 8.2.3¯.
However, they cannot lead to linear convergence ˘see [8], Thm 4.6¯.

Remark 1 ȷ There is an ideal choice of transmission conditions with two ˘not one¯
operators, ��1

�1+���1�1=−��2
�2+���1�2 and ��2

�2+� ��2�2=−��1
�1+� ��2�1ȷ

take �1 ˘resp. �2¯ as the DtN operator, when it exists, associated to Ω2 ˘resp. Ω1¯
˘see [8] Section 1.3.2 and [14]¯. Then Algorithm ˘10¯ with � = 1 converges in
two iterations. In general, inding �1 or �2 is almost as diicult as the original
problem. For two homogeneous half‚spaces ˘plane interface¯, �1 = �2 with symbol
��

︁
1 − |� |2/�2, ˘� is the space Fourier variable¯ whose rational approximations

˘Taylor, Padé, continued fraction expansions¯ give local operators, as for ABCs.
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3 Convergence analysis

Interface formulation. For both the implementation and the analysis of our method,

it is useful to reinterpret the problem and the algorithm on the interface Σ. To do

so we introduce the interface auxiliary unknowns ˘where traces on Σ are implicitly

considered¯, i. e. the outgoing traces � � and incoming traces � � ȷ

� � := �� �
� � + � �� � � , � � := −�� �

� � + � �� � � , in �−� (Σ). ˘11¯

Given �1 and �2, �1 and �2 can be seen as the solutions of the local problems




−Δ�1 − �2 �1 = � , in Ω1,

�1 = 0, on Γ1,

��1
�1 + � �� �1 = �1, on Σ,




−Δ�2 − �2 �2 = � , in Ω2,

���2 + � ��2 = 0, on Γ2,

��2
�2 + � �� �2 = �2, on Σ,

˘12¯

and, exploiting the linearity of ˘12¯, the incoming traces � � can be rewritten as

�1 = �1 �1 + �̃1, �2 = �2 �2 + �̃2, ˘13¯

where, in an obvious manner, the source terms �̃ � are due to � ˘they are issued from
˘12¯ with � � = 0¯ and the scattering operators � � are constructed from the local
problems ˘12¯ with � = 0. Next, the transmission conditions simply rewrite

�2 = �1, �1 = �2, ˘14¯

and the transmission problem (��,��) is equivalent to the system ˘13, 14¯ in
x = (�1, �2) and y = (�1, �2)ȷ ˘13¯ takes account of local problems and ˘14¯ of
transmission conditions. Eliminating y then leads to a problem in xȷ

Find x ∈ V := �−� (Σ) × �−� (Σ) / (I − A) x = g, g = � g̃, ˘15¯

with the ˘�‚dependent ¯ scattering operator S and the exchange operators �ȷ

S :=

(
�1 0

0 �2

)
, � :=

(
0 �

� 0

)
, thus I − A :=

(
� −�2

−�1 �

)
. ˘16¯

Mathematical properties. In the following, we equip the Hilbert space V with the
˘�‚dependent¯ norm naturally inherited from the �−�‚norm deined by ˘5¯, that we
still denote ∥ · ∥ for simplicity. From ˘8¯, it is clear that the operators � and S are
continuous in V. Obviously, � is an isometry while, from the identity ˘6¯ ˘applied
in Ω1 and Ω2¯, we immediately infer that, for any (�1, �2) ∈ V,

(�) ∥�1 �1∥ = ∥�1∥, (�) ∥�2 �2∥ ≤ ∥�2∥. ˘17¯

where the inequality in ˘17¯‚˘b¯ is due to the absorbing condition on Γ2 for �2 in
˘12¯. As a consequence, the operator S, thus the operator A, is contractant in V.
Concerning the invertibility of I − A, algebraic manipulations show that
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z = (I − A) x ⇔ � � = �� �
� � + � ��� � on Σ, � = 1, 2, ˘18¯

where, denoting � the normal to Σ pointing towards Ω2 and [·]Σ the jump across Σ,
� ∈ �1 (Ω1 ∪Ω2) satisies ˘H¯ −Δ� −�2 � = � in Ω1 ∪Ω2, ˘BC¯ ȷ � = 0 on Γ1 and
���+� � � = 0 on Γ2 and the "jump conditions", with [z] = �1−�2, {z} = 1

2
(�1+�2)ȷ

[�]Σ =
1

2��
�−1 [z], [���]Σ = {z}. ˘19¯

The injectivity of I − A is due to the uniqueness of a solution � of ˘H, BC, 19¯ȷ
this results from the uniqueness for the original problem. The surjectivity is related
to the existence of �. Trace theorems require {z} ∈ �−1/2 (Σ), which holds since
� ≤ 1/2, and �−1 [z] ∈ �1/2 (Σ). However, ˘8¯ only ensures �−1 [z] ∈ �� (Σ) ȷ we
recover the misfit mentioned in Section 1 unless � = 1/2ȷ

Theorem 1 The operator I − A is injective in V and it is surjective if and only if

� = 1/2. In this case, by Banach theorem, there exists � > 0 such that

∀ x ∈ V, ∥(I − A) x∥ ≥ � ∥x∥, (with � ≤ 2 because A is contractant). ˘20¯

Theorem 1 implies that, when � = 1/2, the interface problem ˘15¯ is a nice coercive
problem in V ˘the lack of �1‚coercivity ‚ emphasized in Section 1 ‚ is hidden in the
deinition of A¯. Indeed, from Ax = x − (I − A) x, we get ˘take the square norms¯
∥Ax∥2 = ∥x∥2 + ∥(I−A) x∥2 − 2R� ((I−A) x, x). Since ∥Ax∥2 ≤ ∥x∥2, we deduce

∀ x ∈ V, R� ((I − A) x, x) ≥ (1/2) ∥(I − A) x∥2 ≥ (�2/2) ∥x∥2. ˘21¯

Convergence. We go back to the iterative method (��) + ˘10¯. If x� := (��
1
, ��

2
)

with ��
�

:= �� �
��
�
+ � �� ��

�
, one easily sees that x� satisies the following Richardson

algorithm ˘or relaxed Jacobi in reference with the block form ˘16¯ of I − A)ȷ

x� = (1 − �) x�−1 + � A x�−1 + g. ˘22¯

The error e� = x� − x satisies e� = (1 − �) e�−1 + � A e�−1 (∗). From the identity
∥(1 − �) x + � y∥2 = (1 − �) ∥x∥2 + � ∥y∥2 − � (1 − �) ∥x − y∥2, we thus get

�����
∥e�∥2 = (1 − �) ∥e�−1∥2 + � ∥Ae�−1∥2 − � (1 − �) ∥(I − A) e�−1∥2

≤ ∥e�−1∥2 − � (1 − �) ∥(I − A) e�−1∥2, ˘contractivity of A).
˘23¯

Thus ∥e�∥ decreases and ∥(I − A) e�∥ → 0. By weak compactness in V, at least for
a subsequence, e� ⇀ e ˘weakly¯ in V. So (I − A) e = 0 thus ˘injectivity of I − A¯
e = 0. This being true for any such subsequence, the whole sequence e� converges
and it is easy to infer that (��

1
, ��

2
) → (�1, �2) in �2 (Ω1) × �2 (Ω2).

However, in the case � = 1/2, we have better since, using ˘20¯ again in ˘23¯

∥e�∥ ≤ �� ∥e0∥, � :=

︁
1 − � (1 − �) �2 < 1, ˘24¯

i. e. the iterative algorithm converges linearly provided � = 1/2 and 0 < � < 1.



58 Xavier Claeys, Francis Collino, Patrick Joly, and Emile Parolin

GMRES algorithm. One can of course use more sophisticated algorithms than ˘22¯

to update the interface unknowns x� ˘from which (��
1
, ��

2
) are still reconstructed via

the local problems ˘12¯¯. This includes nonlinear algorithms such as GMRES [23], in
which x� is computed by minimizing y ↦→ ∥(I − A) y − g∥2, the square V‚norm of
the residue, over the Krylov subspace generated by the � irst iterates x� , � ≤ � − 1

[9] . As a consequence, the corresponding error e� is such that



(I − A) e�


 = min

�∈P�



(I − A) �(A) e0


, P� = { polynomials of degree ≤ �}

Considering the polynomial �(�) = (1−� +� �)�, which corresponds to the Jacobi’s
algorithm ˘22¯, we deduce from Theorem 1, ˘24¯ and ∥I − A∥ ≤ 2 that, if � = 1/2,

∥e�∥ ≤ (2/�)


(I − A) e�



 ≤ (2/�) �� with � as in ˘24¯,

which means that the convergence rate of the GMRES algorithm if necessarily better
than with ˘22¯. Numerical evidence show that it is strictly better and that it is
worthwhile using GMRES despite the larger computational cost for each iteration.

4 Construction of appropriate impedance operators

According to what precedes, the question is to construct an impedance operator �
satisfying ˘8¯ with � = 1/2, i. e. a positive self‚adjoint pseudo‚diferential operator of
order 1. A irst mathematical fact is that such an operator cannot be a local operator

in the sense of Section 2ȷ this is clearly demonstrated in 2D circular geometries [8]
with a Fourier modal expansion in the azimuthal variable � . On the other hand, there
exist many ways to construct good nonlocal operators. Let us describe some of them
˘see also [17], [8], [22]¯.

From Sobolev norms (A). The operator � is entirely deined by the scalar product
˘5¯, which is used for inite elements. A irst choice is the following ˘if Ω ⊂ R3¯ȷ

�

∫

Σ

� � �� + �

�

∫∫

Σ

�
( |� − � |

�

) (�(�) − �(�)
) (
�(�) − �(�)

)

|� − � |3
������ ˘25¯

with �, � > 0, �(�) ≥ 0 a �1 cut of function with support in [0, 1] and �(�) = 1

for � < 1/2, and � > 0. If � = +∞, � is fully nonlocal and one recovers the usual
Gagliardo‚Niremberg norm in �1/2 (Σ) if � = � = 1. If not, � only couples points
at a distance less than � and the ˘discretized¯ impedance condition is less costly.

From potential theory (B). An automatic way to build a good impedance operator
is to take � = Λ∗Λ, with Λ an isomorphism from �1/2 (Σ) in �2 (Σ) provided by a
Riesz‚type potential ȷ given �, � > 0, the associated bilinear form is given by

�

∫

Σ

� � �� + �
√
�

∫∫

Σ

�
( |� − � |

�

) rotΣ�(�) · rotΣ�(�)
|� − � |1/2

������ ˘26¯

where rotΣ denotes the usual tangential curl operator onΣ. Such operators are familiar
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to specialists of boundary integral equations, except the non standard exponent 1/2
which ensures thatΛ is of order 1/2. Contrary to (A), Alternative (B) can be extended

to Maxwell’s equations [22]. In separable geometries, the convergence of ˘22¯ for

(A) or (B) can be precisely quantiied via a modal decomposition. This analysis also

permits us to show that a good choice for � is � ∼ �/2 [8].

From local elliptic DtN operators (C). A more recently investigated option consists

in building �� from the solution �� of an auxiliary elliptic problem posed in a layer

�1 ∪�2 surrounding the interface Σ ˘Figure 1¯ȷ given � = �, �� or � +�−1 �� ˘it can
be shown [22] that the Robin operator � + �−1 �� is the best choice¯




�� :=
1

2

(
��1

�
�

1
+ ��2

�
�

2

)

�
�

1
= �� |Ω1

, �
�

2
= �� |Ω2

where




−Δ� + �2 �� = 0, in �1 ∪ �2,

�� = �, on Σ,

� �� = 0 on Σ � , � =1, 2

˘27¯

One advantage of such a DtN operator is that it is perfectly adapted to variable
coeicients and other types of equations. Moreover it gives very good performances
in practice. Let us consider the experiment of the scattering of a plane wave by a
circular disk ˘see Figure 3¯ ȷ the interface is a circle of radius � and � � = ß. We
use �1 inite elements on a meshstep ℎ = 2�/(40�) and 0 as the initial guess. In
Figure 2, we show the evolution of the relative �1 (Ω1 ∪ Ω2) norm of the error
��
ℎ
− �ℎ, �ℎ being the solution of the undecomposed discrete problem, as a function

of � for � = � and � given by (B) or (C) with �1 = Ω1 ˘red domain¯ �2 = Ω2

˘blue domain¯. This clearly shows the interest non local versus local and the one
of the strategy (C) with respect to (B). The picture on the right shows that, with
nonlocal operators, the number of iterations needed for reaching a given tolerance
is independent of ℎ ˘this can be proven, see [4] and relects the linear convergence
for the continuous problem¯ while, if � = � ˘or more generally any local operator¯ it
increases when one reines the mesh. In Figure 3, we show the spatial structure of the
error after 80 iterations ˘be careful the scales are diferent in the two pictures¯. With
� = �, the error concentrates near the interface and highly oscillates ˘from one mesh
point to the other¯ along the interface. This is representative of the incapacity of
local operators to produce linear convergence at the continuous level and explained
in circular geometry by the Fourier azimuthal analysis ȷ the modal convergence rate
�� for the ��ℎ mode in � tends to 1 for large �. With the DtN operator, the error
does not concentrate and oscillates, as explained again by the modal analysis, at the
˘quasi¯‚resonant mode ȷ observe the � = ß lobes ⇔ �� = ß.

5 The problem of cross points

Consider now a partition of Ω into � ≥ 2 subdomains Ω � , where, for simplicity, Ω�

is an exterior layer, with the possibility that more than 2 boundaries �Ω � meet at a so
called cross point. Such points raise theoretical and practical questions for DDMs,
that deserve a special treatment [1, 20, 12]. Denoting Σ� � the interface �Ω� ∪ �Ω �
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Fig. 2: Convergence histories ˘left and center¯. Iteration count versus mesh size ˘right¯

Fig. 3: Left ȷ the experiment. Center, right ȷ the errors after 80 iterations ˘the color bars difer !¯

˘possibly empty¯, the most naïve generalization of the transmission condition ˘9¯
consists in writing a transmission problem for {� � } with the transmission conditions

{
����� + � ��� � �� = −�� �

� � + � ��� � � � , �� outgoing w.r.t. Ω� ,

�� �
� � + � ��� � � � = −����� + � ��� � �� , � � outgoing w.r.t. Ω � ,

˘28¯

where, aiming at achieving linear convergence, �� � would be a positive definite

self-adjoint operator from �1/2 (Σ� � ) in �−1/2 (Σ� � ). In this way, deining �� � on
Σ� � similarly as (�1, �2) in ˘11¯ and x the collection of the {�� � }, the transmission
problem can be rewritten in an abstract form ˘15¯ with a natural generalization of the
operator A. The convergence of the DDM algorithm ˘22¯ is still guaranteed but the
linear convergence faces the problem of the surjectivity of I − A that relies on the
existence of a solution to a generalized jump problem in Ω coupling the Helmholtz
equation in each Ω � with the inhomogeneous jump conditions ȷ

[
�
]
Σ� �

= �−1
( �� � − � ��

2��

)
,
[
���

]
Σ� �

= �� �−� �� , given (�� � , � ��) ∈ �−1/2 (Σ� � ). ˘29¯

Unfortunately, the inclusion of T := { ��� := [�]Σ� �
/�� ∈ �1 (Ω�)} in Π �1/2 (Σ� � )

is strict, with ininite codimension, if cross points exist [25]. This defect of surjec-

tivity of the jump operator �� is an obstacle to the irst condition in ˘29¯ȷ we meet
again a functional misfit as for the two domains case when � < 1/2 in ˘8¯.

In [3], a new paradigm was proposed, abandoning the interfaces Σ� � to the proit of
the boundaries Σ� = �Ω� ˘� < �¯ and Σ� == �Ω� \ �Ω and the skeleton � =∪Σ� .
This uses the concept of multi-traces developed for multi‚domain boundary inte‚
gral equations[5]ȷ let Ω� := Ω \ � and (�� , �� ) the two surjective ˘multi¯‚trace
operators
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{
� ∈ �1 (Ω�) ↦→ ��� = {�� |Σ�

} ∈ M� (�) := Π �
1

2 (Σ�),
v ∈ � (div,Ω�) ↦→ ��v = {v� · �� |Σ�

} ∈ M� (�) := Π �− 1

2 (Σ�).
˘30¯

Note that M� (�) is the dual space of M� (�) and we shall denote ⟨·, ·⟩� the natural
duality bracket that extends the �2 (�) inner product. As �1 (Ω) ⊂ �1 (Ω�) and
� (divΩ) ⊂ � (divΩ�), we can deine

S� (�) := ��
[
�1 (Ω)

]
⊂M� (�), S� (�) := ��

[
� (div,Ω)

]
⊂M� (�).

The idea is to reformulate the classical Dirichlet and Neumann transmission condi‚
tions for � = {��} ∈ �1 (Ω�), namely [�]Σ� �

= 0 and [���]Σ� �
= 0, in a non standard

form expressed in terms of the traces ��� and �� (∇�) that writes

−Δ�� − �2 �� = � , (D) ��� ∈ S� (�), (N) �� (∇�) ∈ S� (�).

To recover the framework of Section 3, we irst express (D) and (N) in an impedance
form. To do so, we introduce positive self-adjoint impedance operators associated
to the Σ�’s ˘and no longer the Σ� � ’s¯, �� ∈ L(�1/2 (Σ�), �−1/2 (Σ�)), where each �� is
an isomorphism, so that, if T = diag �� ∈ L(M� (�),M� (�)),

(�,�) := ⟨�,T−1 �⟩� is an Hilbert inner product in V := M� (�). ˘31¯

Mimicking ˘11¯, we set (�) : x := ��∇� + � �T��� and y := −��∇� + � �T���,
the skeleton unknowns in V. Let S = diag �� ∈ L(M� (�)) where each �� is deined
as in ˘12¯ ˘in Ω� and �� instead of �¯. Each �� is isometric for the ��‚norm ‚ ˘5¯ for
� = �� ‚ except S� which is contractant. The Helmholtz equations in Ω� rewrites as
˘13¯, namely y = Sx + g̃. It then remains to account for (D) and (N). This relies on
a key result of [5] characterizing S� (�) and S� (�) as "orthogonal" to each otherȷ

Lemma 1 [5] Let � ∈ M� (�) and � ∈ M� (�)). Then

(�) � ∈ S� (�) ⇐⇒ ⟨�� , �⟩� = 0, ∀ �� ∈ S� (�),
(��) � ∈ S� (�) ⇐⇒ ⟨�, ��⟩� = 0, ∀ �� ∈ S� (�).

This lemma is a direct consequence of Green’s identity, in which the left hand side
vanishes if � ∈ �1 (R�) or v ∈ � (div,R�) ˘below R�

�
= R� \ �)ȷ

∀ (�, v) ∈ �1 (R�
�
) × � (div,R�

�
),

︁

�

∫

Ω�

(∇�� · v� + �� div v�) = ⟨��v, ���⟩Σ .

Theorem 2 [3] Let P� the orthogonal projector (in M� (�) equipped with ˘31¯)
on S� (�). The transmission conditions (D) and (N) are satisied if and only if the

unknowns x and y are related by y = � x where � = I − 2 P� .

Proof Let � := ��� and � := ���. By (�), (N) is equivalent to y − x ∈ S� (�)
while (D) is equivalent to T−1 (x + y) ∈ S� (�) that is to say, by Lemma 1 and ˘31¯,
to (y + x,�� ) = 0, ∀ �� ∈ S� (�). Thus, writing y + x = (y − x) + 2x, this gives

(
(y − x) + 2x,��

)
= 0, ∀ �� ∈ S� (�). ˘32¯

Since y − x ∈ S� (�), this is nothing but y − x = P� (−2x). □
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Proceeding as in Section 3 to eliminate y, the problem in x rewrites as in ˘15¯,
with V := M� (�) and A = �S, the exchange operator ˘16¯ being replaced by
� = I − 2 P� . The reader will notice that, as the exchange operator, � is isometric

and involutive. As a consequence, A is contractant. The invertibility of I − A is
linked to a generalized jump problem across the skeleton ˘instead of ˘29¯¯ whose
existence of a solution is ensured by the surjectivity of �� and �� ˘30¯ȷ the misit
due to the defect of surjectivity of the operator �� in the interface approach, has been
eliminated. The conditions for linear convergence of ˘22¯ are thus satisied.

It is worthwhile mentioning that the evaluation of�x amounts to solving the ˘coercive
and T dependent¯ variational problem ˘32¯ on � for y − x. Even though each �� is
local to Σ� , being posed inS� (�), the problem is non local over �. Thus,�x couples
all Σ�’s ȷ rather than an exchange across interfaces, it is a communication operator
˘but without cross point a "natural" choice for �� gives back the exchange¯. Working
in V = M� (�) means that the Neumann condition (N) is handled in a strong sense

while the Dirichlet one (D) is handled weakly via ˘32¯. The ˘dual¯ opposite choice
is possible, see [6]. In our case, the space discretization of the problem uses a inite
element space �ℎ (Ω) for � (div,Ω) and a natural candidate for an approximation
space of S� (�) is Sℎ

�
(�) := �� [�ℎ (Ω)]. In Figure 4, we demonstrate that the

developments of this section are not only a question of mathematical beauty. On the
model problem of Section 4 and a partition of Ω into 10 subdomains with one cross
point, we compare Després’s condition ˘a¯, non local interface operators �� � ˘b¯ and
inally the multi-trace method ˘c¯ showing the error after 10 iterations. In case ˘b¯,
we see that the non local interface operators solve most of the problems with � = �

but produce an important error ˘the big peak¯ concentrated around the cross point,
error which is eliminated with the multi-trace strategy !

Fig. 4: Left ȷ the 10 subdomains with one cross point ˘the arrow¯. Right ȷ the errors after 10
iterations
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