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Abstract The electric conductivity of cardiac tissue determines excitation propa‚

gation and is important for quantifying ischemia and scar tissue and for building

personalized models. Estimating conductivity distributions from endocardial map‚

ping data is a challenging inverse problem due to the computational complexity of

the monodomain equation, which describes the cardiac excitation.

For computing a maximum posterior estimate, we investigate different optimization

approaches based on adjoint gradient computationȷ steepest descent, limited mem‚

ory BFGS, and recursive multilevel trust region methods using mesh hierarchies or

heterogeneous model hierarchies. We compare overall performance, asymptotic con‚

vergence rate, and pre‚asymptotic progress on selected examples in order to assess

the benefit of our multifidelity acceleration.

1 Introduction

Reliable cardiac excitation predictions depend not only on accurate geometric and

physiological models, usually formulated as PDEs, and our ability to solve those

faithfully, but also on the model’s correct parameterization. One critical parameter is
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the tissue conductivity. Its correct identification from measurement data can provide

valuable information about the location and size of scars, which would be beneficial

for diagnosis and treatment of several heart diseases [13].

One approach to parameter identification in electrocardiography is minimizing the

mismatch between simulated and measured voltages on the heart’s inner surface [28].

This inverse problem can be formulated as a PDE constrained optimization problem

and has, e.g., been addressed by using BFGS for a reduced problem formulation [32].

A related general framework for multilevel parameter optimization can be found in,

e.g., [23].

Solving this optimization problem is, however, a major computational challenge,

since the forward models describing the electrical excitation of the heart exhibit very

different temporal and spatial scales and therefore require the use of fine meshes and

short time steps. Together with a considerable number of optimization iterations, the

resulting computational complexity is a major hurdle for widespread practical appli‚

cation. Consequently, several attempts have been made to reduce the computational

effort, including model reduction by proper orthogonal decomposition and empir‚

ical interpolation [33], Gaussian process surrogate models [11], and topological

derivative formulations [2].

A nonlinear multilevel approach based on heterogeneous model hierarchies has

recently been proposed by the authors [6]. In the present study, we analyze the

performance benefits and relative merits of different hierarchies quantitatively, and

obtain insights concerning the behaviour of nonlinear multilevel approaches applied

to the inverse problem at hand.

The remainder of the paper is organized as follows. Mathematical models for

cardiac electrophysiology are briefly recalled in Section 2, while Section 3 formalizes

the inverse problem under consideration. In Section 4, the recursive multilevel trust‚

region ˘RMTR¯ method and the model hierarchies are described. Section 5 contains

the numerical results for single‚level trust‚region, RMTR with multigrid, and RMTR

with heterogeneous model hierarchies, using limited memory BFGS.

2 Electrophysiological models

Excitation of cardiac tissue occupying the domainΩ ⊂ R𝑑 in terms of the transmem‚

brane voltage 𝑣 between intracellular and extracellular domain is usually described

by the bidomain model or its monodomain and eikonal simplifications [9]. For

simplicity, we will consider only monodomain and eikonal models here.

The monodomain system consists of a nonlinear parabolic reaction‚diffusion

equation for the transmembrane voltage 𝑣 : Ω → R and a system of ordinary

differential equations ˘ODEs¯ describing the dynamics of the ion channels, which

regulate the transmembrane current, in terms of gating variables 𝑤 : Ω → Rȷ
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div(𝜎∇𝑣) = 𝜒(𝐶𝑚 ¤𝑣 + 𝐼ion (𝑣, 𝑤)) in Ω × [0, 𝑇]
¤𝑤 = 𝑓 (𝑣, 𝑤) in Ω × [0, 𝑇]

𝒏
𝑇𝜎∇𝑣 = 0 on 𝜕Ω × [0, 𝑇]
𝑣 |𝑡=0 = 𝑣0 in Ω

𝑤 |𝑡=0 = 𝑤0 in Ω.

˘1¯

Here, 𝒏 is the unit outer normal vector to Ω, 𝜎 a symmetric positive definite conduc‚

tivity tensor, 𝜒 the membrane surface area per unit volume, and 𝐶𝑚 the membrane

capacity per unit area. 𝐼ion denotes the transmembrane current density and 𝑓 the

gating dynamics, both defined by an electrophysiological membrane model ˘2¯.

Many different membrane models have been developed [19, 17]. Here, we use the

modified Fitzhugh‚Nagumo ˘FHN¯ model by [31],

𝐼ion (𝑣, 𝑤) = 𝜂0𝑣

(

1 − 𝑣

𝑣th

) (

1 − 𝑣

𝑣pk

)

+ 𝜂1𝑣𝑤

𝑓 (𝑣, 𝑤) = 𝜂2

(

𝑣

𝑣pk

− 𝜂3𝑤

)

,

˘2¯

with positive coefficients 𝜂0, 𝜂1, 𝜂2, 𝜂3, 𝑣𝑡ℎ, 𝑣𝑝𝑘 . In particular, peak and threshold

potential are given by 𝑣pk > 𝑣th, respectively.

Eikonal models derived from bidomain or monodomain models [7, 29, 8] consider

only the activation time 𝑢(𝑥) of the tissue at a particular spatial position 𝑥, and recover

the transmembrane voltage by the travelling wave ansatz

𝑣(𝑥, 𝑡) = 𝑣𝑚 (𝑡 − 𝑢(𝑥)) , ˘3¯

which depends on some fixed activating front shape 𝑣𝑚 of usually hyperbolic tangent

or sigmoid structure. This ansatz results in a nonlinear elliptic equation for the

activation time,

𝑐0

√
∇𝑢 · 𝜎∇𝑢 − ∇ · (𝜎∇𝑢) = 𝜏𝑚 on Ω, ˘4¯

where 𝑐0 and 𝜏𝑚 are parameters used for fitting the eikonal model to mono‚ or

bidomain models.

As the eikonal equation is stationary and activation times are significantly

smoother than the transmembrane voltage, eikonal solutions can be obtained much

faster and on coarser grids than monodomain solutions. Nevertheless, they are a

rather good approximation of the more involved models in many cases.

3 Inverse problem of Conductivity Identification

Here we turn to the prototypical inverse problem of estimating a scalar conductivity

𝜎 ∈ 𝐻1 (Ω) from 𝑁𝜎 voltages 𝑣̂𝑖 given at disjoint open surface patches Γ𝑖 ⊂ 𝜕Ω
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by minimizing the mismatch between simulated voltages 𝑣 |Γ𝑖 and measurements.

Writing Γ =
⋃

𝑖 Γ𝑖 , the resulting optimization problem reads

min
𝑣,𝜎

𝐽 (𝑣, 𝜎) = 1

2
∥𝑣 − 𝑣̂∥2

𝐿2 (Γ×[0,𝑇 ]) + 𝑅(𝜎, 𝛽)

subject to 𝐶 (𝑣, 𝜎) = 0

𝜎 ∈ F = {𝑠 ∈ 𝐿2 (Ω) | 𝜎min ≤ 𝑠 ≤ 𝜎max}.

˘5¯

𝐶 (𝑣, 𝜎) is the monodomain model ˘1¯, and 𝜎min and 𝜎max are the lower and upper

bounds of the conductivity. As the problem is ill‚posed, a regularization term 𝑅 is

added [30] in order to reduce high‚frequent solution components amplified by mea‚

surement noise. Here, we choose 𝑅(𝜎, 𝛽) = 1
2
∥𝛽1 (𝜎 − 𝜎)∥2

𝐿2 (Ω) +
1
2
∥𝛽2∇𝜎∥2

𝐿2 (Ω) ,

where 𝜎 is an a priori reference conductivity. The regularization parameters 𝛽𝑖 can

be determined, e.g., by the L‚curve method [5] or Morozov’s discrepancy principle.

For a more detailed discussion of modeling aspects we refer to [6].

Reduced problem

In order to avoid a large 4D discretization of the space‚time problem resulting from

the first order necessary optimality conditions, we resort to the reduced problem by

eliminating the transmembrane voltage 𝑣 explicitly as 𝑣(𝜎) satisfying 𝐶 (𝑣(𝜎), 𝜎) =
0, and obtain

min
𝜎∈𝐻1 (Ω)

𝐽 (𝜎) = 𝐽 (𝑣(𝜎), 𝑠)

subject to 𝜎 ∈ F .
˘6¯

This bound‚constrained problem can then be solved by gradient type algorithms such

as steepest descent or quasi‚Newton methods. The gradient of the reduced objective

𝐽 with respect to 𝜎 can be obtained efficiently by solving the adjoint equation

−𝜒𝐶𝑚
¤𝜆 = div(𝜎∇𝜆) − 𝜒𝐼ion,𝑣 (𝑣, 𝑤)𝜆 − 𝑓𝑣 (𝑣, 𝑤)𝜂

− ¤𝜂 = 𝜒𝐼ion,𝑤 (𝑣, 𝑤)𝜆 + 𝑓𝑤 (𝑣, 𝑤)𝜂
˘7¯

with terminal and boundary conditions

𝜆(𝑇) = 0, 𝜂(𝑇) = 0

𝒏
𝑇𝜎∇𝜆 = 0 on (𝜕Ω\Γ) × [0, 𝑇]

𝒏
𝑇𝜎∇𝜆 = 𝑣̂ − 𝑣 on Γ × [0, 𝑇]

backwards in time and then computing

∇𝐽 =

∫ 𝑇

0

∇𝜆𝑇∇𝑣 𝑑𝑡 + ∇𝑅. ˘8¯
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Since the state 𝑣, 𝜂 enters as data into the adjoint equation, the whole 4D trajectory

still needs to be stored. This can be done efficiently by error‚controlled lossy data

compression [14]. When using the eikonal equation for describing cardiac excitation,

the reduced gradient ∇𝐽 can be computed analogously. Conveniently, the adjoint

equation is then again a single and much simpler stationary equation.

Discretization

For the spatial discretization of the conductivity 𝜎, the transmembrane voltage 𝑣,

the gating variables 𝑤, and the adjoint states 𝜆 and 𝜂, and the activation time 𝑢

we employ standard linear finite elements on a simplicial grid covering the domain

Ω. The time integration is done by a common equidistant implicit‚explicit Euler

scheme with operator splitting for both the monodomain problem ˘1¯ and adjoint

equation ˘7¯.

Denoting by 𝒙 ∈ R𝑁 the coefficient vector of the conductivity 𝜎, we obtain thus,

with a slight abuse of notation, the discretized version of ˘6¯ as

min
𝒙∈R𝑁

𝐽 (𝒙)

subject to 𝒙 ∈ F .
˘9¯

Due to the use of Lagrangian finite elements, the continuous feasible set F for

𝜎 translates into component‚wise bounds on 𝒙, such that ˘9¯ is again a bound‚

constrained problem.

4 Multilevel Quasi-Newton Trust-region Method

In this section, we discuss how to minimize ˘9¯ using a multilevel solution strat‚

egy, namely the recursive multilevel trust‚region ˘RMTR¯ method [15]. The RMTR

method combines the global convergence properties of the trust‚region method with

the efficiency of multilevel methods. In this work, we consider three different ap‚

proaches for obtaining the multilevel hierarchyȷ i¯ multi‚resolution, ii¯ multi‚model,

and iii¯ combined ˘multi‚resolution and multi‚model¯ approach.

Quasi‚Newton trust‚region method

A trust‚region method ˘TR¯ is an iterative method, which generates a sequence {𝒙𝑖}
of iterates converging to a first‚order critical point [10]. At each iteration 𝑖, the TR

method approximates the objective function 𝐽 by a quadratic model

𝑚𝑖 (𝒙𝑖 + p) = 𝐽 (𝒙𝑖) + 𝐽 ′(𝒙𝑖)p + 1

2
p𝑇H𝑖p
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around the current iterate 𝒙𝑖 . For the Hessian approximation H𝑖 we employ a memory‚

efficient quasi‚Newton approach known as the L‚BFGS˘𝑚¯ [4, 3], where only the

𝑚 most recent gradients are taken into account in order to update the Hessian H𝑖 ≈
𝐽 (𝒙𝑖) ′′ recursively using a rank‚two update formula [24]. For 𝑚 ≪ 𝑛, significantly

less storage is needed compared to dense Hessian approximations used in [32].

Being based on a Taylor‚like approximation, the model 𝑚𝑖 is considered to be

an adequate representation of the objective 𝐽 only in a certain region, called the

trust‚region. The trust‚region B𝑖 := {𝒙𝑖 + p ∈ R𝑛 | ∥p∥ ≤ Δ𝑖} is defined around

the current iterate, with a size prescribed by the trust‚region radius Δ𝑖 > 0 and a

shape defined by the choice of norm. Here, we employ the maximum norm ∥ · ∥∞,

which simplifies the step computation in bound‚constrained problems compared

to the Euclidean norm. The trial step p𝑖 is determined by solving the constrained

minimization problem

min
p𝑖 ∈R𝑛

𝑚𝑖 (𝒙𝑖 + p𝑖) subject to 𝒙𝑖 + p𝑖 ∈ F ,

∥p𝑖 ∥∞ ≤ Δ𝑖 .
˘10¯

The first constraint in ˘10¯ ensures the feasibility of the iterates throughout the

solution process, while the second constraint restricts the size of the trial step p𝑖 .

Both constraints are defined component‚wise, such that ˘10¯ is a bound‚constrained

problem with easily computable bounds.

To ensure global convergence, it is sufficient to solve the trust‚region subprob‚

lems ˘10¯ approximately, such that an approximate solution p𝑖 of ˘10¯ satisfies the so

called sufficient decrease condition ˘SDC¯, see [10]. An obtained step p𝑖 is accepted,

if the actual decrease in the objective, 𝐽 (𝒙𝑖) − 𝐽 (𝒙𝑖 + p𝑖), agrees sufficiently well

with the predicted decrease 𝑚𝑖 (𝒙𝑖) − 𝑚𝑖 (𝒙𝑖 + p𝑖). This is quantified in terms of the

trust‚region ratio

𝜌𝑖 =
𝐽 (𝒙𝑖) − 𝐽 (𝒙𝑖 + p𝑖)

𝑚𝑖 (𝒙𝑖) − 𝑚𝑖 (𝒙𝑖 + p𝑖)
. ˘11¯

If 𝜌𝑖 is close to unity, there is a good agreement between the objective 𝐽 and the

model 𝑚𝑖 and it is therefore safe to accept the step p𝑖 . More precisely, the step p𝑖 is

accepted, only if 𝜌𝑖 > 𝜂1, where 0 < 𝜂1 < 1. In addition, the trust‚region radius has

to be adjusted accordingly.

Remark 1 It is important to update the approximation H𝑖 even if the trial step p𝑖 is

rejected, since the rejection might indicate that the current H𝑖 is not an adequate

approximation of the true Hessian 𝐽 ′′(𝒙𝑖).

Remark 2 Using the L‚BFGS method, the implementation of the trust‚region algo‚

rithm can be realized in a matrix‚free way. The operations involving H𝑖 , or its inverse

(H𝑖)−1, can be implemented using the approach proposed in [25] and the two‚loop

recursion algorithm developed in [27], respectively.
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Recursive multilevel trust‚region method

The computational cost of the trust‚region method is dominated by evaluating the

objective in ˘11¯ and the reduced gradient 𝐽 ′(𝒙𝑖) via ˘8¯, which incurs the solution of

at least two parabolic equations per accepted trial step. Reducing the computational

effort requires a decrease of the number of steps, which in turn is only possible if the

quadratic models 𝑚𝑖 of the objective are replaced or complemented by models 𝐽−𝑖
that approximate 𝐽 on larger trust‚regions, but are nevertheless significantly cheaper

to minimize than the original objective. Approximate models that we consider here

are ˘i¯ the monodomain equation on coarser grids and ˘ii¯ an eikonal model.

These models can be defined on the same discretization, i.e. approximation space,

for𝜎 of size 𝑛, or on a coarser one of size 𝑛− < 𝑛, in which case a transfer between the

original problem and the model is necessary. This affects the transfer of the current

iterate 𝒙𝑖 ˘projection¯ and the gradient ∇𝐽 ˘restriction¯ to the model 𝐽−𝑖 , and the

transfer of the model’s minimizer back to the original problem ˘prolongation¯. Note

that, if the models 𝐽−𝑖 are formulated on the same discretization, all these transfers are

trivial. Otherwise, we define both the prolongation I : R𝑛
− → R𝑛 and the projection

P : R𝑛 → R𝑛− as pseudo‚𝐿2‚projection, as proposed in [18] and successfully applied

in [21]. We assemble these transfer operators using the library MOONoLith [22].

As usual, the restriction is defined as the adjoint of the prolongation, i.e. R = I𝑇 .

Naturally, we intend 𝐽−𝑖 to approximate 𝐽 well. Therefore, we enforce first‚order

consistency between both models i.e., the gradients of both models shall coincide

locally as far as possible. As common for nonlinear multilevel schemes, the model

functions 𝐽−𝑖 can be defined in terms of some computationally cheaper/coarse ap‚

proximation 𝑗− of the objective 𝐽 by means of the additive approach [26] as

𝐽−𝑖 (𝒙−) = 𝑗− (𝒙−) + (𝒙− − P𝒙𝑖)𝑇 (R∇𝐽 (𝒙𝑖) − ∇ 𝑗−(P𝒙𝑖)). ˘12¯

Alternatively, we can exploit a multiplicative approach [1, 20] and define the models

𝐽−𝑖 (𝒙−) = 𝛽(𝒙𝑖 , 𝒙−) 𝑗− (𝒙−) ˘13¯

with

𝛽(𝒙, 𝒙−) = 𝐽 (𝒙)
𝑗− (P𝒙) + (𝒙− − P𝒙)𝑇

(

1

𝑗− (P𝒙)R∇𝐽 (𝒙) − 𝐽 (𝒙)
( 𝑗− (P𝒙))2

∇ 𝑗− (P𝒙)
)

.

Both approaches employ a so called coupling term ˘underlined¯, which takes into ac‚

count the difference between restricted original gradient R∇𝐽 (𝒙𝑖) and initial coarse

gradient ∇ 𝑗− (P𝒙𝑖). The use of this coupling term guarantees that the first‚order

behavior of 𝐽 and 𝐽− is locally coherent in the neighborhood of 𝒙𝑖 and P𝒙𝑖 , respec‚

tively [26].

At each iteration 𝑖, the trial step p𝑖 ∈ R𝑛− is obtained either by approximately

solving the quadratic trust‚region subproblem ˘10¯ or the coarse subproblem
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min
p∈R𝑛−

𝐽−𝑖 (P𝒙𝑖 + p), subject to 𝒙𝑖 + Ip ∈ F ,

∥Ip𝑖 ∥∞ ≤ Δ𝑖 .
˘14¯

As common for trust‚region methods, it is not necessary to solve the problem ˘14¯

exactly. Indeed, it is sufficient that an approximate minimizer p of ˘14¯ satisfies the

SDC condition. Here, we solve the nonlinear problem ˘14¯ iteratively by employing

few steps of the trust‚region method. This gives rise to a recursive multilevel trust‚

region ˘RMTR¯ scheme [16]. A line search‚based alternative would be the multilevel

model correction ˘MMC¯ method [23].

Potentially, we can utilize a hierarchy of multiple coarse models { 𝑗 𝑙}𝐿
𝑙=1

, where

𝐿 > 1, which gives rise to a truly multilevel method. In this work, we obtain models

{ 𝑗 𝑙}𝐿
𝑙=1

by exploring the following alternativesȷ

1. Multi-resolution: We uniformly coarsen finite element grids ˘by factor of 2¯ in

order to discretize the monodomain equation entering the reduced objective 𝐽.

Consequently, the coarse‚level models are computationally cheaper to optimize.

Note that a certain mesh resolution is required to reasonably resolve the mon-

odomain model, such that mesh coarsening is limited.

2. Multi-model: The eikonal model is used instead of monodomain on coarser

grids. This model is significantly cheaper and a better global approximation

model for the monodomain model compared to the standard quadratic model.

3. Combined: Combinations of multi‚resolution and multi‚model variants are also

possible. For instance, one can obtain a hierarchy of models { 𝑗 𝑙}𝑙=𝐿
𝑙=1

by first

coarsening the spatial‚resolution and then changing the model complexity.

At the end, we highlight the fact that the overall efficiency of the multilevel

algorithm is determined by how many times the respective coarse and fine level

models are minimized. For instance, in the multi‚resolution approach, it is crucial

to alternate between both models, such that the components of the error associated

with a given level are effectively eliminated.

5 Numerical results

Here, we focus on numerical results for different algorithmic configurations on a

simple 2D geometry. For the numerical tests, different synthetic transmembrane

voltage data 𝑣̂ have been created by simulations on a finer mesh. For illustration, we

also present some reconstruction results for scar tissue on a 3D ventricular geometry.

For a more detailed discussion of reconstruction quality we refer to [6].
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5.1 Patient-specific geometry

As an example from clinical practice, we use the ventricular geometry of a patient

with a nontransmural scar located on the left endocardium. In Fig. 1, scar tissue is

shown in blue, sparse endocardial measurement locations by yellow spheres, and

the reconstructed conductivity color‚coded on the right. The reconstruction quality

depends on the quantity and location of available cardiac mapping data. Due to the

stability of excitation propagation, reliable results can in general only be expected in

the vicinity of measurement locations. In this case, the small number of measured

data on the left endocardium is not enough to reconstruct the scar shape accurately.

Fig. 1: Left: Target conductivity with marked measured data. Right: Solution with marked measured

data.

5.2 Convergence study

In this section, we compare the convergence behavior of single‚level trust‚region

methods with several RMTR variants on a simpler idealized 2D cross‚section of

a left ventricle. We use L‚BFGS˘𝑚¯ with 𝑚 = 1 or 𝑚 = 8 secant pairs, and a

termination criterion ∥P (𝒙 − ∇𝐽 (𝒙)) − 𝒙∥ < 10−4 based on the projected gradient

expressed in terms of an orthogonal projection P onto the feasible set F . The arising

quadratic trust‚region subproblems ˘10¯ are solved using the MPRGP method [12].

The RMTR method is configured with additive coarse level models ˘12¯ for multi‚

resolution variants, while multiplicative coarse level models ˘13¯ are employed for

multi‚model variants. Solution strategies are implemented as part of the open‚source

library UTOPIA [34], while the implementation of inverse problems, including

monodomain and eikonal models, is part of our framework HEART. All simulations

have been run using 10 nodes ˘XC50, 12 cores¯ of the Piz Daint supercomputer

˘CSCS, Switzerland¯.
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To provide a more robust insight, four different sets of simulated measurement

data 𝑣̂ have been usedȷ generated with monodomain on a finer mesh, with additional

Gaussian noise, with slightly changed membrane area 𝜒 per volume, and generated

with eikonal on a finer grid. We provide averaged iteration counts and run times

in Tab. 1 for single level trust‚region with different L‚BFGS memory size, and for

RMTR with two or three levels of monodomain on coarser grids or eikonal models.

50 100 150 200

10−4

10−3

10−2

10−1

# its. / cycles

∥P
(𝒙

−
∇
𝐽
(𝒙
))

−
𝒙
∥

TR‚m1

TR‚m8

RMTR‚MM

RMTR‚MMM

RMTR‚ME

RMTR‚MEE

10 20 30 40 50

101

101.5

# its. / cycles

𝐽
(𝒙
)

TR‚m1

TR‚m8

RMTR‚MM

RMTR‚MMM

RMTR‚ME

RMTR‚MEE

Fig. 2: The convergence history in terms of the projected gradient ˘left¯ and the objective function

𝐽 . The measurement data were generated using the monodomain model on a finer mesh.

The convergence results suggest that both monodomain multigrid and heteroge‚

neous monodomain‚eikonal multilevel methods lead to a significant reduction of

iteration count by a factor between 3 and 6. For the used grid resolution, mon‚

odomain multigrid is more effective by a factor 1.5 to 2 in reducing iteration counts.

Since the coarse level subproblems are more expensive to solve, the heterogeneous

multilevel approach is almost as efficient. We can also observe a slight convergence

rate deterioration of the heterogeneous approach in the asymptotic phase, probably

due to a less accurate Hessian approximation of the eikonal model. The three‚level

multigrid approach appears to be less effective than the two‚level method, probably

because the monodomain model deteriorates quickly for coarser grids.

6 Conclusion

Identifying tissue conductivities using monodomain models from surface measure‚

ments is computationally expensive and calls for acceleration. Multilevel methods

can be effective in two waysȷ First, classical multigrid based on a Galerkin pro‚

jection of the Hessian improves the convergence rate of steepest descent or similar

smoothers, which suffer from ill‚conditioning. Second, nonlinear multilevel methods

aim at improving the objective reduction also in the pre‚asymptotic phase, where the

progress of first or second order methods is limited due to high nonlinearity.
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models meshes 𝑚 # its/cycles time ˘minutes¯

TR
mono ˘TR‚m1¯ T 3 1 17ß ± 2ß 14ß ± 35

mono ˘TR‚m8¯ T 3 8 148 ± 1ß 127 ± 44

RMTR

mono‚mono ˘RMTR‚MM¯ T 3, T 2 8 26 ± 5∗ 80 ± 4ß

mono‚mono‚mono ˘RMTR‚MMM¯ T 3, T 2, T 1 8 31 ± 11∗ 88 ± 56

mono‚eiko ˘RMTR‚ME¯ T 3, T 3 8 51 ± 6 ß7 ± 35

mono‚eiko‚eiko ˘RMTR‚MEE¯ T 3, T 3, T 2 8 47 ± 8 85 ± 32

Table 1: The average computational cost required by trust‚region and RMTR method. The results

are obtained by averaging over four datasets. The symbol ∗ indicates that for one dataset the

termination criterion was not satisfied within 500 cycles.

The numerical results suggest that the RMTR method used here is effective in

both regimes and leads to a clear reduction of iterations. Due to the overhead of the

subproblems, the reduction of run time is not as large, but still significant.
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