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1 Introduction

The traditional approaches to the numerical solution of initial‚boundary value prob‚

lems ˘IBVP¯ for parabolic or hyperbolic Partial Differential Equations ˘PDEs¯ are

based on the separation of the discretization in time and space leading to time‚

stepping methods; see, e.g., [20]. This separation of time and space discretizations

comes along with some disadvantages with respect to parallelization and adaptiv‚

ity. To overcome these disadvantages, we consider completely unstructured finite

element ˘fe¯ or isogeometric ˘B‚spline or NURBS¯ discretizations of the space‚

time cylinder and the corresponding stable space‚time variational formulations of

the IBVP under consideration. Unstructured space‚time discretizations considerably

facilitate the parallelization and the simultaneous space‚time adaptivity. Moving

spatial domains or interfaces can easily be treated since they are fixed in the space‚

time cylinder. Beside initial‚boundary value problems for parabolic PDEs, we will

also consider optimal control problems constrained by linear or non‚linear parabolic

PDEs. Here unstructured space‚time methods are especially suited since the reduced

optimality system couples two parabolic equations for the state and adjoint state that

are forward and backward in time, respectively. In contrast to time‚stepping methods,

one has to solve one big linear or non‚linear system of algebraic equations. Thus,

the memory requirement is an issue. In this connection, adaptivity, parallelization,

and matrix‚free implementations are very important techniques to overcome this

bottleneck. Fast parallel solvers like domain decomposition and multigrid solvers

are the most important ingredients of efficient space‚time methods.

This paper is partially based on joint works with Svetlana Kyas ˘Matculevich¯ and

Sergey Repin on adaptive space‚time IGA based on functional a posteriori error es‚

timators [10, 11], Martin Neumüller and Andreas Schafelner on adaptive space‚time
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FEM [13, 14], and Olaf Steinbach, Fredi Tröltzsch and Huidong Yang on space‚time

FEM for optimal control problems [15, 16].

2 Space-Time Variational Formulations

Let us consider the parabolic IBVP, find 𝑢 such that

𝜕𝑡𝑢 − div𝑥 (𝛼 ∇𝑥𝑢) = 𝑓 + div𝑥 (f) in 𝑄, 𝑢 = 0 on Σ, 𝑢 = 𝑢0 := 0 on Σ0, ˘1¯

as a typical model problem, where 𝑄 = Ω × (0, 𝑇), Σ = 𝜕Ω × (0, 𝑇), Σ0 = Ω × {0},
Ω ⊂ R𝑑 , 𝑑 = 1, 2, 3, denotes the spatial domain that is assumed to be bounded and

Lipschitz, 𝑇 > 0 is the terminal time, 𝑓 ∈ 𝐿2 (𝑄) and f ∈ 𝐿2 (𝑄)𝑑 are given sources,

and 𝛼 ∈ 𝐿∞ (𝑄) is a given uniformly bounded and positive coefficient ˘matrix¯ that

may discontinuously depend on the spatial variable 𝑥 = (𝑥1, . . . , 𝑥𝑑) and the time

variable 𝑡 ˘non‚autonomous case¯. The standard variational formulation of the IBVP

˘1¯ in Bochner spaces reads as follows [17]ȷ Find 𝑢 ∈ 𝑈0 := {𝑣 ∈ 𝑈 := {𝑤 ∈ 𝑉 :=

𝐿2 (0, 𝑇 ;𝐻1
0
(Ω)) : 𝜕𝑡𝑤 ∈ 𝑉∗ := 𝐿2 (0, 𝑇 ;𝐻−1 (Ω))} : 𝑣 = 0 on Σ0} such that

𝑎(𝑢, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝑉, ˘2¯

where the bilinear form 𝑎(·, ·) and the linear form ℓ(·) are defined by the identities

𝑎(𝑢, 𝑣) :=

∫

𝑄

[𝜕𝑡𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) + 𝛼(𝑥, 𝑡)∇𝑥𝑢(𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡)] 𝑑𝑄 and

ℓ(𝑣) :=

∫

𝑄

[ 𝑓 (𝑥, 𝑡)𝑣(𝑥, 𝑡) − f (𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡)] 𝑑𝑄, respectively.

We note that 𝑈 = 𝑊 (0, 𝑇) is continuously embedded into 𝐶 ( [0, 𝑇], 𝐿2 (Ω)); see

[17]. Alternative space‚time variational formulations of the IBVP ˘1¯ in anisotropic

Sobolev spaces on 𝑄 are discussed in [9]. The textbook proof of existence and

uniqueness of a weak solution is based on Galerkin’s method and a priori estimates;

see, e.g., [17] and [9]. Alternatively one can use the Banach‚Nečas‚Babuška ˘BNB¯

theorem ˘see, e.g., [3, Theorem 2.6]¯ that provides sufficient and necessary conditions

for the well‚posedness of variational problems like ˘2¯. Indeed, Steinbach proved in

[19] for 𝛼 = 1 that the bilinear form 𝑎(·, ·) fulfills the following three conditionsȷ

˘BNB1¯ boundednessȷ |𝑎(𝑢, 𝑣) | ≤
√

2 ∥𝑢∥𝑈 ∥𝑣∥𝑉 , ∀𝑢 ∈ 𝑈0, 𝑣 ∈ 𝑉 ,

˘BNB2¯ inf‚sup conditionȷ inf𝑢∈𝑈0\{0} sup𝑣∈𝑉\{0},
𝑎 (𝑢,𝑣)

∥𝑢∥𝑈 ∥𝑣 ∥𝑉 ≥ 1/(2
√

2),
˘BNB3¯ injectivity of 𝐴∗ȷ For every 𝑣 ∈ 𝑉 \{0}, there exists 𝑢 ∈ 𝑈0ȷ 𝑎(𝑢, 𝑣) ≠ 0,

which are sufficient and necessary for the well‚posedness of ˘2¯, in other words, the

operator 𝐴 : 𝑈0 → 𝑉∗, defined by 𝑎(·, ·), is an isomorphism. Moreover, ∥𝑢∥𝑈0
≤

2
√

2 ∥ℓ∥𝑉∗ . The norms in the spaces𝑈0,𝑈, and 𝑉 are defined as followsȷ

∥𝑢∥2
𝑈0

= ∥𝑢∥2
𝑈 := ∥𝑢∥2

𝑉 + ∥𝜕𝑡𝑢∥2
𝑉∗ = ∥∇𝑥𝑢∥2

𝐿2 (𝑄) + ∥∇𝑥𝑤𝑢∥2
𝐿2 (𝑄) ,
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where 𝑤𝑢 ∈ 𝑉 such that
∫
𝑄
∇𝑥𝑤𝑢 · ∇𝑥𝑣 𝑑𝑄 = ⟨𝜕𝑡𝑢, 𝑣⟩𝑄 for all 𝑣 ∈ 𝑉 . Here,

⟨·, ·⟩𝑄 := ⟨·, ·⟩𝑉∗×𝑉 denotes the duality product on 𝑉∗ ×𝑉 .

In the following two sections, maximal parabolic regularity plays an important

role when deriving locally stabilized isogeometric and finite element schemes. Let

us assume that f = 0 and that the coefficient 𝛼 = 𝛼(𝑥, 𝑡) fulfills additional conditions

˘see, e.g., [2]¯ such that the solution 𝑢 ∈ 𝑈0 of ˘2¯ belongs to the space

𝐻
𝐿,1
0

(𝑄) = {𝑣 ∈ 𝑉 : 𝜕𝑡𝑣, 𝐿𝑥𝑣 := div𝑥 (𝛼∇𝑥𝑢) ∈ 𝐿2 (𝑄)}.

Hence, the PDE 𝜕𝑡𝑢 − 𝐿𝑥𝑢 = 𝑓 holds in 𝐿2 (𝑄). The maximal parabolic regularity

even remains true for inhomogeneous initial data 𝑢0 ∈ 𝐻1
0
(Ω). We also refer the

reader to the classical textbook [9], where the case 𝛼 = 1 was considered.

3 Space-Time Isogeometric Analysis

Let us assume that f = 0 and that 𝛼 fulfills conditions such that maximal parabolic

regularity holds, i.e. the parabolic PDE ˘1¯ can be treated in 𝐿2 (𝑄). The time variable

𝑡 can be considered as just another variable, say, 𝑥𝑑+1, and the term 𝜕𝑡𝑢 can be viewed

as convection in the direction 𝑥𝑑+1. Thus, we can multiply the parabolic PDE ˘1¯ by

a time‚upwind test function 𝑣ℎ + 𝜆𝜕𝑡𝑣ℎ in order to derive stable discrete schemes,

where 𝑣ℎ is a test function from some finite‚dimensional test space𝑉0ℎ, and 𝜆 ≥ 0 is

an appropriately chosen scaling parameter. This choice of test functions is motivated

by the famous SUPG method, introduced by Hughes and Brooks for constructing

stable fe schemes for stationary convection‚diffusion problems [4], and which was

later used by Johnson and Saranen [7] for transient problems; see also [6] for the

related Galerkin Least‚Squares finite element methods. Instead of fe spaces 𝑉0ℎ, we

can also use IGA ˘B‚splines, NURBS¯ spaces that have some advantages over the

more classical fe spaces; see [5] where IGA was introduced. In particular, in the

single patch case, one can easily construct IGA spaces 𝑉0ℎ ⊂ 𝐶𝑘−1 (𝑄) of (𝑘 − 1)‚
times continuously differentiable B‚splines of underlaying polynomial degree 𝑘 .

These B‚splines of highest smoothness have asymptotically the best approximation

properties per degree of freedom. In [12], we used such IGA spaces to derive stable

space‚time IGA schemes provided that 𝜆 = 𝜃ℎ with a fixed constant 𝜃 > 0, where ℎ

denotes the mesh‚size.

In order to construct stable adaptive space‚time IGA schemes, we replaced the

global scaling parameter 𝜆 by a local scaling function 𝜆(𝑥, 𝑡) that is changing on the

mesh according to the local mesh sizes [10, 11]. Let us describe the construction of

these locally stabilized space‚time IGA more precisely. In IGA, we use the same basis

functions for describing both the geometry and IGA spaces 𝑉0ℎ. Thus, we assume

that the physical computational domain 𝑄 = Φ(𝑄) is the image of the parameter

domain 𝑄 := (0, 1)𝑑+1 using the geometrical mapping Φ(𝜉) =
∑
𝑖∈I 𝐵𝑖,𝑘 (𝜉) P𝑖 ,

where {P𝑖}𝑖∈I ⊂ R𝑑+1 are the control points, and 𝐵𝑖,𝑘 , 𝑖 ∈ I, are the multivariate

B‚Splines or NURBS. Now we can define the finite‚dimensional space
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𝑉0ℎ = {𝑣ℎ ∈ 𝑉ℎ : 𝑣ℎ = 0 on Σ ∪ Σ0} = span{𝜑𝑖 : 𝑖 ∈ I0} ˘3¯

by means of the same basis functions, i.e.,

𝑉ℎ = S𝑘ℎ = S𝑘𝑘−1,ℎ = span{𝜑𝑖 = �̂�𝑖 ◦Φ−1 : 𝑖 ∈ I},

where �̂�𝑖 (𝜉) = 𝐵𝑖,𝑘 (𝜉), 𝑖 ∈ I. We now test the PDE 𝜕𝑡𝑢 − 𝐿𝑥𝑢 = 𝑓 restricted to a

mesh element 𝐾 from the set of all mesh elements Kℎ = {𝐾 = Φ(𝐾)}, into which

𝑄 is decomposed, by 𝑣ℎ + 𝜆𝐾𝜕𝑡𝑣ℎ, yielding

(
𝜕𝑡𝑢 − 𝐿𝑥𝑢, 𝑣ℎ + 𝜆𝐾 𝜕𝑡𝑣ℎ

)
𝐿2 (𝐾) = ( 𝑓 , 𝑣ℎ + 𝜆𝐾 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) ∀𝑣ℎ ∈ 𝑉0ℎ .

Summing up over all 𝐾 ∈ Kℎ, and integrating by parts, we get the variational

consistency identity

𝑎ℎ (𝑢, 𝑣ℎ) = ℓℎ (𝑣ℎ) ∀𝑣ℎ ∈ 𝑉0ℎ, ˘4¯

where the bilinear form and the linear form are defined by the identities

𝑎ℎ (𝑢, 𝑣ℎ) =(𝜕𝑡𝑢, 𝑣ℎ)𝐿2 (𝑄) + (𝛼∇𝑥𝑢,∇𝑥𝑣ℎ)𝐿2 (𝑄)

+
∑︁

𝐾 ∈Kℎ

𝜆𝐾

(
(𝜕𝑡𝑢, 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) − (𝐿𝑥𝑢, 𝜕𝑡𝑣ℎ)𝐿2 (𝐾)

)
˘5¯

and

ℓℎ (𝑣ℎ) := ( 𝑓 , 𝑣ℎ)𝐿2 (𝑄) +
∑︁

𝐾 ∈Kℎ

𝜆𝐾 ( 𝑓 , 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) ,

respectively. Now, the corresponding consistent IGA scheme reads as followsȷ Find

𝑢ℎ ∈ 𝑉0ℎ such that

𝑎ℎ (𝑢ℎ, 𝑣ℎ) = ℓℎ (𝑣ℎ) ∀𝑣ℎ ∈ 𝑉0ℎ . ˘6¯

The following three properties are fundamental for the derivation of error estimatesȷ

1. Galerkin orthogonalityȷ 𝑎ℎ (𝑢 − 𝑢ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉0ℎ,

2. 𝑉0ℎ‚coercivityȷ 𝑎ℎ (𝑣ℎ, 𝑣ℎ) ≥ 𝜇𝑐 ∥𝑣ℎ∥2
ℎ

∀ 𝑣ℎ ∈ 𝑉0ℎ,

3. Extended boundednessȷ |𝑎ℎ (𝑢, 𝑣ℎ) | ≤ 𝜇𝑏∥𝑢∥ℎ,∗ ∥𝑣ℎ∥ℎ ∀𝑢 ∈ 𝑉0ℎ,∗, 𝑣ℎ ∈ 𝑉0ℎ,

provided that 𝜆𝐾 = 𝜃𝐾 ℎ𝐾 with 𝜃𝐾 = 𝑐−2
𝐾
𝛼−1
𝐾 ℎ𝐾 , where ℎ𝐾 = diam(𝐾) de‚

notes the local mesh‚size, 𝛼𝐾 is an upper bound of 𝛼 on 𝐾 , and 𝑐𝐾 is the com‚

putable constant ˘upper bound¯ in the local inverse inequality ∥div𝑥∇𝑥𝑣ℎ∥𝐿2 (𝐾) ≤
𝑐𝐾 ℎ

−1
𝐾
∥∇𝑥𝑣ℎ∥𝐿2 (𝐾) . Then we get 𝜇𝑐 = 1/2. The boundedness constant 𝜇𝑏 can also

be computed; see [10, 11]. The norms ∥ · ∥ℎ and ∥ · ∥ℎ,∗ are defined as followsȷ

∥𝑣 ∥2
ℎ :=

∑︁

𝐾 ∈Kℎ

[
∥𝛼1/2∇𝑥𝑣 ∥2

𝐿2 (𝐾) + 𝜆𝐾 ∥𝜕𝑡𝑣 ∥
2
𝐿2 (𝐾)

]
+ 1

2
∥𝑣 ∥2

𝐿2 (Σ𝑇 ) , ˘7¯

∥𝑣∥2
ℎ,∗ := ∥𝑣∥2

ℎ +
∑︁

𝐾 ∈Kℎ

[
𝜆−1
𝐾 ∥𝑣∥2

𝐿2 (𝐾) + 𝜆𝐾 ∥div𝑥 (𝛼∇𝑥𝑣)∥2
𝐿2 (𝐾)

]
. ˘8¯
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We mention that both norms are not only well defined on the IGA space𝑉0ℎ but also

on the extended space 𝑉0ℎ,∗ = 𝑉0ℎ + 𝐻𝐿,10
(𝑄) to which the solution 𝑢 belongs in the

maximal parabolic regularity setting considered here. The Galerkin orthogonality

directly follows from subtracting ˘6¯ from ˘4¯. The proof of the other two properties

is also elementary; see [10, 11].

From the𝑉0ℎ‚coercivity of the bilinear form 𝑎ℎ (·, ·), we conclude that the solution

𝑢ℎ of the IGA scheme ˘6¯ is unique, and, therefore, it exists. In other words, the

corresponding linear system of IGA equations

𝐾ℎ𝑢ℎ = 𝑓
ℎ

˘9¯

has a unique solution 𝑢
ℎ
= (𝑢𝑖)𝑁ℎ

𝑖=1
∈ R𝑁ℎ= |I0 | . The coefficients ˘control points¯ 𝑢𝑖

then uniquely define the solution 𝑢ℎ =
∑𝑁ℎ

𝑖=1
𝑢𝑖𝜑𝑖 of the IGA scheme ˘6¯. The system

matrix 𝐾ℎ is non‚symmetric, but positive definite due to the 𝑉0ℎ‚coercivity.

The following best‚approximation estimate directly follows from properties 1. ‚

3. given aboveȷ

Theorem 1 Let 𝑢 ∈ 𝑈0 ∩𝐻𝐿,10
(𝑄) be the solution of the IBVP ˘2¯, and 𝑢ℎ ∈ 𝑉0ℎ the

solution of space-time IGA schemes ˘6¯. Then the best-approximation estimate

∥𝑢 − 𝑢ℎ∥ℎ ≤ inf
𝑣ℎ ∈𝑉0ℎ

(
∥𝑢 − 𝑣ℎ∥ℎ + 𝜇𝑏

𝜇𝑐
∥𝑢 − 𝑣ℎ∥ℎ,∗

)
˘10¯

holds.

The best‚approximation estimate ˘10¯ finally yields convergence rate estimates in

terms of ℎ respectively the local mesh‚sizes ℎ𝐾 , 𝐾 ∈ Kℎ, provided that 𝑢 has some

additional regularity; see [10, 11].

In practical application, the use of adaptive IGA schemes is more attractive

than uniform mesh refinement. In order to drive adaptivity, we need local error

indicators, a marking strategy, and the possibility to refine the mesh locally. In IGA,

which starts from a tensor‚product setting, local mesh refinement is more involved

than in the FEM. However, nowadays, several refinement techniques are available;

see [10] and the references given therein. Local error indicators 𝜂𝐾 (𝑢ℎ), 𝐾 ∈ Kℎ,
should be derived from a posteriori error estimators. We here consider functional

error estimators that provide an error bound for any conform approximation 𝑣 to the

solution 𝑢 of ˘2¯. Of course, we are interested in the case 𝑣 = 𝑢ℎ ∈ 𝑉0ℎ. We get the

following functional error estimator for a special choice of parameters from [18]ȷ

|||𝑢 − 𝑢ℎ |||2 ≤ 𝔐
2 (𝛽, 𝑢ℎ, y) :=

∑︁

𝐾 ∈Kℎ

𝜂2
𝐾 (𝛽, 𝑢ℎ, y), ˘11¯

where the norm is defined by |||𝑤 |||2 := ∥
√
𝛼∇𝑥𝑤∥2

𝐿2 (𝑄) + ∥𝑤∥2
𝐿2 (Σ𝑇 ) , 𝛽 is a fixed pos‚

itive scaling parameter ˘function [18]¯, and y ∈ 𝐻 (div𝑥 , 𝑄) is a suitable flux recon‚

struction. The local error indicator 𝜂2
𝐾
(𝛽, 𝑢ℎ, y) := 𝜂2

𝐾,flux
(𝛽, 𝑢ℎ, y)+𝜂2

𝐾,pde
(𝛽, 𝑢ℎ, y)

consists of the parts

𝜂2
𝐾,flux (𝛽, 𝑢ℎ, y) :=

∫

𝐾

(1 + 𝛽) |y − 𝛼∇𝑥𝑢ℎ |2𝑑𝐾 and ˘12¯



82 Ulrich Langer

𝜂2
𝐾,pde (𝛽, 𝑢ℎ, y) := 𝑐2

𝐹Ω

∫

𝐾

(
1 + 𝛽
𝛽

| 𝑓 − 𝜕𝑡𝑢ℎ + div𝑥y|2
)
𝑑𝐾 ˘13¯

evaluating the errors in the flux and in the residual of the PDE, where 𝑐𝐹Ω denotes the

constant in the inequality ∥𝑣∥𝐿2 (𝑄) ≤ 𝑐𝐹Ω ∥
√
𝛼∇𝑥𝑣∥𝐿2 (𝑄) for all 𝑣 ∈ 𝑉 . For 𝛼 = 1,

𝑐𝐹Ω is nothing but the Friedrichs constant in 𝐻1
0
(Ω). In contrast to the FEM ˘see

Sect. 4¯, the IGA flux 𝛼∇𝑥𝑢ℎ belongs to 𝐻 (div𝑥 , 𝑄) provided that 𝛼 is sufficiently

smooth, and𝑉0ℎ ⊂ 𝐶1 (𝑄) that is ensured for 𝑘 ≥ 2. Then we can choose y = 𝛼∇𝑥𝑢ℎ
yielding 𝜂𝐾,flux (𝛽, 𝑢ℎ, y) = 0 and, therefore, 𝜂𝐾 (𝛽, 𝑢ℎ, y) = 𝜂𝐾,pde (𝛽, 𝑢ℎ, y). A

more sophisticated flux reconstruction was proposed by Kleiss and Tomar for elliptic

boundary value problems in [8]. Following this idea, we also propose to reconstruct

the flux y from the minimization of the majorant 𝔐
2 (𝛽, 𝑢ℎ, y) in an IGA space

(S𝑙
𝑙−1,𝐻

)𝑑 on a coarser mesh with some mesh‚size 𝐻 ≥ ℎ and with smoother splines

of the underlying degree 𝑙 ≥ 𝑘 . In [10, 11], we present and discuss the results of

many numerical experiments showing the efficiency of this technique for constructing

adaptive space‚time IGA methods using different marking strategies. Here we only

show an example from [1] with the manufactured solution 𝑢(𝑥, 𝑡) = 𝑥5/2 (1 − 𝑥)𝑡3/4
of ˘1¯ with𝑄 = (0, 1) × (0, 2), 𝛼 = 1, and f = 0. The uniform mesh refinement yields

𝑂 (ℎ3/4) in the ∥ · ∥ℎ norm for 𝑘 = 2, whereas the adaptive version with THB‚splines

recovers the full rate 𝑂 (ℎ2), where ℎ = 𝑁−2
ℎ

and 𝑘 = 2; see Fig. 1.

4 Space-Time Finite Element Analysis

We can construct locally stabilized space‚time finite element schemes in the same

way as in the IGA case replacing the IGA space ˘3¯ by the finite element space

𝑉0ℎ = {𝑣ℎ ∈ 𝐶 (𝑄) : 𝑣ℎ (𝑥𝐾 (·)) ∈ P𝑘 (�̂�), ∀𝐾 ∈ Kℎ, 𝑣ℎ = 0 on Σ∩Σ0}, ˘14¯
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Fig. 1: Solution 𝑢(𝑥, 𝑡) ˘right¯, mesh after 6 ˘middle¯ and 8 ˘right¯ adaptive refinement levels.
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where Kℎ is a shape regular decomposition of the space‚time cylinder 𝑄 into sim‚

plicial elements, i.e., 𝑄 =
⋃
𝐾 ∈Kℎ

𝐾 , and 𝐾 ∩ 𝐾 ′ = ∅ for all 𝐾 and 𝐾 ′ from Kℎ
with 𝐾 ≠ 𝐾 ′ ˘see, e.g., [3] for details¯, 𝑥𝐾 (·) denotes the map from the reference

element �̂� ˘unit simplex¯ to the finite element 𝐾 ∈ Kℎ, and P𝑘 (�̂�) is the space of

polynomials of the degree 𝑘 on the reference element �̂� . For the space‚time finite

element solution 𝑢ℎ ∈ 𝑉0ℎ of ˘6¯, we can derive the same best‚approximation esti‚

mate as given in Theorem 1, from which we get convergence rate estimates under

additional regularity assumptions; see [13, Theorem 13.3]. The case of special dis‚

tributional sources f, the divergence of which exists in 𝐿2 (𝑄𝑖) on subdomains 𝑄𝑖 of

a non‚overlapping domain decomposition of the space‚time cylinder 𝑄 =
⋃𝑚
𝑖=1𝑄𝑖 ,

and the case of low‚regularity solutions are investigated in [14]. In [13] and [14], we

also present numerical results for different benchmark examples exhibiting different

features in space and time. We compare uniform and adaptive refinement. In the

finite element case, the corresponding system ˘9¯ of algebraic equations is always

solved by a parallel AMG preconditioned GMRES. We use BoomerAMG, provided

by the linear solver library hypre1, to realize the AMG preconditioner. The adaptive

version can be based on different local error indicators; see [13, 14]. Below we show

an example where we compare uniform refinement with the adaptive refinement that

is based on Repin’s first functional error estimate ˘11¯. It was already mentioned

in Sect. 3 that, in the FEM, we cannot take y = 𝛼∇𝑥𝑢ℎ because the finite element

flux does not belong to 𝐻 (div𝑥 , 𝑄). Therefore, we first recover an appropriate flux

yℎ = 𝑅ℎ (𝛼∇𝑥𝑢ℎ) ∈ (𝑉ℎ)𝑑 ⊂ 𝐻 (div𝑥 , 𝑄) by nodal averaging à la Zienkiewicz and

Zhu ˘ZZ¯. One can use this yℎ as y, or one can improve this yℎ by preforming some

CG minimization steps on the majorant 𝔐
2 (𝛽, 𝑢ℎ, y) in (𝑉ℎ)𝑑 with the initial guess

yℎ. Finally, one minimizes with respect to 𝛽. We mention that the local ZZ‚indicator

is nothing but 𝜂𝐾,flux (0, 𝑢ℎ, 𝑅ℎ (𝛼∇𝑥𝑢ℎ)).
Let us now consider the parabolic NIST Benchmark Moving Circular Wave Front2

for testing our adaptive locally stabilized space‚time fe method. We again consider the

parabolic IBVP ˘1¯ with the following dataȷ 𝑑 = 2,𝑄 = (0, 10) × (−5,−5) × (0, 𝑇) ⊂
R

3, 𝑇 = 10, 𝛼 = 1, f = 0, and the manufactured exact solution

𝑢(𝑥, 𝑡) = (𝑥1 − 0) (𝑥1 − 10) (𝑥2 + 5) (𝑥2 − 5) tan−1 (𝑡)
( 𝜋
2
− tan−1 (𝜁 (𝑟 − 𝑡))

)
/𝐶

with 𝑟 =
√︁
(𝑥1 − 𝑥1𝑐)2 + (𝑥2 − 𝑥2𝑐)2, where the parameters (𝑥1𝑐, 𝑥2𝑐) and 𝜁 describe

the center and the steepness of the circular wave front, respectively. We choose

(𝑥1𝑐, 𝑥2𝑐) = (0, 0) and 𝜁 = 20 ˘mild wave front¯. The scaling parameter 𝐶 is

equal to 10000. The space‚time adaptivity is driven by the local error indicators

𝜂𝐾,flux (𝛽, 𝑢ℎ, yℎ) using Dörfler’s marking. Fig. 2 shows the adaptive meshes after

a cut through the space‚time cylinder 𝑄 at 𝑡 = 0, 2.5, 5, 7.5, and 10. In Fig. 3,

we compare the convergence history for uniform and adaptive refinements for the

polynomial degrees 𝑘 = 1, 2, 3. In the adaptive case, we use Dörfler’s marking with

the bulk parameter 0.25. The solution has steep gradients in the neighborhood of

1 httpsȷ//computing.llnl.gov/projects/hypre

2 httpsȷ//math.nist.gov/cgi‚bin/amr‚display‚problem.cgi
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the wave front that is perfectly captured by the adaptive procedure. This adaptive

procedure quickly leads to the optimal rates 𝑂 (ℎ𝑘), and dramatically reduces the

error in the ∥ · ∥ℎ norm, where ℎ = (𝑁ℎ)−1/(𝑑+1) = 𝑁−1/3
ℎ

in the adaptive case. Fig. 4

shows the corresponding efficiency indices 𝐼eff = 𝜂flux (0, 𝑢ℎ, yℎ)/∥𝑢 − 𝑢ℎ∥ℎ, where

𝜂2
flux

(𝛽, 𝑢ℎ, yℎ) =
∑
𝐾 ∈Kℎ

𝜂2
𝐾,flux

(𝛽, 𝑢ℎ, yℎ).

5 Space-Time Optimal Control

The optimal control of evolution equations turns out to be interesting from both

a mathematical and a practical point of view. Indeed, there are many important

applications in technical, natural, and life sciences. Let us first consider the following

space‚time tracking optimal control problemȷ For a given target function 𝑢𝑑 ∈ 𝐿2 (𝑄)
˘desired state¯ and for some appropriately chosen regularization ˘cost¯ parameter

𝜚 > 0, find the state 𝑢 ∈ 𝑈0 and the control 𝑧 ∈ 𝑍 minimizing the cost functional

𝐽 (𝑢, 𝑧) = 1

2

∫

𝑄

|𝑢 − 𝑢𝑑 |2 d𝑄 + 𝜚

2
𝑅(𝑧) ˘15¯

t = 0 t = 2.5 t = 5

t = 7.5 t = 10

Fig. 2: Adaptive space‚time meshes at the cuts 𝑡 = 0, 2.5, 5, 7.5, and 10 through 𝑄 ⊂ R3.
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Fig. 3: Comparison of uniform and adaptive refinements for 𝑘 = 1, 2, 3.
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Fig. 4: Efficiency indices 𝐼eff for Dörfler’s marking with bulk parameter 0.25

subject to the linear parabolic IBVP ˘1¯ respectively its variational formulation ˘2¯.

The regularization term 𝑅(𝑧) is usually chosen as the 𝐿2 (𝑄)‚norm ∥𝑧∥2
𝐿2 (𝑄) , and,

thus, 𝑍 = 𝐿2 (𝑄), whereas the control 𝑧 acts as right‚hand side 𝑓 in ˘1¯ respectively

˘2¯, and f = 0. Since the state equation ˘2¯ has a unique solution 𝑢 ∈ 𝑈0, one

can reason the existence of a unique control 𝑧 ∈ 𝑍 minimizing the quadratic cost

functional 𝐽 (𝑆(𝑧), 𝑧), where 𝑆 is the solution operator mapping 𝑧 ∈ 𝑍 to the unique

solution 𝑢 ∈ 𝑈0 of ˘2¯; see, e.g., [17] and [21]. On the other side, the solution of the

quadratic optimization problem min𝑧∈𝑍 𝐽 (𝑆(𝑧), 𝑧) is equivalent to the solution of

the first‚order optimality system. After eliminating the control 𝑢 from the optimality
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system by means of the gradient equation 𝑝 + 𝜚𝑧 = 0, we arrive at the reduced

optimality systemȷ Find the state 𝑢 ∈ 𝑈0 and the adjoint state 𝑝 ∈ 𝑃𝑇 such that

𝜚

∫

𝑄

[
𝜕𝑡𝑢 𝑣 + 𝛼 ∇𝑥𝑢 · ∇𝑥𝑣

]
𝑑𝑄 +

∫

𝑄

𝑝 𝑣 𝑑𝑄 = 0,

−
∫

𝑄

𝑢 𝑞 𝑑𝑄 +
∫

𝑄

[
− 𝜕𝑡 𝑝 𝑞 + 𝛼 ∇𝑥 𝑝 · ∇𝑥𝑞

]
𝑑𝑄 = −

∫

𝑄

𝑢𝑑 𝑞 𝑑𝑄,
˘16¯

holds for all 𝑣, 𝑞 ∈ 𝑉 , where 𝑃𝑇 := {𝑝 ∈ 𝑊 (0, 𝑇) : 𝑝 = 0 on Σ𝑇 }. Now the

well‚posedness of ˘16¯ can again be proved by means of the BNB theorem verifying

the corresponding conditions ˘BNB1¯ – ˘BNB3¯; see [16, Theorem 3.3]. In the same

paper, we analyze the finite element Galerkin discretization of the reduced optimality

systemȷ Find (𝑢ℎ, 𝑝ℎ) ∈ 𝑈0ℎ × 𝑃𝑇ℎ such that

𝐵(𝑢ℎ, 𝑝ℎ; 𝑣ℎ, 𝑞ℎ) = −(𝑢𝑑 , 𝑞ℎ)𝐿2 (𝑄) ∀(𝑣ℎ, 𝑞ℎ) ∈ 𝑉0ℎ ×𝑉𝑇ℎ, ˘17¯

where the bilinear form 𝐵(·, ·) results from adding the left‚hand sides of ˘16¯.

The finite element subspace spaces 𝑈0ℎ = 𝑉0ℎ = 𝑆𝑘
ℎ
(𝑄) ∩ 𝑈0 and 𝑃𝑇ℎ = 𝑉𝑇ℎ =

𝑆𝑘
ℎ
(𝑄) ∩𝑃𝑇 are defined on a shape‚regular decomposition of the space‚time cylinder

𝑄 in simplicial elements as usual; cf. Section 4. Of course, we can here also use IGA

instead of FEM as discretization method; cf. Section 3. In [16], we show a discrete

inf-sup condition which leads to a best‚approximation error estimate of the form

√︃
𝜚∥𝑢 − 𝑢ℎ∥2

𝑉
+ ∥𝑝 − 𝑝ℎ∥2

𝑉
≤ 𝑐 inf

(𝑣ℎ ,𝑞ℎ) ∈𝑈0ℎ×𝑃𝑇ℎ

√︃
∥𝑢 − 𝑣ℎ∥2

𝑈0
+ ∥𝑝 − 𝑞ℎ∥2

𝑃𝑇
˘18¯

for the case 𝛼 = 1, where 𝑐 = 1 + 2
√

2𝑐𝐵 (𝜚) and 𝑐𝐵 (𝜚) is the boundedness constant

of the bilinear form 𝐵(·, ·). If 𝑢 and 𝑝 have additional regularity, we easily get

convergence rate estimates, e.g., 𝑂 (ℎ) if 𝑢, 𝑝 ∈ 𝐻2 (𝑄); see [16, Theorem 3.5].

In some applications, one wants to restrict the action of the control 𝑧 in space

and time. Thus, in the case of partial control, we have to replace the right‚hand

side 𝑓 = 𝑧 by 𝑓 = 𝜒𝑄𝑐
𝑧, where 𝜒𝑄𝑐

is the characteristic function of the space‚time

control domain 𝑄𝑐 ⊂ 𝑄. Then we can again derive the reduced optimality system,

and solve it by means of the space‚time finite element method. Let us consider a

concrete example. In this example, we consider the spatial domain Ω = (0, 1)2 and

the terminal time 𝑇 = 1. Therefore, we have 𝑄 = (0, 1)3. The control subdomain is

given as 𝑄𝑐 = (0.25, 0.75)2 × (0, 𝑇). A smooth target 𝑢𝑑 = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑡)
is used, and the regularization ˘cost¯ parameter 𝜚 = 10−5. Fig. 5 presents the state

𝑢ℎ and the control 𝑧ℎ for partial ˘up¯ and full ˘down¯ distributed controls. We

use continuous, piecewise linear finite element approximations on a quasi‚uniform

decomposition of 𝑄 into tetrahedral elements.

Finally, we mention that, in [15], we introduce and investigate the space‚time

energy regularization 𝑅(𝑧) = ∥𝑧∥2
𝐿2 (0,𝑇;𝐻−1 (Ω)) , and compare it to the 𝐿2 (𝑄) and the

sparse regularization. Furthermore, the space‚time approach can easily be general‚

ized to other observations like terminal time observation, the control via boundary

conditions, the control via initial conditions ˘inverse heat conduction problem¯, and,
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last but not least, the control of non‚linear parabolic IBVP with box constraints

imposed on the control [16].
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