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1 Introduction

Domain decomposition methods have been applied extensively for the saddle point

problems arising from the mixed finite element discretizations. Overlapping methods

are studied by many researchers such as [15, 6, 7, 4, 3, 1]. Some of these algorithms

can be applied for both continuous and discontinuous pressure discretizations, how‚

ever, the convergence analyses are available only for the methods with discontinuous

pressure, to the best of our knowledge.

Most nonoverlapping domain decomposition methods are based on the benign

subspace idea which is successfully used by [21] for the Stokes problem, followed

by [10, 16, 18, 24, 26, 11, 22, 14, 12] for different nonoverlapping domain de‚

composition algorithms and different saddle point problems. In this approach, the

original saddle point problems can be reduced to positive definite problems in the

benign subspace with subdomain interface velocity and constant subdomain pressure

variables. Therefore a conjugate gradient method ˘CG¯ can be used to accelerate the

convergence. Most above‚mentioned applications and analyses require discontinuous

pressures to be used in the discretization. Several domain decomposition algorithms

allow the use of continuous pressures such as [23, 2, 13], but the convergence rate

analyses of those approaches are not available. [17, 27, 28] have proposed and

analyzed a FETI‚DP algorithm for solving incompressible Stokes equation, which

allowed the use of both discontinuous and continuous pressures in the discretization.

There, the Lagrange multipliers are introduced to enforce the continuity of the veloc‚

ity variables across the subdomain interface. Recently, this FETI‚DP algorithm has

been applied to almost incompressible elasticity with isogeometric discretization by

[32].
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In this paper, we show for both BDDC and FETI‚DP algorithms how the original

saddle point problems can be reduced to positive definite problems using either

primal or dual variable approaches, outline their analyses, and make the connections

between these two approaches.

The rest of this paper is organized as follows. The saddle problems are described

in Section 2. In Section 3, the domain decomposition is introduced and the original

system is reduced to Schur complements or a system of the Lagrange multiples

and pressure. The positive definite formulations are discussed in Section 4 and the

condition number estimates are outlined in Section 5. Finally, we summarize some

differences and connections of these two methods in Section 6.

2 Problem setting

We consider the following saddle point problemȷ find uℎ ∈ W and 𝑝ℎ ∈ 𝑄, such

that, {
𝑎(uℎ, vℎ) + 𝑏(vℎ, 𝑝ℎ) = (fℎ, vℎ), ∀ vℎ ∈ W,

𝑏(uℎ, 𝑞ℎ) = (𝑔ℎ, 𝑞ℎ), ∀ 𝑞ℎ ∈ 𝑄,
˘1¯

where W and 𝑄 are finite element spaces. The continuous bilinear forms 𝑎(uℎ, vℎ)

and 𝑏(uℎ, 𝑞ℎ) can come from the variational formulation of the Stokes equation or the

Darcy problem. We call uℎ velocity variables and 𝑝ℎ pressure variable, respectively.

The system ˘1¯ can be written as

[
𝐴 𝐵𝑇

𝐵 0

] [
u

𝑝

]
=

[
f

𝑔

]
. ˘2¯

Here 𝐴 is symmetric positive definite but 𝐵 is rank deficient. 𝐾𝑒𝑟 (𝐵𝑇 ), the kernel of

𝐵𝑇 , includes all constant pressures in 𝑄. 𝐼𝑚(𝐵), the range of 𝐵, includes all vectors

in 𝑄 with zero average. We note that 𝐼𝑚(𝐵) is orthogonal to 𝐾𝑒𝑟 (𝐵𝑇 ). Under the

assumption that 𝑔 ∈ 𝐼𝑚(𝐵), i.e., 𝑔 has zero average, the solution of ˘2¯ is uniquely

determined if the pressure is restricted to the quotient space 𝑄/𝐾𝑒𝑟 (𝐵𝑇 ).

We assume that W and 𝑄 are inf‚sup stableȷ there exists a positive constant 𝛽,

independent of ℎ, such that

sup
w∈W

⟨𝑞, 𝐵w⟩2

⟨w, 𝐴w⟩
≥ 𝛽2 ⟨𝑞, 𝑍𝑞⟩ , ∀𝑞 ∈ 𝑄/𝐾𝑒𝑟 (𝐵𝑇 ), ˘3¯

where 𝑍 is the so called mass matrix on 𝑄, i.e., ∥𝑞∥2
𝐿2 = ⟨𝑞, 𝑍𝑞⟩, ∀𝑞 ∈ 𝑄.
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3 Domain decomposition

We decompose the domain Ω into 𝑁 nonoverlapping polygonal/polyhedral subdo‚

mains Ω𝑖 , 𝑖 = 1, 2, ..., 𝑁 . We assume that each subdomain is a union of a bounded

number of elements, with typical diameter of 𝐻. The subdomain interface nodes

Γ = (∪𝜕Ω𝑖)\𝜕Ω. Γ includes the subdomain faces, which are open sets and shared

by two subdomains, the subdomain edges, which are open sets and shared by more

than two subdomains; and the subdomain vertices, which are end points of edges.

Denote the subdomain interior velocity spaces by W
(𝑖)

𝐼
and subdomain interior

pressure spaces by 𝑄
(𝑖)

𝐼
, respectively. The subdomain boundary velocity space is

denoted by WΓ, which is shared by neighboring subdomains, while 𝑄Γ contains

the subdomain boundary pressure degrees of freedom shared by neighboring subdo‚

mains. Let

W𝐼 =

𝑁⊕

𝑖=1

W
(𝑖)

𝐼
, 𝑄𝐼 =

𝑁⊕

𝑖=1

𝑄
(𝑖)

𝐼
.

We decompose the velocity and pressure finite element spaces W and 𝑄 into the

subdomain interior and interface subspaces,

W = W𝐼

⊕
WΓ, 𝑄 = 𝑄𝐼

⊕
𝑄Γ,

respectively, and write ˘2¯ as



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼
𝐴𝐼Γ 𝐵𝑇

Γ𝐼

𝐵𝐼 𝐼 0 𝐵𝐼Γ 0

𝐴𝑇
𝐼Γ
𝐵𝑇
𝐼Γ
𝐴ΓΓ 𝐵

𝑇
ΓΓ

𝐵Γ𝐼 0 𝐵ΓΓ 0





u𝐼

𝑝𝐼
uΓ

𝑝Γ



=



f𝐼

𝑔𝐼
fΓ

𝑔Γ



, ˘4¯

which can be assembled from the subdomain problems, defined as below



𝐴
(𝑖)

𝐼 𝐼
𝐵
(𝑖)𝑇

𝐼 𝐼
𝐴
(𝑖)

𝐼Γ
𝐵
(𝑖)𝑇

Γ𝐼

𝐵
(𝑖)

𝐼 𝐼
0 𝐵

(𝑖)

𝐼Γ
0

𝐴
(𝑖)𝑇

𝐼Γ
𝐵
(𝑖)𝑇

𝐼Γ
𝐴
(𝑖)

ΓΓ
𝐵
(𝑖)𝑇

ΓΓ

𝐵
(𝑖)

Γ𝐼
0 𝐵

(𝑖)

ΓΓ
0





u
(𝑖)

𝐼

𝑝
(𝑖)

𝐼

u
(𝑖)

Γ

𝑝
(𝑖)

Γ



=



f
(𝑖)

𝐼

𝑔
(𝑖)

𝐼

f
(𝑖)

Γ

𝑔
(𝑖)

Γ



. ˘5¯

We note that the blocks corresponding to u𝐼 and 𝑝𝐼 in ˘4¯ can be arranged in

subdomain wise. As long as 𝑝Γ contains at least one pressure variables from each

subdomain, we can eliminate u𝐼 and 𝑝𝐼 by solving independent subdomain problems

and obtain the following global Schur complement system

[
𝑆Γ 𝑇𝑇

ΓΓ

𝑇ΓΓ −𝐶ΓΓ

] [
uΓ

𝑝Γ

]
=

[
f𝑠

𝑔𝑠

]
, ˘6¯

where
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𝑆Γ = 𝐴ΓΓ − [𝐴Γ𝐼 𝐵
𝑇
𝐼Γ]

[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐴𝐼Γ

𝐵𝐼Γ

]
, ˘7¯

𝐶ΓΓ = [𝐵Γ𝐼 0]

[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐵𝑇
Γ𝐼

0

]
, ˘8¯

𝑇ΓΓ = 𝐵ΓΓ − [𝐵Γ𝐼 0]

[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐴𝐼Γ

𝐵𝐼Γ

]
, ˘9¯

and [
f𝑠

𝑔𝑠

]
=

[
fΓ

𝑔Γ

]
−

[
𝐴𝑇
𝐼Γ
𝐵𝑇
𝐼Γ

𝐵Γ𝐼 0

] [
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
f𝐼

𝑔𝐼

]
.

We note that 𝑆Γ can be assembled from the local subdomain Schur complements

𝑆
(𝑖)

Γ
defined from ˘5¯ asȷ



𝐴
(𝑖)

𝐼 𝐼
𝐵
(𝑖)𝑇

𝐼 𝐼
𝐴
(𝑖)

𝐼Γ

𝐵
(𝑖)

𝐼 𝐼
0 𝐵

(𝑖)

𝐼Γ

𝐴
(𝑖)𝑇

𝐼Γ
𝐵
(𝑖)𝑇

𝐼Γ
𝐴
(𝑖)

ΓΓ





u
(𝑖)

𝐼

𝑝
(𝑖)

𝐼

u
(𝑖)

Γ



=



0

0

𝑆
(𝑖)

Γ
u
(𝑖)

Γ


. ˘10¯

We call ˘6¯ the primal approach. To formulate the preconditioners of ˘6¯ and in‚

troduce the domain decomposition algorithms using the dual approach, we introduce

a partially sub‚assembled interface velocity space

W̃Γ = WΠ

⊕
WΔ = WΠ

⊕ (
𝑁⊕

𝑖=1

W
(𝑖)

Δ

)
.

Here, WΠ is the continuous coarse level velocity space, whose elements are shared

by neighboring subdomains. The complimentary space WΔ is the direct sum of

subdomain remaining interface velocity spaces W
(𝑖)

Δ
, whose elements vanish at the

primal degrees of freedom. In general the functions wΔ in WΔ are not continuous

across the subdomain interface Γ and we need to introduce Lagrange multipliers

to enforce their continuity. We construct a boolean matrix 𝐽Δ such that 𝐽ΔwΔ = 0

implies the continuity of wΔ cross subdomain interface, see [8, 9] for details. We

choose 𝐽Δ to have full row rank and denote the range of 𝐽Δ applied on WΔ by Λ.

The original fully assembled linear system ˘2¯ is equivalent toȷ find

(u𝐼 , 𝑝𝐼 , uΔ, uΠ , 𝑝Γ, 𝜆) ∈ W𝐼

⊕
𝑄𝐼

⊕
WΔ

⊕
WΠ

⊕
𝑄Γ

⊕
Λ, such that



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼
𝐴𝐼Δ 𝐴𝐼Π 𝐵𝑇

Γ𝐼
0

𝐵𝐼 𝐼 0 𝐵𝐼Δ 𝐵𝐼Π 0 0

𝐴Δ𝐼 𝐵
𝑇
𝐼Δ
𝐴ΔΔ 𝐴ΔΠ 𝐵𝑇

ΓΔ
𝐽𝑇
Δ

𝐴Π𝐼 𝐵
𝑇
𝐼Π
𝐴ΠΔ 𝐴ΠΠ 𝐵𝑇

ΓΠ
0

𝐵Γ𝐼 0 𝐵ΓΔ 𝐵ΓΠ 0 0

0 0 𝐽Δ 0 0 0





u𝐼

𝑝𝐼

uΔ

uΠ

𝑝Γ

𝜆



=



f𝐼

𝑔𝐼

fΔ

fΠ

𝑔Γ

0



, ˘11¯
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which can be reduced to

𝐺

[
𝑝Γ

𝜆

]
= 𝑔𝑔, ˘12¯

where

𝐺 = 𝐵𝐶𝐴
−1𝐵𝑇

𝐶 , 𝑔𝑔 = 𝐵𝐶𝐴
−1 𝑓 −

[
𝑔Γ

0

]
, ˘13¯

𝐴 =



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼
𝐴𝐼Δ 𝐴𝐼Π

𝐵𝐼 𝐼 0 𝐵𝐼Δ 𝐵𝐼Π

𝐴Δ𝐼 𝐵
𝑇
𝐼Δ
𝐴ΔΔ 𝐴ΔΠ

𝐴Π𝐼 𝐵
𝑇
𝐼Π
𝐴ΠΔ 𝐴ΠΠ



, 𝐵𝐶 =

[
𝐵Γ𝐼 0 𝐵ΓΔ 𝐵ΓΠ

0 0 𝐽Δ 0

]
, 𝑓 =



f𝐼

0

fΔ

fΠ



. ˘14¯

Since ˘12¯ is a system related to the Lagrange multipliers 𝜆, we call it the dual

approach.

4 Positive definite formulations

We have reduced the original saddle point problem into two systemsȷ the primal

system ˘6¯ and the dual system ˘12¯. Even though none of them is positive definite,

they can be reduced to positive definite problems in certain special subspaces.

4.1 The primal system (6)

For a general pressure space 𝑄, it is not easy to formalate the Schur complement

system ˘6¯ as a positive definition system. However, when𝑄 is a discontinuous finite

element space, one can decompose 𝑄 properly and make ˘6¯ positive definite in a

special subspace.

When 𝑝 is discontinuous, subdomains do not share any pressure degrees of

freedom on the subdomain boundary. We can take 𝑄Γ as the subspace of 𝑄 with

constant values 𝑝
(𝑖)

0
, which is the average of the pressure in the subdomain Ω𝑖 and

satisfy
∑𝑁

𝑖=1 𝑝
(𝑖)

0
𝑚 (Ω𝑖) = 0, where 𝑚 (Ω𝑖) is the measure of the subdomain Ω𝑖 . The

elements of 𝑄
(𝑖)

𝐼
are the restrictions of the pressure variables to Ω𝑖 which satisfy∫

Ω𝑖

𝑝
(𝑖)

𝐼
= 0. Since 𝑝Γ is a constant pressure on each subdomain, 𝐵Γ𝐼 = 0. Using this

fact in ˘8¯ and ˘9¯, we have 𝐶ΓΓ = 0 and 𝑇ΓΓ = 𝐵ΓΓ and therefore the system ˘6¯ can

be simplified as [
𝑆Γ 𝐵𝑇

ΓΓ

𝐵ΓΓ 0

] [
uΓ

𝑝Γ

]
=

[
f𝑠

𝑔𝑠

]
. ˘15¯

For the applications with 𝑔𝑠 ≠ 0, one can find a special u
∗
Γ

such that 𝐵ΓΓ

(
uΓ − u

∗
Γ

)
=

0, see [25, Section 4.8] for details. From now on we assume 𝑔𝑠 = 0.
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The system matrix of ˘6¯ is positive definite in the space with 𝐵ΓΓuΓ = 0. Since

𝑝Γ contains pressure variables which are constant in each subdomain, to make

𝐵ΓΓuΓ = 0, we only need require
∫
𝜕Ω𝑖

u
(𝑖)

Γ
· n = 0, where n is the normal direction

to 𝜕Ω𝑖 .

We still need to construct a preconditioner to solve ˘6¯. Let 𝑅
(𝑖)

Γ map W̃Γ to

W
(i)

𝚫

⊕
W

(i)

𝚷
and 𝑅Γ is a direct sum of 𝑅

(𝑖)

Γ . We can define

𝑆Γ = 𝑅
𝑇

Γdiag
(
𝑆
(1)

Γ
, · · · , 𝑆

(𝑁 )

Γ

)
𝑅Γ .

𝐵ΓΓ is defined on W̃Γ and is assembled from 𝐵
(𝑖)

ΓΓ
given in ˘5¯. The BDDC precon‚

ditioned system of ˘6¯ can be written as

𝑀−1
𝐵 𝑆

[
uΓ

𝑝Γ

]
= 𝑀−1

𝐵

[
f𝑠

𝑔𝑠

]
, ˘16¯

where 𝑀−1
𝐵

=

[
𝑅𝐷,Γ 0

0 𝐼

]𝑇 [
𝑆Γ 𝐵𝑇

ΓΓ

𝐵ΓΓ 0

]−1 [
𝑅𝐷,Γ 0

0 𝐼

]
, 𝑆 =

[
𝑆Γ 𝐵𝑇

ΓΓ

𝐵ΓΓ 0

]
, 𝑅Γ maps W𝚪 to

W̃Γ and 𝑅𝐷,Γ is scaled operator obtained from 𝑅Γ with the scaling 𝐷. The matrix

𝐷 should provide a partition of unityȷ

𝑅𝑇
𝐷Γ
𝑅Γ = 𝑅𝑇

Γ
𝑅𝐷Γ = 𝐼 .

See [5, 19, 18] for more details about the construction of the BDDC preconditioners.

See [33, 34, 20, 31] for different scaling options.

We define two subspaces of W𝚪 and W̃Γ, respectively, as

WΓ,𝐵 = {uΓ ∈ WΓ | 𝐵ΓΓuΓ = 0}, W̃Γ,𝐵 = {uΓ ∈ W̃Γ | 𝐵ΓΓuΓ = 0}.

They are called benign subspaces.

It is easy to see that the BDDC preconditioned system ˘16¯ is positive definite in

the benign subspace WΓ,𝐵. In order to use the conjugate gradient method ˘CG¯ to

solve ˘16¯, we need to ensure all CG iterates in WΓ,𝐵 with any initial guess in WΓ,𝐵.

We can choose a proper WΠ such that

∫

𝜕Ω𝑖

w
(𝑖)

Δ
· n = 0 ˘17¯

is satisfied for all w
(𝑖)

Δ
∈ W

(𝑖)

Δ
. By [18, Lemma 6.2], all CG iterates will stay in WΓ,𝐵

if the initial initial guess lies in WΓ,𝐵.

The choice of WΠ to satisfy ˘17¯ depends on the original problem ˘1¯ and the

finite element spaces W, namely the discretization methods. See [18, Section 7] for

incompressible Stokes problems; [29] for Stokes with the weak Galerkin discretiza‚

tion and [30] for the hybridizable discontinuous Galerkin discretizations; [24, 34]

for Darcy problem.
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4.2 The dual system (12)

Similar to ˘6¯, ˘12¯ can be positive definite in a special subspace.

If 𝐴, defined in ˘14¯, is nonsingular, by the Sylvester law of inertia, we know that

𝐺 is symmetric positive semi‚definite. Let 1𝑣 denote the constant vector 1 which has

the same dimension as 𝑣 and 𝐽Δ,𝐷 is obtained by scaling 𝐽Δ with the scaling matrix

𝐷. The null space of 𝐺 is given by

(
1𝑝Γ , −𝐽Δ,𝐷 [𝐵𝑇

𝐼Δ
𝐵𝑇
ΓΔ
]

[
1𝑝𝐼

1𝑝Γ

] )
.

Let 𝑋 = 𝑄Γ

⊕
Λ and 𝐼𝑚(𝐺) be the range space of 𝐺, which is a subspace of 𝑋 .

𝐼𝑚(𝐺) is orthogonal to the null space of 𝐺 and can be written as

𝐼𝑚(𝐺) =

{[
𝑔𝑝Γ

𝑔𝜆

]
∈ 𝑋 : 𝑔𝑇𝑝Γ1𝑝Γ − 𝑔

𝑇
𝜆

(
𝐽Δ,𝐷 [𝐵𝑇

𝐼Δ 𝐵𝑇
ΓΔ
]

[
1𝑝𝐼

1𝑝Γ

] )
= 0

}
. ˘18¯

The restriction of 𝐺 to its range space 𝐼𝑚(𝐺) is positive definite. By [27], we know

𝑔𝑔, defined in ˘13¯, belongs to 𝐼𝑚(𝐺). All CG iterates will be in 𝐼𝑚(𝐺) if the CG

method is used to solve ˘12¯ with zero initial guess.

Block preconditioners, proposed in [17, 27, 28], are used to solve ˘12¯. The

preconditioned system can be written as

𝑀−1
𝐹 𝐺

[
𝑝Γ

𝜆

]
= 𝑀−1

𝐹 𝑔𝑔, 𝑀−1
𝐹 =

[
𝑀−1

𝑝

𝑀−1
𝜆

]
. ˘19¯

𝑀−1
𝑝 =

1
ℎ𝑛 𝐼𝑝Γ for the Stokes problem and 𝑀−1

𝜆
can be either lumped or Dirichlet

preconditioners for 𝜆. [32] defines 𝑀−1
𝑝 to be a BDDC preconditioner for isogeomet‚

ric discretization for almost incompressible elasticity and deluxe scaling is used. All

these additional techniques ensure the algorithms robust in the presence of discontin‚

uous material parameters, which is not considered for the algorithms in [17, 27, 28]

for the Stokes problem. In [34], deluxe scaling and local generalized eigenvalue

problems are also used to further enhance the performance of algorithms for ˘16¯.

However, some special designs of these techniques are needed to make sure these

additional primal variables lie in the benign subspace.

We note that for ˘12¯, we do not require that the pressure be discontinuous for

the positive definite formulation. Moreover, we do not need to choose proper primal

space WΠ to ensure the CG iterates in the subspace. The choices of WΠ for ˘12¯ only

ensure the nice bound for the condition number of the preconditioned operator. This

fact makes the algorithms much simpler, especially for three dimensional problems.

However, we do need to define a subspace 𝑉0 for the convergence analysis only,

which plays a similar role as the benign subspaces. Let 𝑉 = W𝐼

⊕
𝑄𝐼

⊕
W̃Γ and

its subspace
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𝑉0 =

{
𝑣 = (w𝐼 , 𝑝𝐼 , wΔ, wΠ) ∈ 𝑉

�� 𝐵𝐼 𝐼w𝐼 + 𝐵𝐼ΔwΔ + 𝐵𝐼ΠwΠ = 0
}
. ˘20¯

For any 𝑣 ∈ 𝑉0, ⟨·, ·⟩
𝐴

defines a semi‚inner product on 𝑉0, see [28] for details.

5 Condition number estimates

Since both ˘16¯ and ˘19¯ are symmetric positive definite in the special subspaces,

we can use the CG methods to solve them. For the convergence analysis of the CG

methods, we only need to bound the maximum and minimum eigenvalues of the

preconditioned operators. Here we only outline the analyses, see, for example, [18]

and [28] for details.

We first define two useful operators 𝐸𝐷 and 𝑃𝐷 . Different from the 𝐸𝐷 and

𝑃𝐷 defined for elliptic problems in [19], our 𝐸𝐷 and 𝑃𝐷 are defined on different

subspaces. The matrix 𝑆 in ˘16¯ are defined with 𝑆Γ and 𝐵ΓΓ, which is for the

variables uΓ and 𝑝Γ. The matrix 𝐺 in ˘19¯ are defined with 𝐴, which is for the

variables u𝐼 , 𝑝𝐼 , and uΓ.

𝐸𝐷 is an averaging operator, defined by

𝐸𝐷 = 𝑅𝑅𝑇
𝐷 =

[
𝑅Γ

𝐼

] [
𝑅𝑇
𝐷,Γ

𝐼

]
.

It maps W̃Γ×𝑄Γ to itself and computes a weighted average for the velocity across the

subdomain interface Γ, and then distributes the average back to the original degree

of freedoms on the interfaces while keeping the pressure variables unchanged.

Similarly, 𝑃𝐷 is a jump operator, which maps 𝑉 to itself. Here we only define the

jump operator related to solving a Dirichlet problem on each subdomain. For any

given 𝑣 = (w𝐼 , 𝑝𝐼 , wΔ, wΠ) ∈ 𝑉 , 𝑃𝐷𝑣 = (u𝐼 , 0, uΔ, 0) ∈ 𝑉 , where each u
(𝑖)

𝐼
is

the harmonic extension, with given subdomain boundary velocity u
(𝑖)

Δ
= 𝐽

(𝑖)𝑇

Δ,𝐷
𝐽ΔwΔ

and u
(𝑖)

Π
= 0 . Here 𝐽

(𝑖)𝑇

Δ,𝐷
represents restriction of 𝐽𝑇

Δ,𝐷
on subdomain Ω𝑖 and is a

map from Λ to W
(𝑖)

Δ
.

We assume that the interface averaging operator 𝐸𝐷 and the jump operator 𝑃𝐷

satisfy the following boundsȷ

|𝐸𝐷w|2
𝑆
≤ 𝐶𝐸𝐷 (𝐻, ℎ) |w|2

𝑆
, ∀ w = (uΓ, 𝑞0) ∈ W̃Γ, 𝐵 ×𝑄Γ, ˘21¯

and

|𝑃𝐷𝑣 |
2

𝐴
≤ 𝐶𝑃𝐷 (𝐻, ℎ) |𝑣 |2

𝐴
, ∀ 𝑣 ∈ 𝑉0, ˘22¯

where𝐶𝐸𝐷 (𝐻, ℎ) and𝐶𝑃𝐷 (𝐻, ℎ) are positive constants dependent on the subdomain

size 𝐻 and mesh size ℎ.

Theorem 1 For any w = (uΓ, 𝑝Γ) ∈ WΓ,𝐵 ×𝑄Γ,
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⟨w, w⟩𝑆 ≤
〈
w, 𝑀−1

𝐵 𝑆w
〉
𝑆
≤ 𝐶𝐸𝐷 ⟨w, w⟩𝑆 ,

where 𝐶𝐸𝐷 (𝐻, ℎ) is the bound of the average operator, given in (21).

Theorem 2 For any 𝑥 in the range of 𝑀−1
𝐹
𝐺,

𝑐(𝛽) ⟨𝑀𝐹𝑥, 𝑥⟩ ≤ ⟨𝐺𝑥, 𝑥⟩ ≤ (𝐶𝐶𝑃𝐷 (𝐻, ℎ)) ⟨𝑀𝐹𝑥, 𝑥⟩ ,

where 𝑐(𝛽) is a function of the inf-sup constan 𝛽, defined in (3), 𝐶 is a positive

constant, and 𝐶𝑃𝐷 is the bound of the jump operator, given in (22).

6 Connections and differences

One of the big advantages of using ˘19¯ is that the formulation can be applied to

both continuous and discontinuous pressure discretizations. The algorithms can be

applied to the problems discretized with widely used Taylor‚Hood finite elements

and isogeometric discretizations. Moreover, since the formulation does not put any

constraints on velocity variable u for its positive definite formulation, we can relax

the divergence free constraints defined in ˘17¯, which can be quite complicated to be

enforced, see [18, Section 7]. The coarse problem resulting from ˘19¯ can be positive

definite, which can be the same as those for simple elliptic problems.

Both ˘16¯ and ˘19¯ can be applied to discontinuous pressures. When 𝑄 is discon‚

tinuous, there are two choices of 𝑝Γ in ˘19¯, as discussed in details in [27]. When 𝑝Γ
is taken as an empty set, ˘19¯ become a system for the Lagrange multiplier 𝜆 only. If

the Stokes extension is used in the jump operator 𝑃𝐷 instead of harmonic extension,

the divergence free condition will be required and it has been proved in [18, Theorem

8.1] that both ˘16¯ and ˘19¯ have the same nonzero eigenvalues with the possible

exception of 1. However, the Stokes extension and divergence free condition are not

necessary for ˘19¯. Harmonic extension will make the algorithms more efficient.

From the analysis point of view, if ˘16¯ can be applied, the minimal eigenvalues

of the preconditioned operator is always 1 as stated in Theorem 1. One only needs to

estimate the bound𝐶𝐸𝐷 of the average operator 𝐸𝐷 , defined in ˘21¯. For the analysis

of ˘19¯, one needs to estimate the bound 𝐶𝑃𝐷 of the jump operator 𝑃𝐷 , defined in

˘22¯, which is similar to the estimate of 𝐸𝐷 . Moreover, the lower bound in Theorem

2 has to be established, which is not as easy as for ˘16¯.

There are many discretizations with discontinuous pressure spaces such as the

family of discontinuous Galerkin methods. ˘16¯ has been applied in [29, 30] for some

of these discretizations, where the primal constraints, required by the bound of 𝐸𝐷 ,

also ensure the divergence free conditions, which makes the algorithms simpler than

those with standard finite element discretizations, especially in three dimensions.

The difficulty for those applications is to estimate the bound for the average operator

𝐸𝐷 , where properties of the discretizations have to be explored carefully.
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