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1 Introduction

Domain decomposition methods have been applied extensively for the saddle point
problems arising from the mixed finite element discretizations. Overlapping methods
are studied by many researchers such as [15, 6, 7, 4, 3, 1]. Some of these algorithms
can be applied for both continuous and discontinuous pressure discretizations, how-
ever, the convergence analyses are available only for the methods with discontinuous
pressure, to the best of our knowledge.

Most nonoverlapping domain decomposition methods are based on the benign
subspace idea which is successfully used by [21] for the Stokes problem, followed
by [10, 16, 18, 24, 26, 11, 22, 14, 12] for different nonoverlapping domain de-
composition algorithms and different saddle point problems. In this approach, the
original saddle point problems can be reduced to positive definite problems in the
benign subspace with subdomain interface velocity and constant subdomain pressure
variables. Therefore a conjugate gradient method (CG) can be used to accelerate the
convergence. Most above-mentioned applications and analyses require discontinuous
pressures to be used in the discretization. Several domain decomposition algorithms
allow the use of continuous pressures such as [23, 2, 13], but the convergence rate
analyses of those approaches are not available. [17, 27, 28] have proposed and
analyzed a FETI-DP algorithm for solving incompressible Stokes equation, which
allowed the use of both discontinuous and continuous pressures in the discretization.
There, the Lagrange multipliers are introduced to enforce the continuity of the veloc-
ity variables across the subdomain interface. Recently, this FETI-DP algorithm has
been applied to almost incompressible elasticity with isogeometric discretization by
[32].
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In this paper, we show for both BDDC and FETI-DP algorithms how the original
saddle point problems can be reduced to positive definite problems using either
primal or dual variable approaches, outline their analyses, and make the connections
between these two approaches.

The rest of this paper is organized as follows. The saddle problems are described
in Section 2. In Section 3, the domain decomposition is introduced and the original
system is reduced to Schur complements or a system of the Lagrange multiples
and pressure. The positive definite formulations are discussed in Section 4 and the
condition number estimates are outlined in Section 5. Finally, we summarize some
differences and connections of these two methods in Section 6.

2 Problem setting

We consider the following saddle point problem: find u;, € W and p;, € Q, such
that,
{a(uh,Vh) +b(Vi,pn) = (Bn, Vi), Y v €W, 0
b(up, qn) = (gn-qn)> ¥ qn € 0,

where W and Q are finite element spaces. The continuous bilinear forms a(uy,, vj,)
and b(uy,, g5,) can come from the variational formulation of the Stokes equation or the
Darcy problem. We call uy, velocity variables and pj, pressure variable, respectively.
The system (1) can be written as
HE
4

Here A is symmetric positive definite but B is rank deficient. Ker(BT), the kernel of
BT, includes all constant pressures in Q. Im(B), the range of B, includes all vectors
in Q with zero average. We note that Im(B) is orthogonal to Ker(BT). Under the
assumption that g € Im(B), i.e., g has zero average, the solution of (2) is uniquely
determined if the pressure is restricted to the quotient space Q/Ker(BT).

We assume that W and Q are inf-sup stable: there exists a positive constant £,
independent of &, such that

A BT
B 0

f
g]. )

Bw)?
sup LI > .20y, Vg 0fKer (8D, 3

where Z is the so called mass matrix on Q, i.e., ||q||i2 ={q,2q),VYq € Q.
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3 Domain decomposition

We decompose the domain Q into N nonoverlapping polygonal/polyhedral subdo-
mains Q;,7 = 1,2, ..., N. We assume that each subdomain is a union of a bounded
number of elements, with typical diameter of H. The subdomain interface nodes
I' = (UOQ;)\0Q. T includes the subdomain faces, which are open sets and shared
by two subdomains, the subdomain edges, which are open sets and shared by more
than two subdomains; and the subdomain vertices, which are end points of edges.
Denote the subdomain interior velocity spaces by W;” and subdomain interior
pressure spaces by Q;'), respectively. The subdomain boundary velocity space is
denoted by Wr, which is shared by neighboring subdomains, while Qr contains
the subdomain boundary pressure degrees of freedom shared by neighboring subdo-

mains. Let
w =Ppw’. o=Po.
i=1 i=1

We decompose the velocity and pressure finite element spaces W and Q into the
subdomain interior and interface subspaces,

w=w,Pwr. o=0,Por.

respectively, and write (2) as

A[[ B;I A]r B;I uy f]
Bip 0 Bir O ||pr|_|é&r @)
A}"F B;F Arr BIZF ur fr ’

Br; 0 Brr 0 ||pr &r

which can be assembled from the subdomain problems, defined as below

@ pOT 4@ pHOT (©)] (@)
Al B A Bry “{i) fl(i)

(@) (1)
B, 0 By 0 p{_ = g{_ ®))
A(i)T B(i)T A(l) B(i)T u i) f 0

I(I;) r Ef)‘ IT 1(1) 1;1)
Bry 0 B O Jlpr 8r

We note that the blocks corresponding to u; and p; in (4) can be arranged in
subdomain wise. As long as pr contains at least one pressure variables from each
subdomain, we can eliminate uy and pj by solving independent subdomain problems
and obtain the following global Schur complement system
L)
pr 8s

Trr —Crr

where



92 Jing Li and Xuemin Tu

A BT 17 A
Sr = Arr - [Ar; Bl BZ 61] [B;;] , )
-1
_ Aqr BITI BIZI
Crr = [Br7 0] [B” 0 Ak (8)
A BT 7' A
Trr = Brr — [Bry 0] [BZ 61] [B;;] , &)

and
| _[fr]_ AT BI.| [ A B,
8s &r Br; 0O B 0

o)

We note that St can be assembled from the local subdomain Schur complements
Sl(f) defined from (5) as:

W) pOT 4O ][y

A e Y T

By 0 Bi-||p, |= N (10)
AT gOT A6 ||y | | sPu?

m P Arrl LT ror

We call (6) the primal approach. To formulate the preconditioners of (6) and in-
troduce the domain decomposition algorithms using the dual approach, we introduce
a partially sub-assembled interface velocity space

szwn@wﬁwn@(é]}wg)).

i=1

Here, Wy is the continuous coarse level velocity space, whose elements are shared
by neighboring subdomains. The complimentary space W, is the direct sum of
subdomain remaining interface velocity spaces W(i), whose elements vanish at the
primal degrees of freedom. In general the functions wp in W, are not continuous
across the subdomain interface I" and we need to introduce Lagrange multipliers
to enforce their continuity. We construct a boolean matrix Jp such that Jawy = 0
implies the continuity of w, cross subdomain interface, see [8, 9] for details. We
choose J to have full row rank and denote the range of J applied on Wy by A.

The original fully assembled linear system (2) is equivalent to: find
(ll[, pr, Ua, U, pr, /l) e W; @ [0 @ Wy @ Wn @ Or @ A, such that

[ A BY, Ajp Amm BE, 0 | [w ] [fr]
Brr 0 Bia Bm 0 0 || pr 81

AAI B;A AAA AAH BITA JZ Uua _ fA (11)
A]‘u BT]’I A]‘[A Ar[r[ B17:11 0 um fn ’

Bri 0 BraBrm 0 O [|pr gr
0 0 Jx 0 0 0f[a] [o]
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which can be reduced to

pr
G 1 = 8g» (12)
where
=1 pT 1 8r

G:BCA BCa gg:BCA f_ lo ls (13)

A BT Aja Am f;

~ | By 0 Bia Bm Bry 0 Bra Brn 0
A= - , Bc= , f= . (14

Ang Bl Ana Ann f

Since (12) is a system related to the Lagrange multipliers A, we call it the dual
approach.

4 Positive definite formulations

We have reduced the original saddle point problem into two systems: the primal
system (6) and the dual system (12). Even though none of them is positive definite,
they can be reduced to positive definite problems in certain special subspaces.

4.1 The primal system (6)

For a general pressure space Q, it is not easy to formalate the Schur complement
system (6) as a positive definition system. However, when Q is a discontinuous finite
element space, one can decompose Q properly and make (6) positive definite in a
special subspace.

When p is discontinuous, subdomains do not share any pressure degrees of
freedom on the subdomain boundary. We can take Qr as the subspace of Q with
constant values p(i) which is the average of the pressure in the subdomain €; and

0>
satisfy Zf.\i ! p(()’)m (Q;) =0, where m (Q;) is the measure of the subdomain ;. The

elements of Q;i) are the restrictions of the pressure variables to €; which satisfy

o, pgi) = 0. Since pr is a constant pressure on each subdomain, Bry = 0. Using this

fact in (8) and (9), we have Crr = 0 and Ty = Brr and therefore the system (6) can

be simplified as
ur f,
[pf ] [g s } (1

For the applications with g # 0, one can find a special u. such that Brr (ur — ul*_) =
0, see [25, Section 4.8] for details. From now on we assume g5 = 0.

Sr Blzr
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The system matrix of (6) is positive definite in the space with Brrur = 0. Since
pr contains pressure variables which are constant in each subdomain, to make
Brrur = 0, we only need require /aﬂi ug ) .n= 0, where n is the normal direction
to 0Q;. _

We still need to construct a preconditioner to solve (6). Let Fl(f ) map Wr to

Wg) P Wg) and Ry is a direct sum of E(Fl). We can define

Sr = Rrdiag (s, -, s™) Rr.

Brr is defined on Wr and is assembled from B(F’% given in (5). The BDDC precon-

ditioned system of (6) can be written as

f
Mz's ur}:M‘l[ S], 16
B |:pF B 8s ( )
Rpr 01" [ Sr Bl [Rpr 0 Sr BL
-1 _ |&fDT 20 Prr D¢ - r Prr| g
whereMB _[ 0 7 [Brr 0] 0 I]’S [Brr 0 ],erapsWrto

W and ﬁD,r is scaled operator obtained from Rr with the scaling D. The matrix
D should provide a partition of unity:

RT R = Rl Rpr = 1.

See [5, 19, 18] for more details about the construction of the BDDC preconditioners.
See [33, 34, 20, 31] for different scalinggptions.
We define two subspaces of Wr and Wr, respectively, as

Wrp = {ur € Wr | Brrur =0}, Wr = {ur € Wr | Brrur = 0}.

They are called benign subspaces.

It is easy to see that the BDDC preconditioned system (16) is positive definite in
the benign subspace Wr_g. In order to use the conjugate gradient method (CG) to
solve (16), we need to ensure all CG iterates in Wr_g with any initial guess in Wr p.

We can choose a proper Wy such that

/ w =0 (17)
80,

is satisfied for all W(A’) € W(A’). By [18, Lemma 6.2], all CG iterates will stay in Wr g
if the initial initial guess lies in Wr g.

The choice of Wy to satisfy (17) depends on the original problem (1) and the
finite element spaces W, namely the discretization methods. See [18, Section 7] for
incompressible Stokes problems; [29] for Stokes with the weak Galerkin discretiza-
tion and [30] for the hybridizable discontinuous Galerkin discretizations; [24, 34]
for Darcy problem.
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4.2 The dual system (12)

Similar to (6), (12) can be positive definite in a special subspace.

If A, defined in (14), is nonsingular, by the Sylvester law of inertia, we know that
G is symmetric positive semi-definite. Let 1,, denote the constant vector 1 which has
the same dimension as v and Ja_p is obtained by scaling Jo with the scaling matrix
D. The null space of G is given by

1
(lpw _JA’D[B?A Ble [12;] ) :

Let X = Qr €D A and Im(G) be the range space of G, which is a subspace of X.
Im(G) is orthogonal to the null space of G and can be written as
) = 0} . (18)

Im(G) = {lgg”;

The restriction of G to its range space Im(G) is positive definite. By [27], we know
8g» defined in (13), belongs to Im(G). All CG iterates will be in Im(G) if the CG
method is used to solve (12) with zero initial guess.

Block preconditioners, proposed in [17, 27, 28], are used to solve (12). The
preconditioned system can be written as

1
€X: gﬁrll)r - g/{ (-]A,D [BTA BIZA] [1p1

pr

pr _ _ M3}
- Milg, M :l p

M:'G (19)

My l
M;l = hl,,l pr for the Stokes problem and M;l can be either lumped or Dirichlet
preconditioners for A. [32] defines M;l to be a BDDC preconditioner for isogeomet-
ric discretization for almost incompressible elasticity and deluxe scaling is used. All
these additional techniques ensure the algorithms robust in the presence of discontin-
uous material parameters, which is not considered for the algorithms in [17, 27, 28]
for the Stokes problem. In [34], deluxe scaling and local generalized eigenvalue
problems are also used to further enhance the performance of algorithms for (16).
However, some special designs of these techniques are needed to make sure these
additional primal variables lie in the benign subspace.

We note that for (12), we do not require that the pressure be discontinuous for
the positive definite formulation. Moreover, we do not need to choose proper primal
space Wiy to ensure the CG iterates in the subspace. The choices of Wy for (12) only
ensure the nice bound for the condition number of the preconditioned operator. This
fact makes the algorithms much simpler, especially for three dimensional problems.

However, we do need to define a subspace V, for the convergence analysis only,
which plays a similar role as the benign subspaces. Let V = W; @ Q; € Wr and
its subspace
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Vo = {V = (W1, pr, Wa, W) € V| BiyWi + BjaWa + Binwi = 0} : (20)

Forany v € VO, ¢,4) Y defines a semi-inner product on \70, see [28] for details.

5 Condition number estimates

Since both (16) and (19) are symmetric positive definite in the special subspaces,
we can use the CG methods to solve them. For the convergence analysis of the CG
methods, we only need to bound the maximum and minimum eigenvalues of the
preconditioned operators. Here we only outline the analyses, see, for example, [18]
and [28] for details.

We first define two useful operators Ep and Pp. Different from the Ep and
Pp defined for elliptic problems in [19], our Ep and Pp are defined on different
subspaces. The matrix S in (16) are defined with Sr and Brr, which is for the
variables ur and pr. The matrix G in (19) are defined with A, which is for the
variables uy, py, and ur.

Ep is an averaging operator, defined by

_ Y ST
£o =R = |0 [ o |

It maps W xQr toitself and computes a weighted average for the velocity across the
subdomain interface I, and then distributes the average back to the original degree
of freedoms on the interfaces while keeping the pressure variables unchanged.
Similarly, Pp is a jump operator, which maps V to itself. Here we only define the
jump operator related to solving a Dirichlet problem on each subdomain. For any
given v = (Wy, py, Wa, Wyp) € V, Ppv = (uz, 0, up, 0) € V, where each u(l)
the harmonic extension, with given subdomain boundary velocity u(l) AN (‘) pJAWA
and u(’) =0 . Here J! )D represents restriction of JAT p on subdomain €; and is a

map from A to W(l)

We assume that the interface averaging operator Ep and the jump operator Pp
satisfy the following bounds:

|EDW|§~ < Cegp(H, h)|W|§~, v w = (ur, go) € Wr, g X Or, (21)

and _
PpvIE < Crp(H h)IVIL, VveW, (22)

where Cgp (H, h) and Cpp (H, h) are positive constants dependent on the subdomain
size H and mesh size h.

Theorem 1 For any w = (ur, pr) € Wr.g X Or,
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(W, w)g < <w, Ml}lSw>S < Cgp (W, W)g,

where Cgp (H, h) is the bound of the average operator, given in (21).
Theorem 2 For any x in the range ofMglG,
c(B) (Mpx,x) < (Gx,x) < (CCpp(H, h)) (Mpx,x),

where c¢(B) is a function of the inf-sup constan B, defined in (3), C is a positive
constant, and Cpp is the bound of the jump operator, given in (22).

6 Connections and differences

One of the big advantages of using (19) is that the formulation can be applied to
both continuous and discontinuous pressure discretizations. The algorithms can be
applied to the problems discretized with widely used Taylor-Hood finite elements
and isogeometric discretizations. Moreover, since the formulation does not put any
constraints on velocity variable u for its positive definite formulation, we can relax
the divergence free constraints defined in (17), which can be quite complicated to be
enforced, see [18, Section 7]. The coarse problem resulting from (19) can be positive
definite, which can be the same as those for simple elliptic problems.

Both (16) and (19) can be applied to discontinuous pressures. When Q is discon-
tinuous, there are two choices of pr in (19), as discussed in details in [27]. When pr
is taken as an empty set, (19) become a system for the Lagrange multiplier A only. If
the Stokes extension is used in the jump operator Pp instead of harmonic extension,
the divergence free condition will be required and it has been proved in [18, Theorem
8.1] that both (16) and (19) have the same nonzero eigenvalues with the possible
exception of 1. However, the Stokes extension and divergence free condition are not
necessary for (19). Harmonic extension will make the algorithms more efficient.

From the analysis point of view, if (16) can be applied, the minimal eigenvalues
of the preconditioned operator is always 1 as stated in Theorem 1. One only needs to
estimate the bound Cgp of the average operator Ep, defined in (21). For the analysis
of (19), one needs to estimate the bound Cpp of the jump operator Pp, defined in
(22), which is similar to the estimate of Ep. Moreover, the lower bound in Theorem
2 has to be established, which is not as easy as for (16).

There are many discretizations with discontinuous pressure spaces such as the
family of discontinuous Galerkin methods. (16) has been applied in [29, 30] for some
of these discretizations, where the primal constraints, required by the bound of Ep,
also ensure the divergence free conditions, which makes the algorithms simpler than
those with standard finite element discretizations, especially in three dimensions.
The difficulty for those applications is to estimate the bound for the average operator
Ep, where properties of the discretizations have to be explored carefully.
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