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Abstract Space‚time domain decomposition approaches are showing promising

results in providing significant computational speedup by distributing computa‚

tional resources based on error estimation. This paper develops a robust approach

to improve the Newtonian convergence behavior by smoothing residuals during the

pre‚processing step. Our space‚time method for nonlinear problems uses geometrical

multigrid Newtonian continuation procedure to approach the true solution, for which

the linear prolongation of the unknowns generates high frequency residuals, that hin‚

ders the global convergence. The smoothing algorithm searches for subdomains with

high frequency residuals and solves a local problem with a fixed boundary condi‚

tions. By removing high frequency residuals before continuing the Newton method,

the iterations start quadratic convergence sooner and approaches the true solution

more efficiently.

1 Introduction

Complex multiphase flow and reactive transport in subsurface porous media is math‚

ematically modeled by systems of nonlinear equations. Due to significant nonlinear‚

ity, solving such systems with Newton’s method requires small time steps for stable

numerical convergence, resulting in significant computational load. Our space‚time

domain decomposition method addresses this difficulty by allowing different time

scales for different spatial subdomains of the system, thus distributing computing

resources according to load requirements.

Hanyu Li

Oden Institute for Computational Engineering and Sciences, 201 E 24th St, Austin, TX 78712,

e‚mailȷ lihanyu234@utexas.edu

Mary F. Wheeler

Oden Institute for Computational Engineering and Sciences, 201 E 24th St, Austin, TX 78712

e‚mailȷ mfw@oden.utexas.edu

101



102 Hanyu Li and Mary F. Wheeler

5000

500

50

5

1

0.5

High frequency residual after linear interpolation

3.5

2.5

1.5

0.5

-0.5

-1.5

-2.5

Log scale permeability

Fig. 1: High frequency residual after linear interpolation of multigrid method for rough coefficient

cases

Many space‚time domain decomposition approaches have been proposed in the

past. To mention a few works, such as [1, 8, 9], space‚time finite elements were intro‚

duced for elastodynamics with discontinuous Galerkin ˘DG¯ in time. The space‚time

method has also been applied to other systems such as reaction‚diffusion problems,

with different time discretization schemes [3, 10, 11, 12]. Regarding flow in porous

media, [7] focused on linear single phase flow and transport problems where flow

is naturally decoupled from advection‚diffusion transport. In [17] a space‚time ap‚

proach for nonlinear coupled multiphase flow and transport problems on a static

grid using an enhanced velocity method is formulated, a MFE variant [2, 18, 20],

where the continuity of fluxes at non‚matching space‚time interfaces was strongly

enforced.

Although space‚time domain decomposition methods can provide tremendous

computational speedup, initiating such system properly has always been a challenge,

especially for nonlinear problems with rough coefficients. The main issue is, for

subdomains with local time steps being solved in parallel, initiating all the local

time steps with the solution at the previous space‚time slab, which is similar to the

procedure in traditional time‚stepping schemes, frequently leads to non‚convergence.

In [13] a geometric multigrid type of approach was adopted, which starts solving

each space‚time slab with the coarsest resolution and sequentially refines the mesh

in certain subdomains to the finest resolution. After each refinement, the unknowns

on the finer mesh are generated by linear interpolation ˘prolongation¯ of the solution

on the coarse mesh and the Newton iteration continues. The sequential refinement

provides an initial guess of the unknowns close enough to the true solution to prevent

convergence failure. However, like all multigrid methods, the linear interpolation

causes high frequency residuals to appear sporadically throughout the entire domain,

especially for problems with rough coefficients. An example is shown in Fig.1.

Here a flow in subsurface porous media problem with channelized permeability as

coefficients is presented. The discontinuity of the permeability is clearly observed at

the channel boundary. On the right hand side, we demonstrate the initial residual of

a typical space‚time slab after the prolongation step. The high frequency residuals

colored in red appear sporadically throughout the system, typically on the channel

boundary. As the Newton’s method continues, the first few iterations focuses on

reducing such high frequency residuals while not much effort is devoted to the rest

of the system. Therefore, it is critical to remove these high frequency residuals before

continuing the Newton iteration, to harness the full potential of space‚time domain

decomposition.
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In this paper, we introduce a local residual minimization algorithm to improve

Newtonian convergence behavior of space‚time geometric multigrid method. In

Section 2, we present the model problem followed by the smoothing algorithm in

Section 3. Results from numerical experiment using the proposed algorithm are

discussed in Section 4. Summary of our findings follows in Section 5.

2 Flow model problem

We use miscible multiphase flow in porous media as the model problem due to

its extensive nonlinearity imposing significant numerical convergence challenges.

Since miscible flow involves multiple component coexisting in a single fluid phase,

therefore we need to write the governing equation of the model in component form.

A simplified version of such model is the black‚oil model widely accepted in the

petroleum engineering industry, which we use to demonstrate our numerical results.

To start off, assuming no dispersion, the conservation equation of a component

existing in a given fluid phase is stated as follow

𝜕

𝜕𝑡
(𝜑𝜌𝛼𝜉𝑐𝛼𝑠𝛼) + ∇ · (𝜉𝑐𝛼𝒖𝛼) = 𝑞𝑐𝛼 + 𝑟𝑐𝛼 . ˘1¯

Here, 𝜑 is the porosity. 𝜌𝛼, 𝑠𝛼 and 𝒖𝛼 are the density, saturation and velocity of

the fluid phase. 𝜉𝑐𝛼 is the fraction of component 𝑐 included in phase 𝛼, in either

mass or molar basis. 𝑞𝑐𝛼 is the source/sink and 𝑟𝑐𝛼 is the increase/decrease rate

of component 𝑐 in phase 𝛼 due to phase changes. The rate of phase change and

mass/molar fraction of component 𝑐 obeys the following constrain.

∑︁

𝛼

𝑟𝑐𝛼 = 0 , ˘2¯

∑︁

𝑐

𝜉𝑐𝛼 = 1, 𝜉𝑐𝛼 ≥ 0 . ˘3¯

We sum Eqn.˘1¯ over the total number of phases ˘𝑁𝑝¯ to acquire the component

mass conservation equation as

𝜕

𝜕𝑡

(
𝜑
∑︁

𝛼

𝜌𝛼𝜉𝑐𝛼𝑠𝛼

)
+ ∇ ·

(∑︁

𝛼

𝜉𝑐𝛼𝒖𝛼

)
=

∑︁

𝛼

𝑞𝑐𝛼 . ˘4¯

To simplify the notation, let us define the component concentration and flux in

a given phase by 𝑛𝑐𝛼 = 𝜌𝛼𝜉𝑐𝛼𝑠𝛼 and 𝒖𝑐𝛼 = 𝜉𝑐𝛼𝒖𝛼 while the total component

concentration as 𝑁𝑐 =
∑

𝛼 𝑛𝑐𝛼. Then we can rewrite Eqn.˘4¯ as

𝜕

𝜕𝑡

(
𝜑
∑︁

𝛼

𝑛𝑐𝛼

)
+ ∇ ·

(∑︁

𝛼

𝒖𝑐𝛼

)
=

∑︁

𝛼

𝑞𝑐𝛼 . ˘5¯
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The boundary and initial conditions are

𝒖𝛼 · 𝝂 = 0 𝑜𝑛 𝜕Ω × 𝐽 , ˘6¯

{
𝑝𝛼 = 𝑝0

𝛼

𝑁𝑐 = 𝑁0
𝑐

𝑎𝑡 Ω × {𝑡 = 0} , ˘7¯

where 𝐽 = (0, 𝑇] is the time domain of interest and Ω is the spatial domain. The

phase velocity is given by Darcy’s law as

𝒖𝛼 = −𝐾𝜌𝛼
𝑘𝑟 𝛼

𝜇𝛼
(∇𝑝𝛼 − 𝜌𝛼𝒈) , ˘8¯

in which 𝐾 is the absolute permeability while 𝑘𝑟 𝛼, 𝜇𝛼 and 𝑝𝛼 are relative perme‚

ability, viscosity and pressure for the given fluid phase. The relative permeability

and capillary pressure are functions of phase saturations.

In complex compositional simulations, the saturations are estimated by concen‚

trations after finding the equilibrium hydrocarbon component distribution. This pro‚

cedure is called flash vaporization calculation and readers can refer to [16] for details.

In this paper, we avoid such complexity and use the black‚oil model as the simplified

compositional model to further introduce our concept. The black‚oil model allows a

maximum number of three phases in the system, namely oleic, aqueous and gaseous.

The components contained within are water, hydrocarbon oil which mainly consists

of heavy non‚volatile molecules and hydrocarbon gas which mostly includes light

volatile molecules. Consequently the hydrocarbon gas can exist as either free gas

or dissolved gas in the oleic phase. This results in the following relations on the

component fractionsȷ

𝜉1𝑜 + 𝜉3𝑜 = 1, 𝜉2𝑜 = 0

𝜉1𝑤 = 0, 𝜉2𝑤 = 1, 𝜉3𝑤 = 0

𝜉1𝑔 = 0, 𝜉2𝑔 = 0, 𝜉3𝑔 = 1.

˘9¯

𝜉3𝑜 is commonly referred to as the solution gas‚oil ratio and is usually a function

of pressure, but it remains constant after the oleic phase reaches the bubble point

pressure. We remark that if the hydrocarbon oil component also contains some

medium weight molecules and thus is able to vaporize into the gaseous phase, then

we obtain the volatile oil model. The dissolved gas causes the oleic phase to swell thus

decreasing its density. Considering the hydrocarbon oil component itself is slightly

compressible, such swelling effect can be described by the following equationȷ

𝜌𝑜 = 𝜌𝑜,𝑠𝑡𝑑 · (𝑒−𝑐𝑜 𝑝𝑜 + 𝛽𝜉3𝑜)
−1 . ˘10¯

The aqueous and gaseous phase, which contain only water and the hydrocarbon gas

component, are slightly compressible and fully compressible, respectively. There‚

fore, the two phase densities are given as followȷ

𝜌𝑤 = 𝜌𝑤,𝑠𝑡𝑑 · 𝑒𝑐𝑤 𝑝𝑤 , ˘11¯
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𝜌𝑔 = 𝜌𝑔,𝑠𝑡𝑑 · 𝑐𝑔𝑝𝑔 . ˘12¯

Then saturations can be related to concentrations by





𝑠𝑜 =
𝑁1

𝜌𝑜 (1 − 𝜉3𝑜)

𝑠𝑤 =
𝑁2

𝜌𝑤

𝑠𝑔 =
1

𝜌𝑔

(
𝑁3 − 𝑁1

𝜉3𝑜

1 − 𝜉3𝑜

)
, ˘13¯

with the following constrain

∑︁

𝛼

𝑠𝛼 = 1, 𝑠𝛼 ≥ 0 . ˘14¯

Let𝑽 = 𝐻 (𝑑𝑖𝑣;Ω), 𝑊 = 𝐿2 (Ω) with𝑽ℎ and𝑊ℎ be the finite dimensional subspaces.

Let 𝐽𝑛 = (𝑡𝑛, 𝑡𝑛+1] be the nth partition of the time domain of interest. Then for each

space‚time slab 𝐽𝑛 ×Ω, we define velocity and pressure/saturation spaces as, for any

element 𝐸 = 𝐹𝐸 × 𝑇𝐸

𝑽𝑛
ℎ =

{
𝒗 ∈ 𝐿2

(
𝐽𝑛;𝐻 (𝑑𝑖𝑣;Ω)

)
: 𝒗(·, 𝒙)

���
𝐹𝐸

∈ 𝑽ℎ, 𝒗(𝑡, ·)

���
𝑇𝐸

=

𝑙∑︁

𝑎=1

𝒗𝑎𝑡
𝑎 & 𝒗𝑎 ∈ 𝑽ℎ

}
,

𝑊𝑛
ℎ =

{
𝑤 ∈ 𝐿2

(
𝐽𝑛; 𝐿2 (Ω)

)
: 𝑤(·, 𝒙)

���
𝐹𝐸

∈ 𝑊ℎ, 𝑤(𝑡, ·)

���
𝑇𝐸

=

𝑙∑︁

𝑎=1

𝑤𝑎𝑡
𝑎 & 𝑤𝑎 ∈ 𝑊ℎ

}
.

Functions in 𝑽𝑛
ℎ

and 𝑊𝑛
ℎ

along time dimension are represented by polynomials

with degrees up to 𝑙. We formulate the space‚time enhanced velocity variational

formulation asȷ find 𝒖𝑛
𝛼,ℎ
, �̃�𝑛

𝛼,ℎ
∈ 𝑽𝑛

ℎ
and 𝑝𝑛

𝛼,ℎ
, 𝑠𝑛

𝛼,ℎ
, 𝜉𝑛

𝑐𝛼,ℎ
∈ 𝑊𝑛

ℎ
such that

∫

𝐽𝑛

∫

Ω

𝜕𝑡

(
𝜑
∑︁

𝛼

𝑛𝑛𝑐𝛼,ℎ,𝜏

)
𝑤 +

∫

𝐽𝑛

∫

Ω

(
∇ ·

∑︁

𝛼

𝒖𝑛
𝑢𝑝,𝑐𝛼,ℎ

)
𝑤 ˘15¯

=

∫

𝐽𝑛

∫

Ω

(∑︁

𝛼

𝑞𝑐𝛼

)
𝑤 ∀𝑤 ∈ 𝑊𝑛

ℎ ,

∫

𝐽𝑛

∫

Ω

𝐾−1�̃�𝑛
𝛼,ℎ · 𝒗 =

∫

𝐽𝑛

∫

Ω

𝑝𝑛𝛼,ℎ∇ · 𝒗 ∀𝒗 ∈ 𝑽𝑛
ℎ , ˘16¯

∫

𝐽𝑛

∫

Ω

𝒖𝑛
𝛼,ℎ · 𝒗 =

∫

𝐽𝑛

∫

Ω

𝜆𝛼�̃�
𝑛
𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛

ℎ . ˘17¯

The phase mobility ratio in Eqn.˘17¯ is defined as

𝜆𝛼 = 𝜌𝛼
𝑘𝑟 𝛼

𝜇𝛼
, ˘18¯
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Fig. 2: Coarse and refined partition of subdomain 𝐼𝑖 × Ω𝑖 with boundary interpolation nodes ˘red

circles¯

and 𝒖𝑛
𝑢𝑝,𝛼,ℎ

, 𝒖𝑛
𝑢𝑝,𝑐𝛼,ℎ

are the upwind velocities calculated by

∫

𝐽𝑛

∫

Ω

𝒖𝑛
𝑢𝑝,𝛼,ℎ · 𝒗 =

∫

𝐽𝑛

∫

Ω

𝜆∗𝛼�̃�
𝑛
𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛

ℎ , ˘19¯

∫

𝐽𝑛

∫

Ω

𝒖𝑛
𝑢𝑝,𝑐𝛼,ℎ · 𝒗 =

∫

𝐽𝑛

∫

Ω

𝜉∗𝑐𝛼𝒖
𝑛
𝑢𝑝,𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛

ℎ . ˘20¯

The additional auxiliary phase fluxes �̃�𝑛
𝛼,ℎ

is used to avoid inverting zero phase

relative permeability [15]. Calculation of the upwind properties ˘𝜆∗𝛼, 𝜉
∗
𝑐𝛼¯ is done by

using saturations and component fractions from the grid cell on the upwind direction

of the pressure gradient. We choose pressure and saturations as primary unknowns

to solve. In case of phase disappearance, the solution gas‚oil ratio ˘𝜉3𝑜¯ needs to

replace gaseous phase saturation ˘𝑠𝑔¯ as the new primary unknown and vice versa.

3 Local residual minimization

Previous work regarding residual smoothing mainly involved linear problems with

rough coefficients. Such pre‚processing serves as a preconditioner for iterative linear

solvers, such as the conjugate gradient method, and reduces their iteration counts

significantly. In [19], an energy minimization method was introduced, which solves

for a coarse basis function that minimizes the energy functional on the fine grid.

However, direct application of such approach on nonlinear transport is problematic

since no energy functional can be constructed due to the degenerate coefficients.

Therefore we propose the local residual minimization approach.

Consider 𝐽𝑛 × Ω as an union of some non‚overlapping subdomains
{
𝐼𝑖 × Ω𝑖

}
,

namely 𝐽𝑛 ×Ω = ∪𝑖

(
𝐼𝑖 ×Ω𝑖

)
, where 𝐼𝑖 = (𝜏𝑖 , 𝜏𝑖+1] is a sub‚interval of 𝐽𝑛 = (𝑡𝑛, 𝑡𝑛+1]

and Ω𝑖 is a subdomain of Ω. Now let T𝑖,𝐻 be a coarse rectangular partition of 𝐼𝑖 ×Ω𝑖 ,

𝐸𝑚
𝑖,𝐻

= 𝑇𝑚
𝑖

× 𝐹𝑚
𝑖

be a space‚time element in such partition with 𝑇𝑚
𝑖

= (𝜏𝑚
𝑖,0
, 𝜏𝑚

𝑖,1
].

Consider T𝑖,𝐻 to be partially refined that results in a finer rectangular partition

T𝑖,ℎ with elements 𝐸𝑛
𝑖,ℎ

. We define the linear interpolation of a piecewise constant



Local Residual Minimization 107

function ˘pressure and saturation¯ in space‚time slab as 𝑓𝜁 . We then construct the

local problem as followȷ

∫

𝐸𝑚
𝑖,𝐻

∑︁

𝛼

(
𝜕𝑡

(
𝜑𝑛𝑛𝑐𝛼,ℎ,𝜏

)
+ ∇ · 𝒖𝑛

𝑢𝑝,𝑐𝛼,ℎ − 𝑞𝑐𝛼

)
𝑤 = 0 ˘21¯

∀𝐸𝑚
𝑖,𝐻 = ∪𝐸𝑛

𝑖,ℎ
⊊𝐸𝑚

𝑖,𝐻
𝐸𝑛
𝑖,ℎ ,

subject to {
𝑝𝛼 = 𝑝𝛼,𝜁

𝑠𝛼 = 𝑠𝛼,𝜁
𝑜𝑛 𝜕𝐸𝑚

𝑖,𝐻 . ˘22¯

Fig.2 demonstrates the two partitions and the boundary interpolation nodes necessary

for solving the local system. The boundary nodes appear on the top of the time level

due to the discontinuous Galerkin of order zero discretization scheme.

If the interpolated pressure and saturations on the boundary is exact, then Eqn.˘21¯

is well‚posed and provides an unique solution that matches the global solution on

the local subdomain. Unfortunately, providing exact boundary saturations by linear

interpolation of the coarse solution is hardly achievable in nonlinear transport. The

main reason being the transport and advection‚diffusion process are closely coupled,

making the variations of the pressure field across different grid resolutions to have a

strong influence on transport flow equation. Therefore, the local problem tends to be

ill‚posed. In response, we rewrite Eqn.˘21¯ into a minimization problem as followȷ

min
𝑝𝛼,ℎ ,𝑠𝛼,ℎ

{





∫

𝐸𝑚
𝑖,𝐻

∑︁

𝛼

(
𝜕𝑡

(
𝜑𝑛𝑛𝑐𝛼,ℎ,𝜏

)
+ ∇ · 𝒖𝑛

𝑢𝑝,𝑐𝛼,ℎ − 𝑞𝑐𝛼

)
𝑤






∞

}

˘23¯

∀𝐸𝑚
𝑖,𝐻 = ∪𝐸𝑛

𝑖,ℎ
⊊𝐸𝑚

𝑖,𝐻
𝐸𝑛
𝑖,ℎ .

Since the goal of the minimization is only to remove the high frequency residuals

˘smoothing¯, to prevent over‚working the problem, the algorithm is stopped once

reaching the average background residual instead of the absolute minimum.

Like solving the global problem, we use Newton’s method to reduce the high

frequency local residual. However, with a reduced problem size providing less con‚

straint on the system, a “soft” Jacobian is likely to produce a solution outside the

acceptable range ˘eg. saturations must be in [0, 1]¯. Therefore, we apply the line

search algorithm introduced in [14] to prevent divergence during the Newton itera‚

tion. Line search scales back the update when the Jacobian appears to be too “soft”,

by setting the update direction orthogonal to the post update residual.

4 Numerical results

We apply the SPE10 dataset [4] to conduct our numerical experiments. The fluid

data are listed in Table.1. The solution gas‚oil ratio is estimated by
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Fig. 3: Relative permeability ˘left¯ and capillary pressure ˘right¯ curve for numerical experiment

Table 1: Fluid data for numerical experiment

Parameter Value Unit

Gas compressibility ˘𝑐𝑔¯ 5.0 × 10−2 psi−1

Oil compressibility ˘𝑐𝑜¯ 1.0 × 10−4 psi−1

Water compressibility ˘𝑐𝑤¯ 3.0 × 10−6 psi−1

Gas viscosity ˘𝜇𝑔¯ 0.03 cp

Oil viscosity ˘𝜇𝑜¯ 3.0 cp

Water viscosity ˘𝜇𝑤¯ 1.0 cp

Gas standard density ˘𝜌𝑔,𝑠𝑡𝑑¯ 0.1 lb/ft3

Oil standard density ˘𝜌𝑜,𝑠𝑡𝑑¯ 53 lb/ft3

Water standard density ˘𝜌𝑤,𝑠𝑡𝑑¯ 64 lb/ft3

Solution gas‚oil ratio exponent ˘𝑛𝑟𝑠¯ −1.5 × 10−4

Bubble point pressure ˘𝑝𝑏¯ 3000.0 psi

𝜉3𝑜 =

{
1 − 𝑒𝑛𝑟𝑠 𝑝𝑜 𝑖 𝑓 𝑝𝑜 < 𝑝𝑏

1 − 𝑒𝑛𝑟𝑠 𝑝𝑏 𝑖 𝑓 𝑝𝑜 ≥ 𝑝𝑏
, ˘24¯

with 𝑛𝑟𝑠 and 𝑝𝑏 being the exponent and bubble point pressure respectively. We

take 𝛽 = 2 for Eqn.˘10¯ to calculate oil density. For nonlinear transport, we use

Brooks‚Corey model illustrated in Fig.3 for both relative permeability and capillary

pressure, which is described by Eqn.˘25¯ and ˘26¯ȷ




𝑘𝑟𝑔 = 𝑘0
𝑟𝑔

(
𝑠𝑔 − 𝑠𝑔𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑔

𝑘𝑟𝑜 = 𝑘0
𝑟𝑜

(
𝑠𝑜 − 𝑠𝑜𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑜

𝑘𝑟𝑤 = 𝑘0
𝑟𝑤

(
𝑠𝑤 − 𝑠𝑤𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑤

, ˘25¯
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Fig. 4: Channelized fine scale permeability ˘left¯ and porosity ˘right¯ distribution
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Fig. 5: Difference between saturation initial guess and solution without local residual minimization




𝑝𝑐𝑔𝑙 = 𝑝𝑒𝑛,𝑐𝑔𝑙

(
1 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

𝑠𝑜 + 𝑠𝑤 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

) 𝑙𝑐𝑔𝑙

𝑝𝑐𝑜𝑤 = 𝑝𝑒𝑛,𝑐𝑜𝑤

(
1 − 𝑠𝑤𝑟

𝑠𝑤 − 𝑠𝑤𝑟

) 𝑙𝑐𝑜𝑤 . ˘26¯

The endpoint values for relative permeability are 𝑘0
𝑟𝑔 = 0.7, 𝑘0

𝑟𝑜 = 0.ß, 𝑘0
𝑟𝑤 = 0.8,

𝑠𝑔𝑟 = 0.05, 𝑠𝑜𝑟 = 0.1, 𝑠𝑤𝑟 = 0.15 and the exponents are 𝑛𝑔 = 2.5, 𝑛𝑜 = 2.0,

𝑛𝑤 = 1.8. There are capillary pressures on both water‚oil and gas‚liquid interfaces.

The entry pressures are 𝑝𝑒𝑛,𝑐𝑜𝑤 = 10 𝑝𝑠𝑖, 𝑝𝑒𝑛,𝑐𝑔𝑙 = 5 𝑝𝑠𝑖 and the exponents are

𝑙𝑐𝑜𝑤 = 0.25, 𝑙𝑐𝑔𝑙 = 0.15. The reservoir size is 56 𝑓 𝑡 × 216 𝑓 𝑡 × 1 𝑓 𝑡. We place a

water rate specified injection well at the bottom left corner and a pressure specified

production well at the upper right corner. The water injection rate is 1 𝑓 𝑡3/𝑑𝑎𝑦 and

production pressure is 2000 𝑝𝑠𝑖. Furthermore, the initial pressure, gas saturation and

water saturation are set to be 2000 𝑝𝑠𝑖, 0.25 and 0.15 respectively.

The experiment uses the bottom layer of the SPE10 dataset as petrophysical

property input. The fine scale data are shown in Fig.4 with clear discontinuity at the

channel boundary. We use the algorithm described in [13] to solve the system. The

number of refinement levels is set to three in both space and time and the refinement

ratio is set to 2 uniformly. A numerical homogenization algorithm introduced in [5]

and [6] is used to compute coarse resolution data.

The main cause of high frequency residual is the inaccurate initial estimate of sat‚

urations due to the discontinuous nature of the solution. An sample snapshot during
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Fig. 6: Difference between saturation initial guess and solution with and without local residual
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Fig. 7: 𝑙∞ and 𝑙2 norm of initial residual with and without local residual minimization

the numerical experiment is shown in Fig.5. Here, the initial guess of the saturations

is compared to their respective final solutions and the difference between the two is

calculated. We observe major discrepancies along the channel boundary since the

saturation solution is discontinuous in such regions while the linear interpolation

of the coarse solution provides a continuous transition. Now we apply the local

residual minimization algorithm as a pre‚processing step and compare the saturation

difference to the same quantity without smoothing. The result is illustrated in Fig.6.

We observe that the discrepancies along the channel boundary has been reduced

significantly. Most part of the system shows no sign of inconsistency between the

initial guess and the solution. Some mismatch still exist, typically in regions with

complex channel structure. Minimizing local residuals in these regions is unstable

since a clear flow direction cannot be determined when only a small subdomain

of the system is provided. Applying an oversampling technique could improve the

stability of the minimization process.

We also quantifies the reduction in initial residual when the Newton iteration

continues after grid refinement and the result is demonstrated in Fig.7. We observe

that by applying the minimization algorithm as a smoothing pre‚process, the initial

residual has been reduced by approximately two orders of magnitude. As a result, the

global system enters quadratic convergence region sooner during Newton iteration
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and therefore improves convergence behavior. The number of iterations required to

achieve convergence is reduced by roughly 40%.

5 Conclusions

In this paper, a space‚time compositional model has been considered and we are

unaware of any such computations. We introduce the local residual minimization

algorithm as a pre‚processing step for geometric multigrid type methods to remove

high frequency residuals after grid refinement. The minimization is approached by

solving the same global physical system using Newton’s method in the local subdo‚

main with boundary conditions set to linear interpolation of the coarse scale solution

before mesh refinement. The iteration is terminated once the residual in the subdo‚

main reaches global background residual instead of the absolute minimum, to prevent

over‚working the ill‚posed local problem. Results from numerical experiment using

a black‚oil model is presented. We observe that after residual smoothing, the differ‚

ence between saturation initial guess and solution is diminished significantly. The

initial residual norm has been reduced by approximately 2 orders of magnitude. Such

improvement facilitates the Newton’s method to enter quadratic convergence region

and therefore cuts the number of iterations required to achieve nonlinear convergence

by 40%. The algorithm performance in regions with complex coefficient structure is

sub‚optimal, which can be improved by applying over‚sampling techniques.
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