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1 Introduction and motivations

For domain decomposition preconditioners, the use of a coarse correction as a second

level is usually required to provide scalability ˘in the weak sense¯, such that the

iteration count is independent of the number of subdomains, for subdomains of ixed

dimension. In addition, it is desirable to guarantee robustness with respect to strong

variations in the physical parameters. Achieving scalability and robustness usually

relies on sophisticated tools such as spectral coarse spaces [5, 4]. In particular, we

can highlight the GenEO coarse space [9], which has been successfully analysed and

applied to highly heterogeneous positive deinite elliptic problems. This coarse space

relies on the solution of local eigenvalue problems on subdomains and the theory

in the SPD case is based on the fact that local eigenfunctions form an orthonormal

basis with respect to the energy scalar product induced by the bilinear form.

Our motivation here is to gain a better insight into the good performance of spectral

coarse spaces even for highly indeinite high‚frequency Helmholtz problems with

absorbing boundary conditions, as observed in [3] ˘for the Dirichlet‚to‚Neumann

coarse space¯ and more recently in [2] for coarse spaces of GenEO type. While a

rigorous analysis for Helmholtz problems still lies beyond reach ˘see also [6] for the
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challenges¯, we present here numerical results, showing the beneits of GenEO‚type

coarse spaces for the heterogeneous symmetric indeinite elliptic problem

−∇ · (�(�)∇�) − �� = � in Ω , subject to � = 0 on �Ω , ˘1¯

in a bounded domain Ω with homogeneous Dirichlet boundary conditions on �Ω,

thus extending the results of [9] to this case. The coeicient function � in ˘1¯ is a

symmetric positive‚deinite matrix‚valued function on Ω → R
�×� ˘where � is the

space dimension¯ with highly varying but bounded values ˘�min |� |
2 ≤ �(�)� · � ≤

�max |� |
2, � ∈ Ω, � ∈ R�¯ and � is an �∞ (Ω) function which can have positive or

negative values. We assume throughout that problem ˘1¯ is well‚posed and that there

is a unique weak solution � ∈ �1
0
(Ω), for all � ∈ �2 (Ω).

We propose two types of spectral coarse spaces, one built from local spectra of

the whole indeinite operator on the left‚hand side of ˘1¯, and the other built using

only the second‚order operator in ˘1¯. For the latter, the analysis in [1] will apply,

while the better performance of the former for large ∥�∥∞ provides some insight into

the good performance of the H ‚GenEO method introduced in [2] for high‚frequency

Helmholtz problems, even though it is not amenable to the theory in [1].

The problem ˘1¯ involves a Helmholtz‚type operator ˘although this term would

normally be associated with the case when � has a positive sign and ˘1¯ would

normally be equipped with an absorbing boundary condition rather than the Dirichlet

condition here¯. In the special case � = �, � = �2 with � constant, the assumption

of well‚posedness of the problem is equivalent to the requirement that �2 does not

coincide with any of the Dirichlet eigenvalues of the operator −Δ in the domain Ω.

In this case, for large �2, the solution of ˘1¯ will be rich in modes corresponding

to eigenvalues near �2 and thus will have oscillatory behaviour, increasing as �

increases. The Helmholtz problem with � = � and � = �2� ˘with � real and � a

function¯, together with an absorbing far‚ield boundary condition appears regularly

in geophysical applications; here � is the refractive index or ‘squared slowness’ of

waves and � is the angular frequency.

To solve discretisations of ˘1¯, we consider an additive Schwarz ˘AS¯ method with

a GenEO‚like coarse space and study the performance of this solver methodology for

some heterogeneous test cases. GenEO coarse spaces have been shown theoretically

and practically to be very efective for heterogeneous positive deinite problems.

Here, our main focus is to investigate how this approach performs in the indeinite

case ˘1¯. We now review the underlying numerical methods that are used.

2 Discretisation and domain decomposition solver

We suppose that the domainΩ is a bounded Lipschitz polygon/polyhedron in 2D/3D.

To discretise the problem we use the Lagrange inite element method of degree �

on a conforming simplicial mesh �ℎ of Ω. Denote the inite element space by

�ℎ ⊂ �1
0
(Ω). The inite element solution �ℎ ∈ �ℎ satisies the weak formulation



GenEO for Heterogeneous Indeinite Elliptic Problems 117

�(�ℎ, �ℎ) = � (�ℎ), for all �ℎ ∈ �ℎ, where

�(�, �) =

∫

Ω

(�(�)∇� · ∇� − ���) d� and � (�) =

∫

Ω

� � d�. ˘2¯

Using the standard nodal basis for �ℎ we can represent the solution �ℎ through its

basis coeicients � and reduce the problem to solving the symmetric linear system

�� = � ˘3¯

where � comes from the bilinear form �(·, ·) and � from the linear functional � (·).

Note that � is symmetric but generally indeinite. For suiciently small ine‚mesh

diameter ℎ, problem ˘3¯ has a unique solution �; see [8]. To solve ˘3¯, we utilise a

two‚level domain decomposition preconditioner within a Krylov method.

Consider an overlapping partition {Ω � }1≤ �≤� of Ω, where each Ω � is assumed to

have diameter � � and � denotes the maximal diameter of the subdomains. For each

� we deine �̃ � = {� |Ω �
: � ∈ �ℎ}, � � = {� ∈ �̃ � : supp(�) ⊂ Ω � }, and for �, � ∈ �̃ �

� � (�, �) :=

∫

Ω �

(�(�)∇� · ∇� − ���) d� and � � (�, �) :=

∫

Ω �

�(�)∇� · ∇�d�.

Let R�
� : � � → �ℎ, 1 ≤ � ≤ � , denote the zero‚extension operator, let ��

� denote

its matrix representation with respect to the nodal basis and set � � = (��
� )

� . The

classical one‚level additive Schwarz preconditioner is

�−1
AS =

�︁

�=1

��
� �

−1
� � � , where � � = � ���

�
� . ˘4¯

It is well‚known that one‚level additive Schwarz methods are not scalable with

respect to the number of subdomains in general, since information is exchanged

only between neighbouring subdomains. Thus, we introduce the two‚level additive

Schwarz method with GenEO coarse space irst proposed in [9]. To this end, for

1 ≤ � ≤ � , let {�
�

1
, . . . , �

�

�̃ �
} be a nodal basis of �̃ � , where �̃ � = dim(�̃ � ).

Definition 1 (Partition of unity)

Let dof(Ω � ) denote the internal degrees of freedom ˘nodes¯ on subdomain Ω � .

For any degree of freedom �, let �� denote the number of subdomains Ω � for which

� is an internal degree of freedom, i.e., �� := #{ � : 1 ≤ � ≤ �, � ∈ dof(Ω � )}. Then,

for 1 ≤ � ≤ � , the local partition of unity operator Ξ � : �̃ � → � � is deined by

Ξ � (�) :=
︁

�∈dof(Ω � )

1

��
���

�

�
, for all � =

�̃ �︁

�=1

���
�

�
∈ �̃ � . ˘5¯

The operators Ξ � form a partition of unity, i.e.,
∑�

�=1 �
�
� Ξ � (� |Ω �

) = �, ∀� ∈ �ℎ [9].
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For each � , we deine the following generalised eigenvalue problemsȷ

ind � ∈ �̃ �\{0}, � ∈ R : � � (�, �) = � � � (Ξ � (�),Ξ � (�)), for all � ∈ �̃ � , ˘6¯

ind � ∈ �̃ �\{0}, � ∈ R : � � (�, �) = � � � (Ξ � (�),Ξ � (�)), for all � ∈ �̃ � , ˘7¯

where Ξ � is the local partition of unity operator from Deinition 1.

Definition 2 (Δ-GenEO and H -GenEO coarse spaces)

For each � , 1 ≤ � ≤ � , let (�
�

�
)
� �

�=1
and (�

�

�
)
� �

�=1
be the eigenfunctions of the

eigenproblems ˘6¯ and ˘7¯ corresponding to the� � smallest eigenvalues, respectively.

Then we deine the Δ-GenEO and H -GenEO coarse spaces, respectively, by

�0
Δ

:= span{R�
� Ξ � (�

�

�
) : � = 1, . . . , � � ; � = 1, . . . , �} and ˘8¯

�0
H

:= span{R�
� Ξ � (�

�

�
) : � = 1, . . . , � � ; � = 1, . . . , �}. ˘9¯

Note that here and subsequently, the subscript Δ refers to the GenEO coarse space

˘8¯ based on ˘6¯, the eigenproblem with respect to the ‘Laplace‚like’ operator induced

by the bilinear form � � , while the subscript H refers to the H ‚GenEO coarse space

˘9¯ based on ˘7¯, with the ‘Helmholtz‚like’ operator appearing in � � .

Since �0
Δ
, �0

H
⊂ �ℎ, we can introduce the natural embeddings R�

0,Δ
: �0

Δ
→ �ℎ

and R�
0,H

: �0
H

→ �ℎ, with matrix representations ��
0,Δ

and ��
0,H

, respectively, and

set �0,Δ = (��
0,Δ

)� and �0,H = (��
0,H

)� to obtain the following two‚level extensions

of the one‚level additive Schwarz method ˘4¯ȷ

�−1
AS,Δ = �−1

�� + ��
0,Δ�

−1
0,Δ�0,Δ and �−1

AS,H = �−1
�� + ��

0,H�−1
0,H�0,H , ˘10¯

where �0,Δ := �0,Δ��
�
0,Δ

and �0,H := �0,H���
0,H

.

3 Theoretical results

The theoretical properties of the preconditioner �−1
AS,Δ

are studied in the forthcoming

paper [1]. There, the PDE studied is a generalisation of ˘1¯, which also allows the

inclusion of a non‚self‚adjoint irst order convection term. The important parameters

in the preconditioner are the coarse mesh diameter � and the ‘eigenvalue tolerance’

Θ := max
1≤ �≤�

(
�
�

� �+1

)−1

,

where {�
�
� : � = 1, 2, . . .} are the eigenvalues of the generalised eigenproblem ˘6¯,

given in non‚decreasing order. We now highlight a special case of the results in [1].

Theorem 1 Let the ine-mesh diameter ℎ be suiciently small. Then there exist

thresholds �0 > 0 and Θ0 > 0 such that, for all � ≤ �0 and Θ ≤ Θ0: the matrices

� � and �0,Δ appearing in ˘4¯ and ˘10¯ are non-singular. Moreover, if problem ˘3¯
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is solved by GMRES with left preconditioner �−1
AS,Δ

and residual minimisation in

the energy norm ∥�∥� :=
( ∫

Ω
∇� · �∇�

)1/2
, then there exists a constant � ∈ (0, 1),

which depends on �0 and Θ0 but is independent of all other parameters, such that

we have the robust GMRES convergence estimate

∥�ℓ ∥
2
� ≤

(
1 − �2

)ℓ
∥�0∥

2
� , ˘11¯

for ℓ = 0, 1, . . . , where �ℓ denotes the residual after ℓ iterations of GMRES.

In fact, the paper [1] will investigate in detail how the thresholds �0 and Θ0 depend

on the heterogeneity and indeiniteness of ˘1¯. For example, if the problem is scaled

so that �min = 1, then as ∥�∥∞ grows, �0 and Θ0 have to decrease to maintain the

convergence rate of GMRESȷ

�0 ≲ ∥�∥−1
∞ and Θ0 ≲ �−2

stab∥�∥
−4
∞ , ˘12¯

where �stab = �stab (�, �) denotes the stability constant for problem ˘1¯, i.e., the

solution � satisies ∥�∥�1 (Ω) ≤ �stab∥ � ∥�2 (Ω) for all � ∈ �2 (Ω) and the hidden

constants are independent of ℎ, �, �max and �. Thus, as ∥�∥∞ gets smaller, the

indeiniteness diminishes and the requirements on �0 and Θ0 are relaxed.

4 Numerical results

We give results for a more eicient variant of the preconditioner described in §2.

Instead of ˘10¯, we here use the restricted additive Schwarz ˘RAS¯ method, with the

GenEO coarse space incorporated using a delation approach, yieldingȷ

�−1
= �−1

RAS (� − ��0) +�0, where �−1
RAS =

�︁

�=1

��
� � ��

−1
� � � . ˘13¯

Here, � � is the matrix form of the partition of unity operator Ξ � . Moreover, we have

�0 = ��
0
�−1

0
�0 with �0 = �0��

�
0

and either �0 = �0,Δ or �0 = �0,H , depending

on whether we use Δ‚GenEO or H ‚GenEO. We include all eigenfunctions �
�

�
or �

�

�

in �0
Δ

or �0
H

corresponding to eigenvalues �
�

�
< �max, for Δ‚GenEO or H ‚GenEO,

respectively. InH ‚GenEO this includes all eigenfunctions corresponding to negative

eigenvalues. Unless otherwise stated, the eigenvalue threshold is �max =
1
2
.

As a model problem, we consider ˘1¯ on the unit square Ω = (0, 1)2, take �

constant, and deine � to model various layered media, as depicted in Fig. 1. The

right‚hand side � is taken to be a point source at the centre ( 1
2
, 1

2
). To discretise, we

use a uniform square grid with �glob points in each direction and triangulate along

one set of diagonals to form P1 elements. We further use a uniform decomposition

into � square subdomains and throughout use minimal overlap ˘non‚overlapping

subdomains are extended by adding only the ine‚mesh elements which touch them¯.
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(a) Alternating layers (b) Diagonal layers (c) Inclusions ˘� = ß¯

Fig. 1: Piecewise constant proiles � (�) , where �(�) = � (�) � . For the darkest shade � (x) = 1

while for the lightest shade � (x) = �max. Proiles ˘a¯ and ˘b¯ are ixed while in ˘c¯ the interfaces of

� are the same per subdomain, although the value of � depends on height ˘case � = 32 is shown¯.

Our computations are performed using FreeFem ˘http://freefem.org/¯, in

particular using the ffddm framework. We use preconditioned GMRES with residual

minimisation in the Euclidean norm and a relative residual tolerance of 10−6. We

have assumed �min = 1; otherwise a rescaling will ensure this. The indeiniteness

is controlled by �, taken here to be a positive constant. Although estimate ˘11¯

describes GMRES implemented in the energy inner product, we use here the standard

Euclidean implementation and prove in [1, §4] that ˘for quasi‚uniform meshes¯ the

latter algorithm requires at most O(log(�max/ℎ)) more iterations than the former

to achieve the same residual reduction. Experiments for Helmholtz problems in [7]

showed that the two approaches performed almost identically.

In Table 1 we provide GMRES iteration counts for Δ‚GenEO and H ‚GenEO as

� varies in two casesȷ in case ˘i¯, on the left, we use proile ˘a¯ and increase �max

while in case ˘ii¯, on the right, we use proile ˘c¯ and increase �glob = ℎ−1. In ˘i¯

we see clear robustness to increasing the contrast parameter �max. In ˘ii¯ we observe

robustness to decreasing ℎ, with markedly better performance for H ‚GenEO. In ˘ii¯,

the coeicient �(�) ˘and hence the problem itself¯ becomes more complicated as �

increases since the geometry of the coeicient remains identical in each subdomain.

In Table 2 we illustrate the efect of increasing �, giving iteration counts and ˘in

brackets¯ coarse space sizes. Here we see the substantial advantage of H ‚GenEO

over Δ‚GenEOȷ much better iteration counts are obtained, yet the coarse space size

increases only modestly. As � increases, although the dimension of the coarse space

grows, the number of eigenfunctions per subdomain decreases. For very large �,

neither method is fully robust while, for small �, both methods perform similarly.

This leads to the interesting question of whether robustness to � can be gained by

taking more eigenfunctions in the coarse space. Table 3 gives results for a sequence

of increasing values of � for the diagonal layers problem, in which we simultaneously

increase �max, indicating ˘apparent almost¯ robustness with respect to �.

These observations align with the fact that eigenfunctions appear qualitatively

similar for Δ‚GenEO and H ‚GenEO when � is small. As seen in Fig. 2, once �

increases the H ‚GenEO eigenfunctions changeȷ the type of eigenfunctions produced

byΔ‚GenEO remain, albeit perturbed, but now we have further eigenfunctions which

include more oscillatory behaviour in the interior of the subdomain; such features are

not found with Δ‚GenEO where higher oscillations only appear near the boundary.
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Table 1: GMRES iteration counts with �max =
1
2
. Left‚hand tableȷ Alternating layers problem,

varying �max > 1 and � , with ixed � = 100 and �glob = 400. Right‚hand tableȷ Inclusions

problem, varying �glob and � , with ixed � = 1000 and �max = 50.

Δ‚GenEO H‚GenEO

�max \ � 16 36 64 100 16 36 64 100

10 10 9 9 10 9 9 9 9

50 9 9 9 9 9 9 9 9

200 9 9 9 9 9 9 9 9

1000 9 9 9 9 9 9 9 9

Δ‚GenEO H‚GenEO

�glob \ � 16 36 64 100 16 36 64 100

200 24 16 26 22 10 10 10 11

400 23 14 19 18 8 9 9 8

600 21 14 18 19 8 9 8 10

800 22 14 19 20 9 9 9 10

Table 2: GMRES iteration counts and ˘in brackets¯ coarse space dimension for the diagonal layers

problem with �max =
1
2
, varying � and � , with ixed �max = 5 and �glob = 600.

Δ‚GenEO H‚GenEO

� \ � 16 36 64 100 16 36 64 100

10 9 ˘627¯ 9 ˘1050¯ 9 ˘1468¯ 9 ˘1804¯ 9 ˘627¯ 9 ˘1050¯ 9 ˘1468¯ 9 ˘1804¯

100 10 ˘627¯ 9 ˘1050¯ 9 ˘1468¯ 9 ˘1804¯ 9 ˘627¯ 9 ˘1052¯ 9 ˘1473¯ 9 ˘1814¯

1000 36 ˘627¯ 43 ˘1050¯ 35 ˘1468¯ 28 ˘1804¯ 13 ˘674¯ 11 ˘1083¯ 9 ˘1520¯ 10 ˘1877¯

10000 215 ˘627¯ 339 ˘1050¯ 437 ˘1468¯ 506 ˘1804¯ 27 ˘1256¯ 33 ˘1651¯ 40 ˘2139¯ 18 ˘2549¯

Table 3: GMRES iteration counts and ˘in brackets¯ coarse space dimension for H‚GenEO for the

diagonal layers problem, varying � , with ixed �glob = 600 and �max = 5 and increasing eigenvalue

threshold �max as � increases, aiming to control iteration counts as � increases.

H−GenEO

�max � \ � 16 36 64 100

0.1 10 23 ˘108¯ 23 ˘199¯ 25 ˘214¯ 23 ˘324¯

0.1 100 23 ˘111¯ 24 ˘201¯ 28 ˘223¯ 27 ˘324¯

0.2 1000 19 ˘265¯ 27 ˘418¯ 20 ˘574¯ 20 ˘684¯

0.6 10000 24 ˘1430¯ 25 ˘2129¯ 28 ˘2680¯ 15 ˘3252¯

5 Conclusions

In this work we have summarised how the forthcoming analysis in [1] can be applied

to a GenEO‚type coarse space for heterogeneous indeinite elliptic problems. We

provide numerical evidence supporting these results and a comparison with a more

efective GenEO‚type method for highly indeinite problems but for which no theory

is presently available. For mildly indeinite problems these two approaches perform

similarly, providing the irst theoretical insight towards explaining the good behaviour

of the H ‚GenEO method for challenging heterogeneous Helmholtz problems.
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Δ‚GenEO
H‚GenEO H‚GenEO H‚GenEO

� = 1000 � = 10000 � = 10000

H
o
m

o
g
en

eo
u
s

� = 0.057 � = −0.003 � = −3.220 � = −0.004

D
ia

g
o
n
al

la
y
er

s

� = 0.057 � = −0.014 � = −3.460 � = −0.052

Fig. 2: Example eigenfunctions on the central subdomain when � = 25 and �glob = 800ȷ In the irst

three columns, we plot qualitatively similar eigenfunctions, computed ˘left‚to‚right¯ by Δ‚GenEO,

H‚GenEO when � = 1000, and H‚GenEO when � = 10000. This illustrates how eigenfunctions

of ˘7¯ are afected by the indeiniteness in � � , relative to the size of � . In addition, as � increases

the H‚GenEO eigenproblem enriches the coarse space with “wave‚like” eigenfunctions that are not

seen for Δ‚GenEO; one of the many examples when � = 10000 is plotted in the inal column. While

the top row explores the homogeneous case, the bottom row demonstrates the efect of heterogeneity

in � (�) for the diagonal layers problemȷ For � = 25, � (�) = �max = 10 in the upper‚left triangle

˘�2 > �1¯ and � (�) = �min = 1 in the lower‚right triangle ˘�2 < �1¯ of the central subdomain.

Note that variation in the eigenfunctions is mainly conined to the low coeicient region.
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