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Domain decomposition algorithms have become popular in solving the Helmholtz

equation since the seminal Després paper [3]. Although it is known that the presence

of overlaps helps to speed up the convergence for domain decomposition methods,

nonoverlapping based methods are often used to avoid to deal with the construction

of the normal derivative of the solution. For decompositions into vertical strips, a

sweeping algorithm was first proposed and analyzed in [6] for convection‚diffusion

operators. Recently, sweeping methods have gained interested due to their capability

to achieve nearly‚linear asymptotic complexity, see e.g. the double sweep precondi‚

tionner of Vion and Geuzaine for non overlapping decomposition with high order

interface conditions [8, 9], the PML‚based sweep method of Stolk [2], and the

polarized traces method of Zepeda‚Núñez and Demanet [10].

We consider a decomposition of the domain into layers where the local sub‚

problems are equipped with interface conditions, also called absorbing boundary

conditions ˘ABC¯. In practice, the exact ABC ˘which are also the optimal interface

conditions, see [7]¯ procedure is tedious to implement and computationally expen‚

sive. As a consequence, the boundary conditions at the interfaces produce spurious

reflected waves that significantly increase the number of iterations to converge, in

particular for heterogeneous media and high frequency regimes.

We propose to precondition the discrete Helmholtz system by an overlapping

splitting double‚sweep algorithm that allows for overlapping subdomains and pre‚

vents spurious interface reflections from hindering the convergence. Using overlap‚

ping subdomains allows us to leverage its beneficial effect on the damping of high

frequency modes of the error, while splitting prevents its adversary effect on the con‚

vergence of propagative modes. This is highly beneficial since in the non‚overlapping
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approach [8, 9], the quality of the ABC is nearly the only way of impacting the con‚

vergence of the algorithm, and when dealing with more complex problems such as

Maxwell equations high order ABCs are harder to handle.

1 Statement of the problem and some algorithms

We consider the Helmholtz equation in a bounded domain Ω ⊂ R2 with frequency

𝜔, velocity 𝑐 and wavenumber 𝑘 defined by 𝑘2 = 𝜔2/𝑐2ȷ

(
−𝑘2 − Δ

)
𝑢 = 𝑓 in Ω

+ appropriate boundary conditions on 𝜕Ω .
˘1¯

We consider a layered decomposition of Ω into 𝑁 slices (Ω𝑖)1≤𝑖≤𝑁 , with or without

overlap, see Figure 1. More precisely, for each 1 ≤ 𝑖 ≤ 𝑁 , Ω \ Ω𝑖 is written as the

disjoint union of two open subsets Ω𝑖,𝑙 and Ω𝑖,𝑟 where Ω𝑖,𝑙 is on the left of Ω𝑖 and

Ω𝑖,𝑟 on its right. The boundary 𝜕Ω𝑖 \ 𝜕Ω is written as the disjoint union of Γ𝑖,𝑙 and

Γ𝑖,𝑟 where Γ𝑖,𝑙 is on the left of Ω𝑖 and Γ𝑖,𝑟 is on its right ˘Ω1,𝑙 = ∅ and Ω𝑁,𝑟 = ∅¯

˘see Figure 2¯. The outward normal from Ω𝑖 on Γ𝑖,𝑙 ˘resp. Γ𝑖,𝑟 ¯ is denoted by 𝒏𝑖,𝑙

˘resp. 𝒏𝑖,𝑟 ¯. The problem ˘1¯ can be solved iteratively using a domain decomposi‚

Fig. 1: Decomposition into vertical strips

tion method where we solve locally on each subdomain Ω𝑖 the equation ˘1¯ with

appropriate boundary conditions on the physical boundaries and interfaces [3]. The

method readsȷ

Solve in parallelȷ




(
−𝑘2 − Δ

)
𝑢𝑛+1

𝑖 = 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙

(
𝑢𝑛+1

𝑖

)
= B𝑖,𝑙

(
𝑢𝑛
𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟

(
𝑢𝑛+1

𝑖

)
= B𝑖,𝑟

(
𝑢𝑛
𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 ,

˘2¯

where B𝑖,𝑙 and B𝑖,𝑟 are the interface conditions. For sake of simplicity, we consider

first‚order ABC as interface conditionsȷ
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{
B𝑖,𝑙 = 𝜕𝒏𝑖,𝑙

+ 𝐼𝑘

B𝑖,𝑟 = 𝜕𝒏𝑖,𝑟
+ 𝐼𝑘

˘3¯

where 𝐼2 = −1 and 𝒏𝑖,𝑟 ˘resp. 𝒏𝑖,𝑙¯ is the outward normal to domain Ω𝑖 on Γ𝑖,𝑟

˘resp. Γ𝑖,𝑙¯. It is known that higher‚order ABC lead to significant improvement of

the convergence speed, see e.g. [4, 1].

A more efficient variant of algorithm 2 was introduced in [6]. It consists in double

sweeps over the subdomainsȷ

Left to right sweep:





(
−𝑘2 − Δ

)
𝑢
𝑛+1/2
𝑖

= 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙

(
𝑢
𝑛+1/2
𝑖

)
= B𝑖,𝑙

(
𝑢
𝑛+1/2

𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟

(
𝑢
𝑛+1/2
𝑖

)
= B𝑖,𝑟

(
𝑢𝑛
𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 .

˘4¯

Right to left sweep:





(
−𝑘2 − Δ

)
𝑢𝑛+1

𝑖 = 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙

(
𝑢𝑛+1

𝑖

)
= B𝑖,𝑙

(
𝑢
𝑛+1/2

𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟

(
𝑢𝑛+1

𝑖

)
= B𝑖,𝑟

(
𝑢𝑛+1

𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 .

˘5¯

2 Overlapping Splitting double sweep

In this section, we define a variant of algorithm ˘4¯‚˘5¯ which has a superior conver‚

gence. Numerical results will show that it benefits better from the overlap and has

better parallelism. This algorithm is written in terms of the substructured problem

that we define first.

2.1 Substructuring

Substructuring algorithm ˘2¯, the iterative method can be reformulated considering

only surfacic unknowns on the interfacesȷ

{
ℎ𝑛
𝑖,𝑙

:= B𝑖,𝑙

(
𝑢𝑛𝑖

)
, on Γ𝑖,𝑙 for 2 ≤ 𝑖 ≤ 𝑁 ,

ℎ𝑛𝑖,𝑟 := B𝑖,𝑟

(
𝑢𝑛𝑖

)
, on Γ𝑖,𝑟 for 1 ≤ 𝑖 ≤ 𝑁 − 1 .

˘6¯
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Considering the global vector ℎ𝑛 := (ℎ𝑛
2,𝑙
, . . . , ℎ𝑛

𝑁,𝑙
, ℎ𝑛

𝑁−1,𝑟
, . . . , ℎ𝑛

1,𝑟
)𝑇 , containing

first the local unknowns (ℎ𝑛
𝑖,𝑙
)2≤𝑖≤𝑁 and then in reverse order (ℎ𝑛

𝑖,𝑟
)1≤𝑖≤𝑁−1, we

can reformulate the parallel Schwarz method ˘2¯ as a Jacobi algorithm on ℎ𝑛ȷ

ℎ𝑛+1 := 𝒯(ℎ𝑛) + 𝐺, where the iteration operator 𝒯 can be written in the form

of an operator valued matrix and 𝐺 refers to the contribution of the right‚hand side

𝑓 , see [7]. Therefore, we look for a vector ℎ such that

(𝐼𝑑 −𝒯) (ℎ) = 𝐺 . ˘7¯

In order to define more precisely the operator 𝒯, we introduce for each subdomain

an operator 𝑆𝑖 which takes three arguments, two surfacic functions ℎ𝑙 and ℎ𝑟 and a

volume function 𝑓 ȷ

𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 𝑓 ) := 𝑣, ˘8¯

where 𝑣 : Ω𝑖 ↦→ C satisfiesȷ




(
−𝑘2 − Δ

)
𝑣 = 𝑓 in Ω𝑖

B𝑖,𝑙 (𝑣) = ℎ𝑖,𝑙 on Γ𝑖,𝑙 (2 ≤ 𝑖 ≤ 𝑁)

B𝑖,𝑟 (𝑣) = ℎ𝑖,𝑟 on Γ𝑖,𝑟 (1 ≤ 𝑖 ≤ 𝑁 − 1)

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 ,

˘9¯

for 1 < 𝑖 < 𝑁 ˘see Figure 2¯. For 𝑖 = 1, the definition of 𝑆1 is similar except

that it takes only the two arguments (ℎ1,𝑟 , 𝑓 ) since domain Ω1 has no left in‚

terface and similarly operator 𝑆𝑁 takes only the two arguments (ℎ𝑁,𝑙 , 𝑓 ) since

domain Ω𝑁 has no right interface. As of now, for sake of simplicity and by abuse

of notation, 𝑆1 (ℎ1,𝑙 , ℎ1,𝑟 , 𝑓 ) (resp. 𝑆𝑁 (ℎ𝑁,𝑙 , ℎ𝑁,𝑟 , 𝑓 )) will refer to 𝑆1 (ℎ1,𝑟 , 𝑓 )

(resp. 𝑆𝑁 (ℎ𝑁,𝑙 , 𝑓 )).

Bi,l(ui) = hl Bi,r(ui) = hr

Ωi

L(ui) = f

Γi,l Γi,r

Γi−1,r Γi+1,l

Fig. 2: Local problem on the subdomain Ω𝑖

Next, we introduce the surfacic right hand‚side 𝐺 by

𝐺𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (0, 0, 𝑓 )), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝐺𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (0, 0, 𝑓 )), 2 ≤ 𝑖 ≤ 𝑁 ,
˘10¯

and the substructured operator 𝒯 byȷ
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𝒯(ℎ)𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝒯(ℎ)𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 .
˘11¯

We can now write the substructured form of the double sweep algorithm asȷ

Forward sweep

ℎ
𝑛+1/2

𝑖+1,𝑙
:= B𝑖+1,𝑙 (𝑆𝑖 (ℎ

𝑛+1/2

𝑖,𝑙
, ℎ𝑛

𝑖,𝑟
, 𝑓 )) ,

ℎ
𝑛+1/2

𝑖−1,𝑟
:= B𝑖−1,𝑟 (𝑆𝑖 (ℎ

𝑛+1/2

𝑖,𝑙
, ℎ𝑛

𝑖,𝑟
, 𝑓 )) ,

˘12¯

followed by a Backward sweep

ℎ𝑛+1

𝑖+1,𝑙
:= B𝑖+1,𝑙 (𝑆𝑖 (ℎ

𝑛+1/2

𝑖,𝑙
, ℎ𝑛+1

𝑖,𝑟
, 𝑓 )) ,

ℎ𝑛+1

𝑖−1,𝑟
:= B𝑖−1,𝑟 (𝑆𝑖 (ℎ

𝑛+1/2

𝑖,𝑙
, ℎ𝑛+1

𝑖,𝑟
, 𝑓 )) .

˘13¯

As for the Jacobi method, by introducing an operator 𝒯𝐷𝑆 , this algorithm can be

written in a compact form ℎ𝑛+1 = ℎ𝑛 + (𝐼 −𝒯𝐷𝑆)
−1 (𝐺 − (𝐼 −𝒯) (ℎ𝑛)), see [6].

2.2 Overlapping Splitting Double Sweep preconditioner (OSDS)

We explain now the rationale behind the overlapping splitting double sweep precon‚

ditioner that we define in this section. Note first that by linearity of the operators

(𝑆𝑖)1≤𝑖≤𝑁 , the contribution of each subdomain can be split into two contributions,

one for each of its two interfacesȷ

𝒯(ℎ)𝑖+1,𝑙 = B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)) + B𝑖+1,𝑙 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝒯(ℎ)𝑖−1,𝑟 = B𝑖−1,𝑟 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)) + B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)), 2 ≤ 𝑖 ≤ 𝑁 .

˘14¯

Had we used exact absorbing ˘a.k.a transparent or non‚reflecting¯ boundary condi‚

tions ˘EABC¯ B𝐸𝐴𝐵𝐶 instead of the zero‚th order ones ˘3¯ in equations ˘8¯‚˘9¯, two

terms in ˘14¯ would vanish, namelyȷ

B𝐸𝐴𝐵𝐶
𝑖+1,𝑙

(𝑆𝐸𝐴𝐵𝐶
𝑖

(0, ℎ𝑖,𝑟 , 0)) = 0, 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

B𝐸𝐴𝐵𝐶
𝑖−1,𝑟

(𝑆𝐸𝐴𝐵𝐶
𝑖

(ℎ𝑖,𝑙 , 0, 0)) = 0, 2 ≤ 𝑖 ≤ 𝑁 .
˘15¯

The corresponding operator in ˘14¯ would thus only contain one term then,

𝒯
𝐸𝐴𝐵𝐶 (ℎ)𝑖+1,𝑙 = B𝐸𝐴𝐵𝐶

𝑖+1,𝑙
(𝑆𝐸𝐴𝐵𝐶

𝑖
(ℎ𝑖,𝑙 , 0, 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝒯
𝐸𝐴𝐵𝐶 (ℎ)𝑖−1,𝑟 = B𝐸𝐴𝐵𝐶

𝑖−1,𝑟
(𝑆𝐸𝐴𝐵𝐶

𝑖
(0, ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 .

˘16¯

Then thanks to our numbering of ℎ, the operator valued matrix 𝒯
𝐸𝐴𝐵𝐶 is 2 × 2

block diagonal matrix where each block is subdiagonal. As a consequence, for some

vector 𝐺, computing (𝐼 −𝒯
𝐸𝐴𝐵𝐶 )−1 𝐺 can be performed by two parallel forward

substitutions, which amounts to a single double sweep over the subdomains.
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In practice, the absorbing boundary conditions are non exact, therefore we have

B𝑖+1,𝑙 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)) ≠ 0, 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)) ≠ 0, 2 ≤ 𝑖 ≤ 𝑁 ,
˘17¯

and we loose the block diagonal structure of 𝒯. This led us to define a new operator

𝒯𝑂𝑆𝐷𝑆

𝒯𝑂𝑆𝐷𝑆 (ℎ)𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝒯𝑂𝑆𝐷𝑆 (ℎ)𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 ,
˘18¯

which by definition has the same structure than 𝒯
𝐸𝐴𝐵𝐶 . We propose to use this

newly defined operator to build a preconditioner for ˘7¯. The right‚preconditioned

solves readsȷ Find ℎ̃ solution to

(𝐼𝑑 −𝒯) (𝐼𝑑 −𝒯𝑂𝑆𝐷𝑆 )
−1 ( ℎ̃) = 𝐺 , ˘19¯

followed by ℎ := (𝐼𝑑 −𝒯𝑂𝑆𝐷𝑆 )
−1 ( ℎ̃).

More intuitively, the key idea is to cancel out the reverse contribution at the

interfaces that should not happen for the exact ABC case in order to prevent spu‚

rious interface reflections from hindering the convergence. In fact, these boundary

conditions at the interfaces produce spurious reflected waves that significantly in‚

crease the number of iterations to converge, in particular for heterogeneous media

and high frequency regimes. Note that for a non overlapping domain decomposition,

the OSDS algorithm is similar to the double sweep method of [8, 9]. Our approach

addresses the case of overlapping subdomains that benefits the convergence rate.

3 Numerical results

In this section, we present numerical results when solving the substructured equa‚

tion ˘7¯ with the GMRES algorithm right preconditioned by 𝐼𝑑 ˘Jacobi method¯,

(𝐼𝑑−𝒯𝐷𝑆 )
−1 ˘Double sweep algorithm¯ and (𝐼𝑑−𝒯𝑂𝑆𝐷𝑆 )

−1 ˘Overlapping Splitting

Double sweep algorithm¯. Note that the Jacobi method requires 𝑁 subdomain solves

per iteration instead of 2 𝑁 for the sweeping methods. The Helmholtz equation is

discretized with a P1 finite element using FreeFem++ [5]. Note that we use a careful

variational discretisation of the normal derivative ensuring that the solution obtained

converges to the solution of the problem without domain decompositions.

3.1 Wedge test

We consider the classical test case of the wedge, see e.g. [8], a rectangular domain

[0, 600]×[0, 1000] with three different velocities in regions separated by non‚parallel

boundaries ˘Fig. 3 left¯. Starting from the top, the velocities are 𝑐 = 2000, 𝑐 = 1500

and 𝑐 = 3000. Sommerfeld conditions are imposed on the bottom, right and left
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Fig. 3: Heterogeneous mediaȷ Wedge ˘Leftȷ Velocity model, Rightȷ Solution ˘real¯ for 𝜔 = 160𝜋¯

boundaries. The abrupt variations of the wavenumber produce internal reflections in

different directions. A typical solution is shown in Figure 3 right.

Iteration counts are given in Table 1. The OSDS method is clearly superior to the

Jacobi and DS methods. When increasing the number of subdomains, the ratio in

favor of the OSDS method compared to the DS method increases up to reaching a

value of nearly 4 for a domain decomposition into 40 vertical strips. Interestingly, we

see that for a low tolerance on the residual ˘TOL=10
−3¯, the OSDS iteration counts

are almost independent of the number of subdomains.

𝑁
𝜔 = 40𝜋 𝜔 = 60𝜋

Jacobi DS OSDS Jacobi DS OSDS

5 28 ˘17¯ 19 ˘11¯ 13 ˘6¯ 28 ˘15¯ 18 ˘10¯ 12 ˘5¯

10 55 ˘31¯ 31 ˘16¯ 14 ˘7¯ 56 ˘30¯ 31 ˘15¯ 14 ˘6¯

20 110 ˘55¯ 58 ˘29¯ 18 ˘8¯ 111 ˘53¯ 57 ˘28¯ 18 ˘7¯

40 203 ˘88¯ 103 ˘47¯ 27 ˘9¯ 206 ˘85¯ 111 ˘55¯ 30 ˘9¯

Table 1: Wedge, 𝜔 = 40𝜋 and 60𝜋, 𝛿 = 16ℎ, TOL=10
−6 (10

−3) , nppwl = 24 , P1

3.2 Influence of the overlap

We have also tested the effect of the width of the overlap on the convergence. We

considered two test casesȷ the homogeneous waveguide and the wedge ˘see Table 2¯

that is defined in more detail in § 3.1. We observe that for the waveguide solved

by the Overlapping Splitting Double Sweep method, the iteration count decreases

significantly with increasing overlap. This monotonical decrease in the iteration

count contrasts with the behaviour of the other two methods. We see that for the

Jacobi and double sweep ˘DS¯ methods, the overlap has very little effect. For the

Jacobi method it improves slightly the iteration counts whereas for the DS method,

it might deteriorate the iteration count. For the wedge test case, all methods benefit
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𝛿
Homogeneous waveguide ˘𝜔 = 20¯ Wedge ˘𝜔 = 40𝜋¯

Jacobi DS OSDS Jacobi DS OSDS

2 159 69 27 259 127 97

4 165 74 23 245 117 83

8 160 76 20 221 105 69

16 143 73 18 202 91 53

Table 2: Influence of the overlap, 𝛿 varies, TOL=10
−6, nppwl = 24 , P1

monotonically from the size of the overlap but once again the reduction in the

iteration count is more pronounced for the Overlapping Splitting Double Sweep

method where the iteration count is reduced by a factor 1.83 when the overlap is

increased from 2ℎ to 16ℎ.

4 Conclusion

We have introduced an overlapping splitting double sweep algorithm which yields

improved convergence for various problems. Many aspects deserve further inves‚

tigationsȷ higher‚order ABC instead of the zero‚th order one considered here and

the introduction of a pipelining technique that can be applied to multiple right‚hand

sides problems to improve parallelism and achieve significant speed‚ups, see [9].
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