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1 Introduction

Deep convolutional neural networks ˘DCNNs¯ [7] have brought significant improve‚

ments to the field of computer vision for a wide range of problems [3, 7]. Larger

models and larger datasets have led to breakthroughs in accuracy; however, it re‚

sults in much longer training time and memory intensity, which negatively impact

the development of CNNs [1, 9]. There are two ways to parallelize trainingȷ model

parallelism and data parallelism [1]. Model parallelism partitions the network into

pieces, and different processors train different pieces. In model parallelism, frequent

communication between different processors is needed since the calculation of the

next layer usually requires the outputs of the previous layer. In data parallelism, the

dataset is partitioned into parts stored in each processor which has a local copy of

the network with its parameters. However, scaling the training to a large number of

processors means an increase in the batch size, which results in poor generalization.

New training methods are developed to avoid this problem [1, 9].

In this paper, we propose a method to parallelize the training of DCNNs by

decomposing and preconditioning DCNNs motivated by the idea of domain decom‚

position methods [8]. Domain decomposition methods are a family of highly parallel

methods for solving partial differential equations on large scale computers, which

is based on the divide and conquer philosophy for solving a problem defined on a

global domain by iteratively solving subproblems defined on smaller subdomains

[8]. The advantages of domain decomposition methods consist of the straightforward
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applicability for parallel computing [4] and the localized treatment for the specificity

of subdomain problems [8].

First, motivated by the domain decomposition methods, a DCNN ˘also called a

global network¯ is decomposed into sub‚networks by partitioning the width of the

network while keeping the depth constant. All the sub‚networks are individually

trained, in parallel without any interprocessor communication, with the correspond‚

ing decomposition of the input samples. Then, following the idea of nonlinear pre‚

conditioning of Newton’s method [5] that replaces the standard initial guess by an

initial guess that satisfies some of the constraints locally, we propose a sub‚network

transfer learning strategy in which the weights of the trained sub‚networks are com‚

posed to initialize the global network, which is then further trained. There are some

differences between the proposed preconditioning of DCNNs and the standard non‚

linear domain decomposition preconditioners. For example, we use the stochastic

gradient descent ˘SGD¯ method instead of Newton’s method. Besides, the nonlinear

preconditioner of DCNNs ˘i.e., compositing the sub‚networks to initialize the global

network¯ is applied only once, while the nonlinear preconditioner is applied in every

iteration ˘or some iterations¯ in the nonlinear preconditioning of Newton’s method.

The rest of this paper is organized as follows. Section 2 proposes a new method

to parallelize the training of DCNNs by decomposing and preconditioning DCNNs.

Section 3 provides some experiments, followed by our conclusions in Section 4. Ad‚

ditionally, we have submitted some parts of this work to a special issue of Electronic

Transaction on Numerical Analysis [2], where more details, additional theoretical

discussions and more experimental results are included.

2 Proposed approaches

In this section, we propose and study a new method to parallelize the training of

DCNNs by decomposing and preconditioning DCNNs. We consider a DCNN for

classification consisting of some convolutional layers and some fully connected ˘FC¯

layers, followed by a classification module which is usually a softmax layer.

Notations. Denote a 𝐿‚layer DCNN as 𝐹 (𝒙;Θ) with input 𝒙 and the set of

parameters Θ. The output of each layer is called feature map and is a 3D tensors,

where the third dimension of the tensors is the number of independent maps, and the

first and the second are the height and the width, respectively. The kernel of the 𝑙‚th

layer is a 4D tensor and can be denoted by 𝒘
𝑙 ∈ R𝑡

𝑙
1
×𝑡𝑙

2
×𝑐𝑙

in
×𝑐𝑙out , where 𝑐𝑙

in
and 𝑐𝑙out

are the number of input and output channels, respectively, and 𝑡𝑙
1
, 𝑡𝑙

2
are the kernel

widths. A FC layer can be regarded as a special case of a convolutional layer.

Assume 𝒙 ∈ R𝐻×𝑊×𝐷 is a 3D tensor with element 𝑥𝑖, 𝑗 ,𝑘 where (𝑖, 𝑗 , 𝑘) ∈ Ω,

Ω = [𝐻] × [𝑊] × [𝐷] with [𝐻] = {1, · · · , 𝐻}. Given a Cartesian product Ω̃ ⊂ Ω, we

call 𝒙̃ = D
Ω̃
(𝒙) a subdomain of 𝒙 with element 𝑥𝑖, 𝑗 , 𝑘̃ = 𝑥𝑖, 𝑗 ,𝑘 for all (𝑖, 𝑗 , 𝑘) ∈ Ω̃,

where the elements of D
Ω̃
(𝒙) remain order‚preserving ˘cf. [2]¯. Given a set of

Cartesian products {Ω𝑘}
𝐾
𝑘=1

satisfying
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Fig. 1: Illustration of the decomposition of DCNN. The global network and input is uniformly

decomposed into 4 partitions. The architecture of VGG16 ˘top¯ and one of sub‚networks ˘bottom¯;

cf. [2].

Ω𝑖 ∩Ω 𝑗 = ∅,
⋃𝐾

𝑘=1
Ω𝑘 = Ω,

we call {𝒙̃𝑘 = DΩ𝑘
(𝒙) | 𝑘 ∈ [𝐾]} a complete decomposition of 𝒙. Besides, given a

subdomain Ω̃ of the input, the activation field of Ω̃ in the 𝑙‚th layer, which is denoted

by G𝐹,𝑙 (Ω̃), represents the largest subdomain of the output of this layer that only

responds to Ω̃; see [2] for more formal details.

2.1 Decomposing a DCNN into sub-networks

We consider a global network for a classification task with samples 𝑋 = {𝒙𝑖}𝑖 and

their corresponding labels. Given a set of Cartesian products {Ω𝑘}
𝐾
𝑘=1

, the samples

are decomposed into 𝐾 subdomain denoted by 𝑋𝑘 = {DΩ𝑘
(𝒙𝑖)}𝑖 for 𝑘 ∈ [𝐾]. For a

natural RGB image ˘i.e., 𝐷 = 3¯, we decompose 𝒙𝑖 in the first and second dimensions

but not the third dimension. Correspondingly, a global network is decomposed

into 𝐾 sub‚networks by partitioning the width ˘i.e., along the channel dimension¯

of the network while keeping the depth constant; see more formal details in [2].

Then, the samples of each subdomain and their ground truth are used to train

the corresponding sub‚network. The trainings of sub‚networks can be performed

completely independently on parallel computers. Compared with existing distributed
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training methods for DCNNs, the parallel training of sub‚networks is rather related

to model parallelism than to data parallelism. However, the sub‚networks are trained

completely independently and the communication between different sub‚networks in

the proposed approach only occurs in the initialization of the global network, which

is different from the current model parallelism that suffers from excessive inter‚GPU

communication since the model part trained by one processor usually requires output

from a model part trained by another processor.

Fig. 1 shows the decomposition of VGG16 [7], where the VGG16 and the input

samples are uniformly decomposed into 𝐾 = 4 partitions; uniformly means that the

decomposition of inputs is a complete decomposition, and the channel number and

the input are partitioned uniformly.

The number of floating point operations ˘FLOPs¯ [6] is used to estimate the

computational complexity of a network, in which each multiplication or addition is

counted as one FLOP. Assume that the global network and the inputs are uniformly

decomposed into 𝐾 = 𝑛2 partitions. Generally, the FLOPs of each sub‚network is

approximately 1/𝐾3 of that of the global network, since the convolutional layers

contain the vast majority of computations; see [2] for more details.

2.2 Preconditioning of DCNNs

We propose an algorithm for composing the trained sub‚networks to initialize the

global network, which we call the sub‚network transfer learning strategy, and then

the global network is further trained. In a reverse process of the decomposition, the

weights of the sub‚networks are composed along the channel dimension but with

additional connections between the sub‚networks initialized to zero. Taking VGG16

as an example, Fig. 2 shows how to compose 4 sub‚networks into one global network.

More formally, denoting the weights in 𝑙‚th layer of the global network and the 𝑘‚th

sub‚networks by 𝒘
𝑙 and {𝒘𝑙

𝑘
}𝑘 , respectively, 𝒘𝑙 is initialized as follows ˘cf. [2]¯ȷ

• For the first layer,

D
Ω
′

𝑘

(𝒘1) = 𝒘
1
𝑘
, for 𝑘 ∈ [𝐾 ],

Ω
′

𝑘
= [𝑡1

1
] × [𝑡1

2
] × [𝑐1

in
] × {1 +

∑︁𝑘−1

𝑖=1
𝑐1
𝑖,out :

∑︁𝑘

𝑖=1
𝑐1
𝑖,out }. ˘1¯

• For the first FC layer,

D
Ω
′

𝑘

(𝒘𝑙) = 𝒘
𝑙
𝑘
, for 𝑘 ∈ [𝐾 ], D

Ω
′′ (𝒘𝑙) = 0,

Ω
′

𝑘
=
(

G𝐹,𝑙−1 (Ω𝑘)∩ ( [𝑡𝑙
1
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2
]× {1+
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∑︁

𝑖=1

𝑐𝑙
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:

𝑘
∑︁

𝑖=1

𝑐𝑙
𝑖,in
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)

×{1+

𝑘−1
∑︁

𝑖=1

𝑐𝑙𝑖,out :

𝑘
∑︁

𝑖=1

𝑐𝑙𝑖,out },

Ω
′′

=
(

[𝑡𝑙
1
] × [𝑡𝑙

2
] × [𝑐𝑙

in
] × [𝑐𝑙out ]

)

\ ∪𝐾
𝑘=1

Ω
′

𝑘
. ˘2¯

• For the last FC layer,

D
Ω
′

𝑘

(𝒘𝐿) = 𝒘
𝐿
𝑘
, for 𝑘 ∈ [𝐾 ],
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Fig. 2: Illustration of preconditioning the global network by composing 4 sub‚networks.𝒘𝑘 denotes

the weights of the 𝑘‚th sub‚network ˘using the same notation for different layers for simplicity¯. ˘a¯

The first convolutional layer; ˘b¯ One of the intermediate convolutional layers. Note that some of

the connections with zero weights are omitted for simplicity; ˘c¯ The last FC layer; cf. [2].

Ω
′

𝑘
= [𝑡𝐿

1
] × [𝑡𝐿
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• For other convolutional layers and other FC layers,

D
Ω
′

𝑘

(𝒘𝑙) = 𝒘
𝑙
𝑘
, for 𝑘 ∈ [𝐾 ], D

Ω
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3 Experiments

In this section, some experiments on image classification tasks are carried out to

evaluate the proposed approach by observing the training time and the classifica‚

tion accuracy. The experiments are carried out using the TensorFlow library on a

workstation with 4 NVIDIA Tesla V100 32G GPUs. We compare the performances

between two training strategiesȷ 1¯ to train the global network with the parameters

randomly initialized ˘referred to as “GNet‚R”¯, 2¯ to train the sub‚networks ˘referred

to as “SNets”¯ in parallel and then further train the global network initialized by the

sub‚networks transfer learning method ˘referred to as “GNet‚T”¯. The sub‚networks

and the global networks are trained using the same computing resources. The global

networks are trained using the data‚parallel strategy. The sub‚networks are trained

in parallel by a multiprocessing strategy, with GPUs uniformly assigned to sub‚
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Fig. 3: Illustration of the way of partitioning each image into 8 sub‚images; cf. [2].
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Fig. 4: Classification accuracy curves for validation data during training with varying partition

numbers. Comparisons between the two training strategies ˘i.e., “GNet‚R” and “GNet‚T”¯.

networks. In addition, the numbers of training iterations in the two strategies are the

same. For the strategy 1¯, the GNet‚R is trained for 200 epochs. For the strategy 2¯,

the SNets are trained for 100 epochs and then the GNet‚T is trained for 100 epochs.

The experiments are carried out on the dataset which contains 4323 images of

flowers in 5 categories1. The dataset is split into training, validation and testing sets

in the ratio of about 70ȷ15ȷ15, and the images are all resized to 224 × 224. We use a

residual network of 18 layers in [3]. Additionally, the network and the input images

are decomposed into 4, 8, and 16 partitions. For 4 ˘or 16¯ partitions, the input images

are cropped 24 pixels on the boundaries, which are then decomposed into 4 ˘or 16¯

sub‚images of size 140 × 140 ˘or 70 × 70¯ by decomposing into 2 ˘or 4¯ partitions

in both the width and height dimensions and then applying overlap between each

pair of neighbouring subdomains; for 8 partitions, the decomposition is illustrated

as Fig. 3.

Table 1 shows the FLOPs and the number of parameters of the global network

and one sub‚network, and the training times of the two training strategies, which

1 httpsȷ//www.kaggle.com/alxmamaev/flowers‚recognition.
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Table 1: The FLOPs and the number of parameters of the global network ˘“GNet”¯ and one sub‚

network ˘“SNet”, and “4”, “8” and “16” mean 4, 8 and 16 partitions, respectively¯; the training

time of the global networks and 4 ˘or 8, 16¯ sub‚networks for 10 epochs. “M” means 106.

GNet SNet‚4 SNet‚8 SNet‚16

# param 17.22M 1.08M 0.27M 0.07M

FLOPs 5015.56M 154.57M 19.69M 4.05M

training time 289 s 137 s 101 s 82 s

Table 2: The comparison of the classification accuracy of the testing data between the global

networks of the two training strategies ˘i.e., “GNet‚T” and “GNet‚R”¯ with varying partition

numbers. “Initialized” means that the global networks are initialized by the sub‚network transfer

learning strategy ˘i.e., “GNet‚T”¯ or randomly initialized ˘i.e., “GNet‚R”¯ without being further

trained, and “Trained” means that the global networks are trained.

Initialized ˘%¯ Trained ˘%¯

GNet‚R GNet‚T‚4 GNet‚T‚8 GNet‚T‚16 GNet‚R GNet‚T‚4 GNet‚T‚8 GNet‚T‚16

17.39 77.73 57.45 49.46 82.80 83.56 82.49 79.26

indicates that 1¯ the number of parameters of the sub‚network is approximately 1/𝐾2

of that of the corresponding global network, 2¯ for 4 partitions, the computation of

the sub‚network is approximately 1/25 of the corresponding global network; for

8 and 16, this ratio decreases to 1/28 and 1/210, and 3¯ for the same number of

iterations, the training time of 𝐾 sub‚networks is less than 1/2 of that of the global

network; thus, the sub‚network transfer learning strategy saves more than 1/4 of the

training time.

Fig. 4 and Table 2 show the comparisons of the classification accuracy between

the two training strategies, which shows that 1¯ in general, as the number of partitions

increases, the initialization seem to be worse and the accuracy of GNet‚T after further

training decreases, and 2¯ after further training, the sub‚network transfer learning

strategy shows almost no loss of accuracy, except for the case of 16 partitions. These

results indicate that a decomposition into too many partitions may reduce the quality

of the initialization and also perform poorly after further training.

4 Conclusion

In this paper, inspired by the idea of domain decomposition methods and nonlinear

preconditioning, we propose and study a new method of decomposing and precondi‚

tioning DCNNs for the purpose of parallelizing the training of DCNNs. The global

network is firstly decomposed into sub‚networks that are trained independently with‚

out any interprocessor communication, which are then recomposed to initialize the

global network via the transfer learning strategy. The experimental results show

that the proposed approach can indeed provide good initialization and accelerate
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the training of the global network. Additionally, after further training, the transfer

learning strategy shows almost no loss of accuracy.

References

1. P. Goyal, P. Dollăr, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,

and K. He. Accurate, large minibatch SGDȷ Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017.

2. L. Gu, W. Zhang, J. Liu, and X.‚C. Cai. Decomposition and composition of deep convolutional

neural networks and training acceleration via sub‚network transfer learning. submitted to ETNA,

2020.

3. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

4. Z.‚J. Liao, R. Chen, Z. Yan, and X.‚C. Cai. A parallel implicit domain decomposition algorithm

for the large eddy simulation of incompressible turbulent flows on 3d unstructured meshes. Int.

J. Numer. Methods Fluids, 89˘9¯ȷ343–361, 2019.

5. L. Luo, W. Shiu, R. Chen, and X.‚C. Cai. A nonlinear elimination preconditioned inexact newton

method for blood flow problems in human artery with stenosis. J. Comput. Phys., 399ȷ108926,

2019.

6. P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks

for resource efficient inference. In ICLR, 2017.

7. K. Simonyan and A. Zisserman. Very deep convolutional networks for large‚scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

8. A. Toselli and O. B. Widlund. Domain Decomposition Methods-Algorithms and Theory.

Springer, 2005.

9. Y. You, Z. Zhang, C.‚J. Hsieh, J. Demmel, and K. Keutzer. Imagenet training in minutes. In

ICPP, pages 1–10, 2018.


